You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

128 lines
3.5 KiB
Python

import sys
from kb_config import logger
from sentence_transformers import CrossEncoder
from faiss_kb_service import FaissKBService, DocumentWithVectorStoreId
from langchain.docstore.document import Document
from base_kb import KnowledgeFile
class QAService():
def __init__(self, kb_name, device) -> None:
embed_model_path = 'bge-large-zh-v1.5'
fkbs = FaissKBService(kb_name, embed_model_path=embed_model_path, device=device)
fkbs.do_create_kb()
self.fkbs = fkbs
self.kb_name = kb_name
def delete_qa_file(self, qa_file_id):
kb_file = KnowledgeFile(qa_file_id, self.kb_name)
self.fkbs.do_delete_doc(kb_file, not_refresh_vs_cache=True)
def update_qa_doc(self, qa_file_id, doc_list, id_list):
self.delete_qa_file(qa_file_id)
doc_infos = self.fkbs.do_add_doc(doc_list, ids=id_list)
logger.info('fassi add docs: ' + str(len(doc_infos)))
self.fkbs.save_vector_store()
def search(self,
query,
top_k = 3,
score_threshold = 0.75,
reranked=False):
docs = self.fkbs.do_search(query, top_k, 1 - score_threshold)
return docs
import json
def create_question_id(intent_code, j, test_question):
return f"{intent_code}@{j}@{test_question}"
def load_testing_data(file_path):
test_data_list = []
question_list = []
id_list = []
with open(file_path, encoding='utf-8') as f:
data = json.load(f)
for i, item in enumerate(data):
test_question = item['testQuestion']
intent_code = item['expectIntentCode']
test_data_list.append((test_question, intent_code))
q_list = item['expectIntentQuestionExample']
for j, q in enumerate(q_list):
q_id = create_question_id(intent_code, j, test_question)
question_list.append(q)
id_list.append(q_id)
return test_data_list, question_list, id_list
def convert_to_doc_list(question_list, id_list, qa_file_id):
doc_list = []
for question, id in zip(question_list, id_list):
metadata = {
'source': qa_file_id,
'id': id
}
doc = Document(page_content=question, metadata=metadata)
doc_list.append(doc)
return doc_list
import time
def work():
start_time = time.time()
kb_name = 'my_kb_test'
device = None
qa_service = QAService(kb_name, device)
test_data_list, question_list, id_list = load_testing_data(r'test_data/testing_data.json')
print('Loaded data!')
qa_file_id = 'QA_TEST_2' # the source of the qa, using for data cleaning, make sure to be unique
doc_list = convert_to_doc_list(question_list, id_list, qa_file_id)
qa_service.update_qa_doc(qa_file_id, doc_list, id_list)
cnt = 0
for query, code in test_data_list:
rst = qa_service.search(query)
if do_test(query, code, rst):
cnt += 1
print(str(cnt) + '/' + str(len(test_data_list)))
end_time = time.time()
elapsed_time = end_time - start_time
print(f"总耗时: {elapsed_time}")
def do_test(query, expected_intent_code, rst):
if rst is None or len(rst)==0:
print('Empty: ' + query)
return False
for rst_doc, similarity_score in rst:
page_content = rst_doc.page_content
intent_code = rst_doc.metadata['id'].split('@')[0]
print(
f"{query} vs {page_content} : {expected_intent_code} vs {intent_code} - Similarity Score: {1 - similarity_score}")
return True
work()