|
|
# coding=gbk
|
|
|
from fastapi import FastAPI, HTTPException, BackgroundTasks
|
|
|
from qa_Ask import QAService, match_query, store_data
|
|
|
from pydantic import BaseModel
|
|
|
from collections import deque
|
|
|
import requests
|
|
|
import os
|
|
|
import time
|
|
|
import uuid
|
|
|
import json
|
|
|
import shutil
|
|
|
import yaml
|
|
|
import sys
|
|
|
import logging
|
|
|
from typing import List
|
|
|
from faiss_kb_service import FaissKBService
|
|
|
from faiss_kb_service import EmbeddingsFunAdapter
|
|
|
|
|
|
app = FastAPI()
|
|
|
|
|
|
# 配置日志记录到文件和终端
|
|
|
logging.basicConfig(
|
|
|
level=logging.INFO,
|
|
|
format='%(asctime)s - %(levelname)s - %(message)s',
|
|
|
handlers=[
|
|
|
logging.FileHandler('log/app.log'),
|
|
|
logging.StreamHandler(sys.stdout) # 这里添加控制台处理程序
|
|
|
]
|
|
|
)
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class QuestionRequest(BaseModel):
|
|
|
question: str
|
|
|
scoreThreshold: float
|
|
|
|
|
|
class EmbeddingResponse(BaseModel):
|
|
|
embeddings: List[float]
|
|
|
|
|
|
|
|
|
class QuestionResponse(BaseModel):
|
|
|
code: int
|
|
|
msg: str
|
|
|
data: list
|
|
|
|
|
|
|
|
|
class QuestionItem(BaseModel):
|
|
|
questionId: str
|
|
|
questionList: list[str]
|
|
|
|
|
|
class EmbeddingRequest(BaseModel):
|
|
|
text: str
|
|
|
|
|
|
with open('config/config.yaml', 'r') as config_file:
|
|
|
config_data = yaml.safe_load(config_file)
|
|
|
|
|
|
knowledge_base_file = config_data['knowledge_base_file']
|
|
|
api_url = config_data['api']['url']
|
|
|
path = config_data['output_file_path']
|
|
|
max_knowledge_bases = config_data['max_knowledge_bases']
|
|
|
|
|
|
|
|
|
def load_knowledge_bases():
|
|
|
"""加载知识库名称列表"""
|
|
|
if os.path.exists(knowledge_base_file):
|
|
|
with open(knowledge_base_file, "r") as file:
|
|
|
return file.read().splitlines()
|
|
|
else:
|
|
|
return []
|
|
|
|
|
|
|
|
|
def save_knowledge_bases(names):
|
|
|
"""保存知识库名称列表到文件"""
|
|
|
with open(knowledge_base_file, "w") as file:
|
|
|
file.write("\n".join(names))
|
|
|
|
|
|
|
|
|
def update_kb(kb_name, qa_service, path, max_knowledge_bases):
|
|
|
"""更新知识库"""
|
|
|
store_data(qa_service, path)
|
|
|
|
|
|
if len(recent_knowledge_bases) == max_knowledge_bases:
|
|
|
folder_to_delete = recent_knowledge_bases.popleft()
|
|
|
shutil.rmtree(f"knowledge_base/{folder_to_delete}")
|
|
|
|
|
|
recent_knowledge_bases.append(kb_name)
|
|
|
save_knowledge_bases(recent_knowledge_bases)
|
|
|
|
|
|
os.remove(path)
|
|
|
logger.info(f"Knowledge base updated: {kb_name}\n"
|
|
|
f"Please wait while the database is being updated···")
|
|
|
|
|
|
|
|
|
def fetch_and_write_data(api_url, path):
|
|
|
"""从API获取数据并写入文件"""
|
|
|
try:
|
|
|
response = requests.get(api_url)
|
|
|
response_data = response.json()
|
|
|
|
|
|
if response.status_code == 200 and response_data["code"] == 200:
|
|
|
question_items = response_data["data"]
|
|
|
|
|
|
with open(path, "w", encoding="utf-8") as file:
|
|
|
json.dump(question_items, file, ensure_ascii=False, indent=2)
|
|
|
|
|
|
return True
|
|
|
else:
|
|
|
logger.error(f"Failed to fetch data from API. Status code: {response.status_code}, Response data: {response_data}")
|
|
|
return False
|
|
|
except Exception as e:
|
|
|
logger.error(f"Error fetching data from API: {e}")
|
|
|
return False
|
|
|
bge_large_zh_v1_5_config = config_data.get('bge_large_zh_v1_5', {})
|
|
|
embed_model_path = bge_large_zh_v1_5_config.get('embed_model_path', 'default_path_if_not_provided')
|
|
|
|
|
|
recent_knowledge_bases = deque(load_knowledge_bases(), maxlen=max_knowledge_bases)
|
|
|
faiss_service = FaissKBService(kb_name= recent_knowledge_bases[-1], embed_model_path=embed_model_path, device=None)
|
|
|
|
|
|
@app.post("/embeddings/", response_model=EmbeddingResponse)
|
|
|
async def get_embeddings(request: EmbeddingRequest):
|
|
|
"""使用FaissKBService实例来获取嵌入向量"""
|
|
|
embed_func = EmbeddingsFunAdapter(faiss_service.embed_model_path, faiss_service.device)
|
|
|
try:
|
|
|
embeddings = embed_func.embed_query(request.text)
|
|
|
embeddings_list = embeddings
|
|
|
return EmbeddingResponse(embeddings=embeddings_list)
|
|
|
except Exception as e:
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
@app.post("/updateDatabase")
|
|
|
async def save_to_json(question_items: list[QuestionItem], background_tasks: BackgroundTasks):
|
|
|
"""接收问题数据并异步保存为JSON文件,触发后台更新任务"""
|
|
|
try:
|
|
|
json_data = json.dumps([item.dict() for item in question_items], ensure_ascii=False, indent=2)
|
|
|
path = "output.json"
|
|
|
|
|
|
with open(path, "w", encoding="utf-8") as file:
|
|
|
file.write(json_data)
|
|
|
|
|
|
kb_name = str(uuid.uuid4())
|
|
|
|
|
|
device = None
|
|
|
qa_service = QAService(kb_name, device)
|
|
|
|
|
|
background_tasks.add_task(
|
|
|
update_kb, kb_name, qa_service, path, max_knowledge_bases
|
|
|
)
|
|
|
|
|
|
return {"status": "success", "message": "Please wait while the database is being updated···"}
|
|
|
|
|
|
except Exception as e:
|
|
|
logger.error(f"Error saving data to file or scheduling knowledge base update task: {e}")
|
|
|
# raise HTTPException(status_code=500, detail=f"Internal Server Error: {str(e)}")
|
|
|
return {"status": "error", "message": "update task error···"}
|
|
|
|
|
|
|
|
|
@app.post("/matchQuestion")
|
|
|
def match_question(request: QuestionRequest):
|
|
|
"""匹配问题的端点"""
|
|
|
try:
|
|
|
logger.info(f"match_question:Request: {request}")
|
|
|
start_time = time.time()
|
|
|
query = request.question
|
|
|
|
|
|
newest = recent_knowledge_bases[-1]
|
|
|
|
|
|
top_k = 3
|
|
|
|
|
|
device = None
|
|
|
qa_service = QAService(newest, device)
|
|
|
|
|
|
result = match_query(qa_service, query, top_k, request.scoreThreshold)
|
|
|
|
|
|
response = QuestionResponse(code=200, msg="success", data=result)
|
|
|
stop_time = time.time()
|
|
|
duration = stop_time - start_time
|
|
|
|
|
|
logger.info(f"match_question:Matched question in {duration} seconds. "
|
|
|
f"Response: {result}")
|
|
|
return response
|
|
|
|
|
|
except Exception as e:
|
|
|
logger.error(f"Error matching question: {e}")
|
|
|
return QuestionResponse(code=500, msg="success", data=[])
|
|
|
|
|
|
recent_knowledge_bases = deque(load_knowledge_bases(), maxlen=max_knowledge_bases)
|
|
|
|
|
|
if fetch_and_write_data(api_url, path):
|
|
|
kb_name = str(uuid.uuid4())
|
|
|
device = None
|
|
|
qa_service = QAService(kb_name, device)
|
|
|
update_kb(kb_name, qa_service, path, max_knowledge_bases)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
import uvicorn
|
|
|
|
|
|
uvicorn.run(app, host="0.0.0.0", port=8000)
|