You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

206 lines
6.4 KiB
Python

1 year ago
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.faiss import FAISS
import threading
from contextlib import contextmanager
from collections import OrderedDict
from typing import List, Any, Union, Tuple
class ThreadSafeObject:
def __init__(self, key: Union[str, Tuple], obj: Any = None, pool: "CachePool" = None):
self._obj = obj
self._key = key
self._pool = pool
self._lock = threading.RLock()
self._loaded = threading.Event()
def __repr__(self) -> str:
cls = type(self).__name__
return f"<{cls}: key: {self.key}, obj: {self._obj}>"
@property
def key(self):
return self._key
@contextmanager
def acquire(self, owner: str = "", msg: str = "") -> FAISS:
owner = owner or f"thread {threading.get_native_id()}"
try:
self._lock.acquire()
if self._pool is not None:
self._pool._cache.move_to_end(self.key)
yield self._obj
finally:
self._lock.release()
def start_loading(self):
self._loaded.clear()
def finish_loading(self):
self._loaded.set()
def wait_for_loading(self):
self._loaded.wait()
@property
def obj(self):
return self._obj
@obj.setter
def obj(self, val: Any):
self._obj = val
class CachePool:
def __init__(self, cache_num: int = -1):
self._cache_num = cache_num
self._cache = OrderedDict()
self.atomic = threading.RLock()
def keys(self) -> List[str]:
return list(self._cache.keys())
def _check_count(self):
if isinstance(self._cache_num, int) and self._cache_num > 0:
while len(self._cache) > self._cache_num:
self._cache.popitem(last=False)
def get(self, key: str) -> ThreadSafeObject:
if cache := self._cache.get(key):
cache.wait_for_loading()
return cache
def set(self, key: str, obj: ThreadSafeObject) -> ThreadSafeObject:
self._cache[key] = obj
self._check_count()
return obj
def pop(self, key: str = None) -> ThreadSafeObject:
if key is None:
return self._cache.popitem(last=False)
else:
return self._cache.pop(key, None)
def acquire(self, key: Union[str, Tuple], owner: str = "", msg: str = ""):
cache = self.get(key)
if cache is None:
raise RuntimeError(f"请求的资源 {key} 不存在")
elif isinstance(cache, ThreadSafeObject):
self._cache.move_to_end(key)
return cache.acquire(owner=owner, msg=msg)
else:
return cache
def load_kb_embeddings(
self,
local_model_path,
embed_device
) -> Embeddings:
return embeddings_pool.load_embeddings(local_model_path=local_model_path, device=embed_device)
class EmbeddingsPool(CachePool):
def load_embeddings(self, local_model_path, device) -> Embeddings:
self.atomic.acquire()
key = (local_model_path, device)
if not self.get(key):
item = ThreadSafeObject(key, pool=self)
self.set(key, item)
with item.acquire(msg="初始化"):
self.atomic.release()
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(model_name=local_model_path,
model_kwargs={'device': device})
item.obj = embeddings
item.finish_loading()
else:
self.atomic.release()
return self.get(key).obj
embeddings_pool = EmbeddingsPool(cache_num=1)
import numpy as np
def normalize(embeddings: List[List[float]]) -> np.ndarray:
'''
sklearn.preprocessing.normalize 的替代使用 L2避免安装 scipy, scikit-learn
'''
norm = np.linalg.norm(embeddings, axis=1)
norm = np.reshape(norm, (norm.shape[0], 1))
norm = np.tile(norm, (1, len(embeddings[0])))
return np.divide(embeddings, norm)
class EmbeddingsFunAdapter(Embeddings):
def __init__(self, embed_local_model_path, device):
self.embed_local_model_path = embed_local_model_path
self.device = device
def embed_documents(self, texts: List[str]) -> List[List[float]]:
embeddings = embeddings_pool.load_embeddings(
model=self.embed_local_model_path,
device=self.device).embed_documents(texts)
return normalize(embeddings).tolist()
def embed_query(self, text: str) -> List[float]:
embeddings = embeddings_pool.load_embeddings(
local_model_path=self.embed_local_model_path,
device=self.device
).embed_documents([text])
query_embed = embeddings[0]
query_embed_2d = np.reshape(query_embed, (1, -1)) # 将一维数组转换为二维数组
normalized_query_embed = normalize(query_embed_2d)
return normalized_query_embed[0].tolist() # 将结果转换为一维数组并返回
def embed_documents(
docs,
local_model_path,
device
):
texts = [x.page_content for x in docs]
metadatas = [x.metadata for x in docs]
embeddings_model = embeddings_pool.load_embeddings(local_model_path=local_model_path, device=device)
embeddings = embeddings_model.embed_documents(texts)
if embeddings is not None:
return {
"texts": texts,
"embeddings": embeddings,
"metadatas": metadatas,
}
class KnowledgeFile:
def __init__(
self,
filename: str,
knowledge_base_name: str
):
self.kb_name = knowledge_base_name
self.filename = filename
def torch_gc():
try:
import torch
if torch.cuda.is_available():
# with torch.cuda.device(DEVICE):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
elif torch.backends.mps.is_available():
try:
from torch.mps import empty_cache
empty_cache()
except Exception as e:
msg = ("如果您使用的是 macOS 建议将 pytorch 版本升级至 2.0.0 或更高版本,"
"以支持及时清理 torch 产生的内存占用。")
except Exception:
...