You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

175 lines
5.1 KiB
Python

from fastapi import FastAPI, HTTPException, BackgroundTasks
from qa_Ask import QAService, match_query, store_data
from pydantic import BaseModel
from collections import deque
import requests
import os
import time
import uuid
import json
import shutil
import yaml
import logging
app = FastAPI()
import sys
# 配置日志记录到文件和终端
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('log/app.log'),
logging.StreamHandler(sys.stdout) # 这里添加控制台处理程序
]
)
logger = logging.getLogger(__name__)
class QuestionRequest(BaseModel):
question: str
class QuestionResponse(BaseModel):
code: int
msg: str
data: list
class QuestionItem(BaseModel):
questionCode: str
questionList: list[str]
with open('config/config.yaml', 'r') as config_file:
config_data = yaml.safe_load(config_file)
knowledge_base_file = config_data['knowledge_base_file']
api_url = config_data['api']['url']
path = config_data['output_file_path']
max_knowledge_bases = config_data['max_knowledge_bases']
def load_knowledge_bases():
"""加载知识库名称列表"""
if os.path.exists(knowledge_base_file):
with open(knowledge_base_file, "r") as file:
return file.read().splitlines()
else:
return []
def save_knowledge_bases(names):
"""保存知识库名称列表到文件"""
with open(knowledge_base_file, "w") as file:
file.write("\n".join(names))
def update_kb(kb_name, qa_service, path, max_knowledge_bases):
"""更新知识库"""
store_data(qa_service, path)
if len(recent_knowledge_bases) == max_knowledge_bases:
folder_to_delete = recent_knowledge_bases.popleft()
shutil.rmtree(f"knowledge_base/{folder_to_delete}")
recent_knowledge_bases.append(kb_name)
save_knowledge_bases(recent_knowledge_bases)
os.remove(path)
logger.info(f"Knowledge base updated: {kb_name}\n"
f"Please wait while the database is being updated···")
def fetch_and_write_data(api_url, path):
"""从API获取数据并写入文件"""
try:
response = requests.get(api_url)
response_data = response.json()
if response.status_code == 200 and response_data["code"] == 200:
question_items = response_data["data"]
with open(path, "w", encoding="utf-8") as file:
json.dump(question_items, file, ensure_ascii=False, indent=2)
return True
else:
logger.error(f"Failed to fetch data from API. Status code: {response.status_code}, Response data: {response_data}")
return False
except Exception as e:
logger.error(f"Error fetching data from API: {e}")
return False
@app.post("/updateDatabase")
async def save_to_json(question_items: list[QuestionItem], background_tasks: BackgroundTasks):
"""接收问题数据并异步保存为JSON文件触发后台更新任务"""
try:
json_data = json.dumps([item.dict() for item in question_items], ensure_ascii=False, indent=2)
path = "output.json"
with open(path, "w", encoding="utf-8") as file:
file.write(json_data)
kb_name = str(uuid.uuid4())
device = None
qa_service = QAService(kb_name, device)
background_tasks.add_task(
update_kb, kb_name, qa_service, path, max_knowledge_bases
)
return {"status": "success", "message": "Please wait while the database is being updated···"}
except Exception as e:
logger.error(f"Error saving data to file or scheduling knowledge base update task: {e}")
# raise HTTPException(status_code=500, detail=f"Internal Server Error: {str(e)}")
return {"status": "error", "message": "update task error···"}
@app.post("/matchQuestion")
def match_question(request: QuestionRequest):
"""匹配问题的端点"""
try:
1 year ago
logger.info(f"match_question:Request: {request}")
start_time = time.time()
query = request.question
newest = recent_knowledge_bases[-1]
top_k = 3
score_threshold = 0.1
device = None
qa_service = QAService(newest, device)
result = match_query(qa_service, query, top_k, score_threshold)
response = QuestionResponse(code=200, msg="success", data=result)
stop_time = time.time()
duration = stop_time - start_time
1 year ago
logger.info(f"match_question:Matched question in {duration} seconds. "
f"Response: {result}")
return response
except Exception as e:
logger.error(f"Error matching question: {e}")
return QuestionResponse(code=500, msg="success", data=[])
recent_knowledge_bases = deque(load_knowledge_bases(), maxlen=max_knowledge_bases)
if fetch_and_write_data(api_url, path):
kb_name = str(uuid.uuid4())
device = None
qa_service = QAService(kb_name, device)
update_kb(kb_name, qa_service, path, max_knowledge_bases)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)