You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
101 lines
3.6 KiB
Python
101 lines
3.6 KiB
Python
from flask import Flask, request, jsonify
|
|
from text2vec import SentenceModel
|
|
import numpy as np
|
|
import traceback
|
|
import json
|
|
import os
|
|
|
|
app = Flask(__name__)
|
|
|
|
# 获取当前脚本所在的目录
|
|
current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
# BERT模型路径
|
|
model_path = os.path.join(current_dir, 'bert_chinese')
|
|
model = None
|
|
questions_data = [] # 用于存储问题数据
|
|
sentence_embeddings = []
|
|
default_threshold = 0.7
|
|
# 数据集文件路径
|
|
dataset_file_path = os.path.join(current_dir, 'question.json')
|
|
|
|
# 初始化函数,用于加载模型和数据集
|
|
def initialize_app():
|
|
global model, questions_data, sentence_embeddings
|
|
model = SentenceModel(model_path)
|
|
load_dataset()
|
|
|
|
# 加载数据集
|
|
def load_dataset():
|
|
global questions_data, sentence_embeddings, sentences
|
|
try:
|
|
with open(dataset_file_path, 'r', encoding='utf-8') as file:
|
|
questions_data = json.load(file)
|
|
sentences = [item["question"] for item in questions_data]
|
|
# 重新编码句子
|
|
sentence_embeddings = [model.encode(sent) / np.linalg.norm(model.encode(sent)) for sent in sentences]
|
|
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
print(f"Error loading dataset: {str(e)}")
|
|
|
|
# 错误处理程序
|
|
@app.errorhandler(Exception)
|
|
def handle_error(e):
|
|
traceback.print_exc()
|
|
return jsonify({'error': str(e)}), 500
|
|
|
|
# 初始化应用
|
|
initialize_app()
|
|
|
|
# 替换数据集的接口
|
|
@app.route('/update_dataset', methods=['POST'])
|
|
def update_dataset():
|
|
global questions_data, sentence_embeddings
|
|
new_dataset = request.json or []
|
|
|
|
# 更新数据集
|
|
try:
|
|
with open(dataset_file_path, 'w', encoding='utf-8') as file:
|
|
json.dump(new_dataset, file, ensure_ascii=False, indent=2)
|
|
load_dataset()
|
|
return jsonify({'status': 'success', 'message': '数据集更新成功'})
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
return jsonify({'error': f'更新数据集错误: {str(e)}'}), 500
|
|
|
|
# 获取匹配的接口
|
|
@app.route('/matches', methods=['POST'])
|
|
def get_matches():
|
|
query_sentence = request.json.get('querySentence', '')
|
|
query_embedding = model.encode([query_sentence])[0]
|
|
# 对向量进行单位化
|
|
query_embedding = query_embedding / np.linalg.norm(query_embedding)
|
|
# 获取阈值参数,如果请求中没有提供阈值,则使用默认阈值
|
|
threshold = request.json.get('threshold', default_threshold)
|
|
# 计算相似度
|
|
similarities = [embedding.dot(query_embedding) for embedding in sentence_embeddings]
|
|
|
|
# 获取所有相似度高于阈值的匹配项
|
|
matches = [{'id': questions_data[i]["id"], 'sentence': sentences[i], 'similarity': float(similarity)}
|
|
for i, similarity in enumerate(similarities) if similarity >= threshold]
|
|
|
|
return jsonify({'status': 'success', 'results': matches} if matches else {'status': 'success', 'message': '未找到匹配项'})
|
|
|
|
# 获取所有相似度的接口
|
|
@app.route('/get_all_similarities', methods=['POST'])
|
|
def get_all_similarities():
|
|
query_sentence = request.json.get('querySentence', '')
|
|
query_embedding = model.encode([query_sentence])[0]
|
|
# 对向量进行单位化
|
|
query_embedding = query_embedding / np.linalg.norm(query_embedding)
|
|
|
|
# 计算所有数据的相似度和对应的文本
|
|
results = [{'id': questions_data[i]["id"], 'sentence': sentences[i], 'similarity': float(embedding.dot(query_embedding))}
|
|
for i, embedding in enumerate(sentence_embeddings)]
|
|
|
|
# 返回所有相似度和对应文本
|
|
return jsonify({'status': 'success', 'results': results})
|
|
|
|
if __name__ == '__main__':
|
|
app.run(debug=True, host='0.0.0.0') |