增加向量化的库

pull/1/head
liu 11 months ago
parent b1e284eb1d
commit 7b9fd6d21c

@ -26,6 +26,8 @@ public class VectorSimilarityConfiguration {
.withMetadataFields(
// 问题的ID
RedisVectorStore.MetadataField.tag("questionId"),
// 标准问ID
RedisVectorStore.MetadataField.tag("standardQuestionId"),
// 类型 1标准问 2相似问 3自定义
RedisVectorStore.MetadataField.tag("type"))
.build();

@ -27,6 +27,8 @@ import com.supervision.util.UserUtil;
import com.supervision.vo.rasa.RasaTalkVo;
import lombok.RequiredArgsConstructor;
import lombok.extern.slf4j.Slf4j;
import org.springframework.ai.document.Document;
import org.springframework.ai.vectorstore.RedisVectorStore;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Service;
import org.springframework.web.multipart.MultipartFile;
@ -65,7 +67,8 @@ public class AskServiceImpl implements AskService {
private final DiagnosisAiRecordService diagnosisAiRecordService;
@Value("${qaSimilarityThreshold:0.4}")
private final RedisVectorStore redisVectorStore;
@Value("${qaSimilarityThreshold:0.7}")
private String qaSimilarityThreshold;
@Override
@ -234,14 +237,21 @@ public class AskServiceImpl implements AskService {
}
}
public QaSimilarityQuestionAnswer talkQaSimilarityWithScore(String question, String sessionId) {
public QaSimilarityQuestionAnswer talkRedisVectorWithScore(String question) {
log.info("开始调用talkQaSimilarity,问题:{}", question);
try {
GlobalResult<List<QaSimilarityQuestionAnswer>> result = askQaSimilarityFeignClient.askQuestionSimilarityAnswer(new QaSimilarityQuestion(question));
// 走Redis进行比较
List<Document> documents = redisVectorStore.similaritySearch(question);
Optional<QaSimilarityQuestionAnswer> first = documents.stream().map(document -> {
QaSimilarityQuestionAnswer qaSimilarityQuestionAnswer = new QaSimilarityQuestionAnswer();
qaSimilarityQuestionAnswer.setMatchQuestion(document.getContent());
qaSimilarityQuestionAnswer.setMatchQuestionCode(String.valueOf(document.getMetadata().get("standardQuestionId")));
qaSimilarityQuestionAnswer.setMatchScore(Double.parseDouble(String.valueOf(document.getMetadata().get("standardQuestionId"))));
return qaSimilarityQuestionAnswer;
}).max(Comparator.comparing(QaSimilarityQuestionAnswer::getMatchScore));
// 排序,降序,取最高的
result.getData().sort(Comparator.comparing(QaSimilarityQuestionAnswer::getMatchScore).reversed());
log.info("调用talkQaSimilarity结束,问题:{},返回结果:{}", question, JSONUtil.toJsonStr(result));
return CollUtil.getFirst(result.getData());
log.info("调用talkQaSimilarity结束,问题:{},返回结果:{}", question, JSONUtil.toJsonStr(first.orElse(null)));
return first.orElse(null);
} catch (Exception e) {
log.error("调用talkQaSimilarity error ", e);
return null;
@ -301,7 +311,7 @@ public class AskServiceImpl implements AskService {
// 根据processId找到对应的病人
Process process = Optional.ofNullable(processService.getById(talkReqVO.getProcessId())).orElseThrow(() -> new BusinessException("未找到诊疗进程"));
MedicalRec medicalRec = medicalRecService.getById(process.getMedicalRecId());
QaSimilarityQuestionAnswer qaSimilarityQuestionAnswer = talkQaSimilarityWithScore(talkReqVO.getText(), UserUtil.getUser().getId());
QaSimilarityQuestionAnswer qaSimilarityQuestionAnswer = talkRedisVectorWithScore(talkReqVO.getText());
TalkVideoTtsResultResVO talkVideoTtsResultResVO = new TalkVideoTtsResultResVO();
// 如果匹配度没有匹配到任何数据,则走大模型
if (ObjectUtil.isEmpty(qaSimilarityQuestionAnswer)) {

Loading…
Cancel
Save