|
|
@ -4,3 +4,49 @@
|
|
|
|
| rasa_dev | 1.0.0 | 365fe9f00bac | rasa镜像基础版本,只包含必要的rasa服务 |
|
|
|
|
| rasa_dev | 1.0.0 | 365fe9f00bac | rasa镜像基础版本,只包含必要的rasa服务 |
|
|
|
|
| rasa_dev | 1.1.0 | | 在1.0.0的基础上添加text2vec服务 |
|
|
|
|
| rasa_dev | 1.1.0 | | 在1.0.0的基础上添加text2vec服务 |
|
|
|
|
| rasa_dev | 2.0.0 | 22313f228098 | 添加rasa-java服务 |
|
|
|
|
| rasa_dev | 2.0.0 | 22313f228098 | 添加rasa-java服务 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 文本相似度匹配应用程序
|
|
|
|
|
|
|
|
> 这个应用程序使用 text2vec 进行文本相似度匹配,允许用户更新数据集并查询最佳匹配项。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 安装依赖
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
|
|
|
创建环境
|
|
|
|
|
|
|
|
conda create text2vec_env python=3.9
|
|
|
|
|
|
|
|
进入环境
|
|
|
|
|
|
|
|
conda activate text2vec_env
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
|
|
|
pip install torch
|
|
|
|
|
|
|
|
pip install flask
|
|
|
|
|
|
|
|
pip install text2vec -i https://pypi.tuna.tsinghua.edu.cn/simple
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
启动应用程序
|
|
|
|
|
|
|
|
``` bash
|
|
|
|
|
|
|
|
python app.py
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
应用程序将在 http://127.0.0.1:5000/ 上运行。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# API文档
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
API 文档:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1. 更新数据集
|
|
|
|
|
|
|
|
- 端点: /update_dataset
|
|
|
|
|
|
|
|
- 方法: POST
|
|
|
|
|
|
|
|
- 输入: JSON [{"id": "101","question": "你好"},{"id": "541","question": "你好吗?"}]
|
|
|
|
|
|
|
|
- 输出: JSON {"status": "success", "message": "数据集更新成功"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. 获取匹配项
|
|
|
|
|
|
|
|
- 端点: /matches
|
|
|
|
|
|
|
|
- 方法: POST
|
|
|
|
|
|
|
|
- 输入: JSON {"querySentence": "查询句子", "threshold": 0.7}
|
|
|
|
|
|
|
|
- 输出: JSON {"status": "success", "results": [{"id": 1, "sentence": "匹配的句子", "similarity": 0.75}]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. 获取所有相似度
|
|
|
|
|
|
|
|
- 端点: /get_all_similarities
|
|
|
|
|
|
|
|
- 方法: POST
|
|
|
|
|
|
|
|
- 输入: JSON {"querySentence": "查询句子"}
|
|
|
|
|
|
|
|
- 输出: JSON {"status": "success", "results": [{"id": 1, "sentence": "句子1", "similarity": 0.8}]}
|
|
|
|
|
|
|
|
```
|