You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

10574 lines
616 KiB
JSON

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"children": [
{
"id": "/page/0/Page/277",
"block_type": "Page",
"html": "<content-ref src='/page/0/PageHeader/14'></content-ref><content-ref src='/page/0/SectionHeader/0'></content-ref><content-ref src='/page/0/Text/1'></content-ref><content-ref src='/page/0/SectionHeader/2'></content-ref><content-ref src='/page/0/Text/3'></content-ref><content-ref src='/page/0/SectionHeader/4'></content-ref><content-ref src='/page/0/Text/5'></content-ref><content-ref src='/page/0/Text/6'></content-ref><content-ref src='/page/0/Text/7'></content-ref><content-ref src='/page/0/Text/8'></content-ref><content-ref src='/page/0/Text/9'></content-ref><content-ref src='/page/0/Text/10'></content-ref><content-ref src='/page/0/Text/11'></content-ref><content-ref src='/page/0/SectionHeader/12'></content-ref><content-ref src='/page/0/Text/13'></content-ref><content-ref src='/page/0/PageFooter/15'></content-ref>",
"polygon": [
[
0.0,
0.0
],
[
612.0,
0.0
],
[
612.0,
792.0
],
[
0.0,
792.0
]
],
"bbox": [
0.0,
0.0,
612.0,
792.0
],
"children": [
{
"id": "/page/0/PageHeader/14",
"block_type": "PageHeader",
"html": "",
"polygon": [
[
18.119998931884766,
211.199951171875
],
[
36.2599983215332,
211.199951171875
],
[
36.2599983215332,
559.2799987792969
],
[
18.119998931884766,
559.2799987792969
]
],
"bbox": [
18.119998931884766,
211.199951171875,
36.2599983215332,
559.2799987792969
],
"children": null,
"section_hierarchy": {},
"images": {}
},
{
"id": "/page/0/SectionHeader/0",
"block_type": "SectionHeader",
"html": "<h1>An Aggregated Multicolumn Dilated Convolution Network for Perspective-Free Counting</h1>",
"polygon": [
[
117.5888671875,
105.9219970703125
],
[
477.371826171875,
105.9219970703125
],
[
477.371826171875,
138.201171875
],
[
117.5888671875,
138.201171875
]
],
"bbox": [
117.5888671875,
105.9219970703125,
477.371826171875,
138.201171875
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/0"
},
"images": {}
},
{
"id": "/page/0/Text/1",
"block_type": "Text",
"html": "<p block-type=\"Text\">Diptodip Deb Georgia Institute of Technology diptodipdeb@gatech.edu</p>",
"polygon": [
[
104.81396484375,
163.4853515625
],
[
259.00787353515625,
163.4853515625
],
[
259.00787353515625,
202.3262939453125
],
[
104.81396484375,
202.3262939453125
]
],
"bbox": [
104.81396484375,
163.4853515625,
259.00787353515625,
202.3262939453125
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/0"
},
"images": {}
},
{
"id": "/page/0/SectionHeader/2",
"block_type": "SectionHeader",
"html": "<h1>Abstract</h1>",
"polygon": [
[
144.1845703125,
232.4891357421875
],
[
190.48028564453125,
232.4891357421875
],
[
190.48028564453125,
244.4443359375
],
[
144.1845703125,
244.4443359375
]
],
"bbox": [
144.1845703125,
232.4891357421875,
190.48028564453125,
244.4443359375
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/2"
},
"images": {}
},
{
"id": "/page/0/Text/3",
"block_type": "Text",
"html": "<p block-type=\"Text\"><i>We propose the use of dilated filters to construct an ag</i><i>gregation module in a multicolumn convolutional neural</i> <i>network for perspective-free counting. Counting is a com</i><i>mon problem in computer vision (e.g. traffic on the street or</i> <i>pedestrians in a crowd). Modern approaches to the count</i><i>ing problem involve the production of a density map via re</i><i>gression whose integral is equal to the number of objects</i> <i>in the image. However, objects in the image can occur at</i> <i>different scales (e.g. due to perspective effects) which can</i> <i>make it difficult for a learning agent to learn the proper</i> <i>density map. While the use of multiple columns to extract</i> <i>multiscale information from images has been shown be</i><i>fore, our approach aggregates the multiscale information</i> <i>gathered by the multicolumn convolutional neural network</i> <i>to improve performance. Our experiments show that our</i> <i>proposed network outperforms the state-of-the-art on many</i> <i>benchmark datasets, and also that using our aggregation</i> <i>module in combination with a higher number of columns is</i> <i>beneficial for multiscale counting.</i></p>",
"polygon": [
[
49.904296875,
258.9959716796875
],
[
287.47265625,
258.9959716796875
],
[
287.47265625,
485.33203125
],
[
49.904296875,
485.33203125
]
],
"bbox": [
49.904296875,
258.9959716796875,
287.47265625,
485.33203125
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/2"
},
"images": {}
},
{
"id": "/page/0/SectionHeader/4",
"block_type": "SectionHeader",
"html": "<h1>1. Introduction</h1>",
"polygon": [
[
50.016357421875,
512.06591796875
],
[
128.49609375,
512.06591796875
],
[
128.49609375,
524.0211181640625
],
[
50.016357421875,
524.0211181640625
]
],
"bbox": [
50.016357421875,
512.06591796875,
128.49609375,
524.0211181640625
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/0/Text/5",
"block_type": "Text",
"html": "<p block-type=\"Text\">Learning to count the number of objects in an image is a deceptively difficult problem with many interesting applications, such as surveillance <a href=\"#page-8-0\">[20]</a>, traffic monitoring <a href=\"#page-8-1\">[14]</a> and medical image analysis <a href=\"#page-8-2\">[22]</a>. In many of these application areas, the objects to be counted vary widely in appearance, size and shape, and labeled training data is typically sparse. These factors pose a significant computer vision and machine learning challenge.</p>",
"polygon": [
[
49.0078125,
533.7682189941406
],
[
286.576171875,
533.7682189941406
],
[
286.576171875,
627.4168395996094
],
[
49.0078125,
627.4168395996094
]
],
"bbox": [
49.0078125,
533.7682189941406,
286.576171875,
627.4168395996094
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/0/Text/6",
"block_type": "Text",
"html": "<p block-type=\"Text\">Lempitsky et al. <a href=\"#page-8-3\">[15]</a> showed that it is possible to learn to count without learning to explicitly detect and localize individual objects. Instead, they propose learning to predict a density map whose integral over the image equals the number of objects in the image. This approach has been adopted by many later works (Cf. <a href=\"#page-8-4\">[18,</a> <a href=\"#page-9-0\">28]</a>).</p>",
"polygon": [
[
49.7548828125,
630.5612335205078
],
[
287.0244140625,
630.5612335205078
],
[
287.0244140625,
700.734375
],
[
49.7548828125,
700.734375
]
],
"bbox": [
49.7548828125,
630.5612335205078,
287.0244140625,
700.734375
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/0/Text/7",
"block_type": "Text",
"html": "<p block-type=\"Text\">However, in many counting problems, such as those</p>",
"polygon": [
[
59.84033203125,
703.4442443847656
],
[
287.173828125,
703.4442443847656
],
[
287.173828125,
713.49609375
],
[
59.84033203125,
713.49609375
]
],
"bbox": [
59.84033203125,
703.4442443847656,
287.173828125,
713.49609375
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/0/Text/8",
"block_type": "Text",
"html": "<p block-type=\"Text\">Jonathan Ventura University of Colorado Colorado Springs jventura@uccs.edu</p>",
"polygon": [
[
291.4570007324219,
163.6572265625
],
[
488.89715576171875,
163.6572265625
],
[
488.89715576171875,
202.3262939453125
],
[
291.4570007324219,
202.3262939453125
]
],
"bbox": [
291.4570007324219,
163.6572265625,
488.89715576171875,
202.3262939453125
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/0/Text/9",
"block_type": "Text",
"html": "<blockquote><p block-type=\"Text\">counting cells in a microscope image, pedestrians in a crowd, or vehicles in a traffic jam, regressors trained on a single image scale are not reliable <a href=\"#page-8-4\">[18]</a>. This is due to a variety of challenges including overlap of objects and perspective effects which cause significant variance in object shape, size and appearance.</p></blockquote>",
"polygon": [
[
308.390625,
234.1092529296875
],
[
545.1151123046875,
234.1092529296875
],
[
545.1151123046875,
303.8478698730469
],
[
308.390625,
303.8478698730469
]
],
"bbox": [
308.390625,
234.1092529296875,
545.1151123046875,
303.8478698730469
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/0/Text/10",
"block_type": "Text",
"html": "<blockquote><p block-type=\"Text\">The most successful recent approaches address this issue by explicitly incorporating multi-scale information in the network <a href=\"#page-8-4\">[18,</a><a href=\"#page-9-0\">28]</a>. These approaches either combine multiple networks which take input patches of different sizes <a href=\"#page-8-4\">[18]</a> or combine multiple filtering paths (\"columns\") which have different size filters <a href=\"#page-9-0\">[28]</a>.</p></blockquote>",
"polygon": [
[
308.390625,
306.861328125
],
[
545.1151733398438,
306.861328125
],
[
545.1151733398438,
376.9228210449219
],
[
308.390625,
376.9228210449219
]
],
"bbox": [
308.390625,
306.861328125,
545.1151733398438,
376.9228210449219
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/0/Text/11",
"block_type": "Text",
"html": "<blockquote><p block-type=\"Text\">Following on the intuition that multiscale integration is key to achieving good counting performance, we propose to incorporate dilated filters <a href=\"#page-8-5\">[25]</a> into a multicolumn convolutional neural network design <a href=\"#page-9-0\">[28]</a>. Dilated filters exponentially increase the network's receptive field without an exponential increase in parameters, allowing for efficient use of multiscale information. Convolutional neural networks with dilated filters have proven to provide competitive performance in image segmentation where multiscale analysis is also critical <a href=\"#page-8-5\">[25,</a> <a href=\"#page-8-6\">26]</a>. By incorporating dilated filters into the multicolumn network design, we greatly increase the ability of the network to selectively aggregate multiscale information, without the need for explicit perspective maps during training and testing. We propose the \"aggregated multicolumn dilated convolution network\" or AMDCN which uses dilations to aggregate multiscale information. Our extensive experimental evaluation shows that this proposed network outperforms previous methods on many benchmark datasets.</p></blockquote>",
"polygon": [
[
308.390625,
380.14453125
],
[
545.1151123046875,
380.14453125
],
[
545.1151123046875,
605.4156646728516
],
[
308.390625,
605.4156646728516
]
],
"bbox": [
308.390625,
380.14453125,
545.1151123046875,
605.4156646728516
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/0/SectionHeader/12",
"block_type": "SectionHeader",
"html": "<h1>2. Related Work</h1>",
"polygon": [
[
307.1953125,
621.7747497558594
],
[
392.0625,
621.7747497558594
],
[
392.0625,
633.7299499511719
],
[
307.1953125,
633.7299499511719
]
],
"bbox": [
307.1953125,
621.7747497558594,
392.0625,
633.7299499511719
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
},
{
"id": "/page/0/Text/13",
"block_type": "Text",
"html": "<p block-type=\"Text\">Counting using a supervised regressor to formulate a density map was first shown by <a href=\"#page-8-3\">[15]</a>. In this paper, Lempitsky et al. show that the minimal annotation of a single dot blurred by a Gaussian kernel produces a sufficient density map to train a network to count. All of the counting methods that we examine as well as the method we use in</p>",
"polygon": [
[
308.86199951171875,
643.5
],
[
545.361328125,
643.5
],
[
545.361328125,
713.4066772460938
],
[
308.86199951171875,
713.4066772460938
]
],
"bbox": [
308.86199951171875,
643.5,
545.361328125,
713.4066772460938
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
},
{
"id": "/page/0/PageFooter/15",
"block_type": "PageFooter",
"html": "",
"polygon": [
[
294.7939453125,
733.3320770263672
],
[
300.102294921875,
733.3320770263672
],
[
300.102294921875,
743.2946739196777
],
[
294.7939453125,
743.2946739196777
]
],
"bbox": [
294.7939453125,
733.3320770263672,
300.102294921875,
743.2946739196777
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": null
},
{
"id": "/page/1/Page/286",
"block_type": "Page",
"html": "<content-ref src='/page/1/FigureGroup/285'></content-ref><content-ref src='/page/1/Text/2'></content-ref><content-ref src='/page/1/Text/3'></content-ref><content-ref src='/page/1/Text/4'></content-ref><content-ref src='/page/1/Text/5'></content-ref><content-ref src='/page/1/Text/6'></content-ref>",
"polygon": [
[
0.0,
0.0
],
[
612.0,
0.0
],
[
612.0,
792.0
],
[
0.0,
792.0
]
],
"bbox": [
0.0,
0.0,
612.0,
792.0
],
"children": [
{
"id": "/page/1/FigureGroup/285",
"block_type": "FigureGroup",
"html": "<content-ref src='/page/1/Figure/0'></content-ref><content-ref src='/page/1/Caption/1'></content-ref>",
"polygon": [
[
48.8583984375,
71.15625
],
[
588.0362548828125,
71.15625
],
[
588.0362548828125,
416.49609375
],
[
48.8583984375,
416.49609375
]
],
"bbox": [
48.8583984375,
71.15625,
588.0362548828125,
416.49609375
],
"children": [
{
"id": "/page/1/Figure/0",
"block_type": "Figure",
"html": "",
"polygon": [
[
48.8583984375,
71.15625
],
[
588.0362548828125,
71.15625
],
[
588.0362548828125,
339.15234375
],
[
48.8583984375,
339.15234375
]
],
"bbox": [
48.8583984375,
71.15625,
588.0362548828125,
339.15234375
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {
"/page/1/Figure/0": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCALKBZ4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkDAsVBGR1HpXH+N/G6+HEj03TYo7zX7pC1vbsfkiToZpSOiA/ix4HcjB+FFtLBrPiWW7u5by+uBayXN1L96Vz5vbooHQKOAABQOztc9PooooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVXv72LTtPub2c4it42kfHoBmvPNMuPH/izTDrllq9npVtLlrSyNssm9QeN7EZGfb8hWkKfMr3sgPS6K87u/Hms2Pg2zmutHaHxDd3P2OK2lRkVn/vgHnb0/GotSb4heGdMbXLnWbLVIoB5l1Yi1WMKnfa4GTj3/WqVF9Wh2Oz1fxDZaLe6ZaXSzGTUZxbw+WoIDcfe54HNa1eaeK9Tg1m++H2pW2fJudQSRQeozt4rdtNfv5vihqGhPIhsIbFJkTYMhiRnnr3odL3U153+8LHXUVymq67fWvxG0DRopFFleQTPMpQEkqpIweo6Vgvrvi3WPHOteHdJvLW0gtSjC6kgDmFcDgL0Yknv6UlSb1v0v+gWPSaK8ssNb8cyeI77we19ZyXsIEv9qtABsiIH/LMcFjkY/HrWt4Y1nxBaeNbzwtr97DqDLbC5gukhEZIyBggcd/0pyotLdd/kFjvaK8u0bWPGvi291ezsdTtdOt7G8kj+1m2WRyM/KgU8cAZJPPIrW8I+JdZOo67oniBorq90pRILiFAvmoRnoOM9O3eiVFpPVaBY7uivLNE1Lxr4x02XWdM8S6fZ/M3l6atskm0A8B2PzAmu88MX2p6joFvcazYmyvzlZYsYGQeoHYHrSnScN2FjXooorIQUUUUAFFFFABRRRQAUUUUAFFFFABXHeN/G6+HEj03TYo7zX7pC1vbsfkiToZpSOiA/ix4Hcg8b+N18OJHpumxR3mv3SFre3Y/JEnQzSkdEB/FjwO5Hm9jYtbPPc3NxJeajdP5l3eS/fmf+igcKo4A4FNI0p0+b0CxsWtnnubm4kvNRun8y7vJfvzP/AEUDhVHAHArs/hp/yG/EP/XO1/8AatcxXT/DT/kN+If+udr/AO1abNqqtCyPRqKKKk5QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMjxRYS6p4V1SxgGZp7Z0QerY4Fct4E8Y6Hb+B7OC+1G2s7mwi8m4gnkCOpXj7p5OfavQKxr3wl4e1K9+2Xmi2U9wTkyPCCW+vr+NaxnHl5ZDPOPEmv3Gu6ToPjD+zJYLDTtUJYbt5eHIHmYwMDjFdL4y8baAfBd79k1O1u5ryBoYIYZA7szjH3RyMZ712/2eH7P9n8mPyNuzy9o27fTHTFZNn4R8O6fefbLTRbGG4ByJEhUFT7en4VftIO11tsFzzy806fSbD4Z2NypWeK9Tep6qSQcfhmtOTULTRfjbdS6lPHaw3mmosMszBUYgjjJ47GvQriws7uWCW5tIJpIH3wvLGGMbeqk9D7iq+qaHpWtxLHqen292qHK+dGGK/Q9RR7ZP4l3/F3C5wF1rlhrPxp8PLp1wlzFbW9wjzRHchcxscBhwcDHT1q94T/AOSq+MvpB/KuxtdC0mx+zm10yzhNsGELJCoMe7htpxkZ7+tWIrCzt7ua6htII7mfHmzJGA8mOm4gZP40pVY2sl0t+NwucNpP/Jbte/7B0X/stC/8l1f/ALBH/s1dylhZx30l8lpAt3IoR51jAkZR0BbqRR9gs/t/2/7JB9s2eX9o8seZt/u7uuPal7VfhYLnDfC373if/sLy1FokjQ/FfxlKkTSslrCwjXq5CjgfWu+tbCzsfN+yWkFv5rmSTyYwm9j1Y4HJ96I7CzhvJryK0gS6mAEsyxgO4HTc2Mn8aHVTcnbf/gBc8ii0r4f+JrOTWoNQPhvUVZjLGl2I2jcE8lT/AOy4rr/hbqep6p4SMupTyXPl3DxwXMg+aWMYwxz15zzW3eeDvDeoXhu7vRLGW4Y5Z2hGWPqfX8a2Ioo4IkihjSONBhURQAo9AB0qqlZSjy6/PoDY+io5J4YniSSVEeVtkaswBdsE4HqcAn6A1JXOIKKKKACiiigAooooAKKKKACuO8b+N18OJHpumxR3mv3SFre3Y/JEnQzSkdEB/FjwO5DvHHjT/hG4orDToFu9dvFJtoGz5cSjgyykdEHp1Y8DuR5rY2LWzz3NzcSXmo3T+Zd3kv35n/ooHCqOAOBTSNKdPm9AsbFrZ57m5uJLzUbp/Mu7yX78z/0UDhVHAHAq5RRVHWlbRBXT/DT/AJDfiH/rna/+1a5iun+Gn/Ib8Q/9c7X/ANq0mZVvhPRqKKKk5QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsjxJ4k07wro76lqUjBAQkUMY3STyH7saL/Ex9PqTgAmjxJ4k07wro76lqUjBAQkUMY3STyH7saL/Ex9PqTgAmvH5ZdR1/WP7e17aLsAraWaNujsYz/Cp/ic/wAT9+gwBQkXCDky1pNzqmufEnw9rmtvtunupI7ezjfMVnEbeU7B/ec4BZ+5AAwAK9trxrRv+Rz8Of8AX6//AKTzV7LTY6iSdkFFFFIzCiiigAooooAKKKKAPHPH/wDyV60/7AJ/9H1Vq14//wCSvWn/AGAT/wCj6q1SOqj8IUUUUzUK6f4af8hvxD/1ztf/AGrXMV0/w0/5DfiH/rna/wDtWkzKt8J6NRRRUnKFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVC91bxNtkniRvRnANAE1FFFABRRRQAUUUUAFVdS1Oy0fTp9Q1G6itbSBd0k0rYVR0H4kkADuSBTdV1Wx0TS7jUtSuY7azt03yyueFH8yScAAckkAcmvC/FWq33jeO41LU4ZLbSreKR9O0x+oO04mmHQyEdB0QHA5JJCoxctj36ORJYkkjYMjgMrDoQehp1VNL/5BFl/1wT/0EVboJCiiigAooooAKKKKACiiigAooooAKqanqdlo2m3Go6jcpbWdum+WVzwo/qewA5JIAo1PU7LRtNuNR1G5jtrO3TfLLIeFH9T2AHJJAFeL6vq97431GPUL+KS20i3bfYac/UntNMO7+i9FB9cmgqMXJ2R7XYX1vqenWt/ZyeZbXUSTQvtI3IwBU4PI4I61YrA8C/8AJPfDX/YKtf8A0Utb9BIUUUUAFFFFABRRRQAUUUUAFZHiTxJp3hXR31LUpGCAhIoYxuknkP3Y0X+Jj6fUnABNHiTxJp3hXR31LUpGCAhIoYxuknkP3Y0X+Jj6fUnABNePyy6jr+sf29r20XYBW0s0bdHYxn+FT/E5/ifv0GAKEi4QcmEsuo6/rH9va9tF2AVtLNG3R2MZ/hU/xOf4n79BgCrVFFUdcYqKsixo3/I5+HP+v1//AEnmr2WvGtG/5HPw5/1+v/6TzV7LSZzVviCiiikZBRRRQAUUUUAFFFFAHjnj/wD5K9af9gE/+j6q1a8f/wDJXrT/ALAJ/wDR9VapHVR+EKKKKZqFdP8ADT/kN+If+udr/wC1a5iun+Gn/Ib8Q/8AXO1/9q0mZVvhPRqKKKk5QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4r4r69qHhr4dajqWlzeReKY40l2glNzhSRnjOCa7WvOPjr/ySfUv+usH/AKMWgCKP4M6ZfIsmv+IfEGsTMMv594QhPso5A9s1btvgn4BtZEkXRnaRGDKzXk3BHTo2K79P9Wv0FOoAKKKKACiiigAqnquq2OiaXcalqVzHbWdum+WVzwo/mSTgADkkgDk0arqtjoml3Gpalcx21nbpvllc8KP5kk4AA5JIA5NeL6rqt9431SLUtShkttKt336dpj9Qe00w6GQjoOiA4HJJIVGLk7INV1W+8b6pFqWpQyW2lW779O0x+oPaaYdDIR0HRAcDkkmPVf8AkD3v/XvJ/wCgmrdVNV/5A97/ANe8n/oJqjrUVFWR7bpf/IIsv+uCf+girdVNL/5BFl/1wT/0EVbqTiCmySJFG0kjqiICzMxwAB1JNEkkcMTyyuqRopZnY4CgdST2Fec6pqknjGUKoaPw8jZRCMG+I6Mw7Rei/wAXU8YBqMXJ2QHZ/wDCT+H/APoO6Z/4Fx/40f8ACT+H/wDoO6Z/4Fx/41xn9n2X/Ppb/wDfsf4Uv9n2X/Ppb/8Afsf4Vr7DzHY7L/hJ/D//AEHdM/8AAuP/ABo/4Sfw/wD9B3TP/AuP/GuN/s+y/wCfS3/79j/Cj+z7L/n0t/8Av2P8KPYeYWOy/wCEn8P/APQd0z/wLj/xq5ZahZalE0tjeW91GrbGeCUOA2AcEg9cEfnXj+u31tFM2maZa2xviAZZjEpW2U9zxyx7L+J469L8IbSKy0jXbeEHYuqZyTkkm3gJJPqSSfxqJ0+VXA9Eqpqep2WjabcajqNzHbWdum+WWQ8KP6nsAOSSAKNT1Oy0bTbjUdRuY7azt03yyyHhR/U9gBySQBXjGr6ve+N9Sj1DUIpLbSLd99hpz9Se00w7v6L0UH1yazHGLk7INX1e98b6lHqGoRSW2kW777DTn6k9pph3f0XooPrk1KehooPQ1R1xioqyPTvAv/JPfDX/AGCrX/0Utb9YHgX/AJJ74a/7BVr/AOilrfqTiCori4hs7aW5uZUhgiUvJJI2FVRySSegouLiGztpbm5lSGCJS8kkjYVVHJJJ6CvOr+/m8XXKTTI8OiRMHtrZxhrlhyJZB2XuqH6nnAFRi5OyA6QfEHwyQCL+Ug9CLOb/AOIo/wCFgeGv+f6b/wAA5/8A4isaitvYLuOxs/8ACwPDX/P9N/4Bz/8AxFH/AAsDw1/z/Tf+Ac//AMRWNRR7BdwsbP8AwsDw1/z/AE3/AIBz/wDxFX9E8T6N4ja6XSb0XDWjhJ18tkaMkZGQwB5/oa8y13XZWnfStKkxcDi4uQMi3B7D1cjoO3U9gdj4T20Vpea/DCuFBtzyckkhyST3JPJNROnyq6AyviGxl+K2mxSHfHDozyxK3IR2m2lh6EgAZ9Kp1b8f/wDJW7P/ALAR/wDR9VKhHTR+EKKKKZqWNG/5HPw5/wBfr/8ApPNXsteNaN/yOfhz/r9f/wBJ5q9lqWctb4gpskiRRtJI6pGgLMzHAUDqSaJJEijaSR1SNAWZmOAoHUk151quqyeMJdibk8PI2VUjBvyOjMO0XoP4up4wC4xcnZGRrj4hW0uXs9D1i8tiT5dxEkKpKP7yh5VbB7EgZ60v/Ce/9Sxrn/kt/wDHqz8YGBRW/sYjsaH/AAnv/Usa5/5Lf/HqP+E9/wCpY1z/AMlv/j1Z9FHsYhY0P+E9/wCpY1z/AMlv/j1Lo3xBsNY8Tf2ANN1G0vfJMx+0LEVAGOCUkbB5zg9q43XddkhlOmaYVa+IBklIytsp7n1Y9l/E8dY/AtrHaeOdORNzE29yzu5yzsdmWY9yaidNJXQWF8f/APJXrT/sAn/0fVWrXj//AJK9af8AYBP/AKPqrWaOmj8IUUUUzUK6f4af8hvxD/1ztf8A2rXMV0/w0/5DfiH/AK52v/tWkzKt8J6NRRRUnKFc/L458MQzSRPrVrvjYowVi2CDgjIGOtYWv6/Lr882k6TM0enRsY7y+jbBlI4MURH5M46dBzkrDBBFbQRwQRrHFGoVEQYCgdABWsKTkrsdjoP+E98Lf9Bq3/8AHv8ACj/hPfC3/Qat/wDx7/CsOir9h5hY3P8AhPfC3/Qat/8Ax7/Cj/hPfC3/AEGrf/x7/CsOsfXNcXS1S3t0E+oTA+TDngDu7nso/XoKPYruFjv9M8V6FrN81lp2qW9xdLGZTCh+YJkDdg9skCtivHvh9btF8RY5p5TPdzaZdNNMw5c+Zb4AHZR2HavYaxlHldhBRRRUgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5x8df8Akk+pf9dYP/Ri16PXnHx1/wCST6l/11g/9GLQB6Kn+rX6CnU1P9Wv0FOoAKKKKACiiigDyr4tkzeJfB9nIS1szXc7Qn7rSIibGI7ldzY9Mmsetf4rf8jj4N/653//AKDFWRVI6qPwhVTVf+QPe/8AXvJ/6Cat1U1X/kD3v/XvJ/6CaZo9j23S/wDkEWX/AFwT/wBBFWZJI4YnlldUjRSzOxwFA6knsKraX/yCLL/rgn/oIrzfxprGq6p4kudEj08TaRYGPzo/tAT7VIyK4D8fcXcPl7nrxxUxi5OyOEt6pqknjGUKoaPw8jZRCMG+I6Mw7Rei/wAXU8YBs1hf2vq//QDT/wADF/8AiaP7Y1j/AKAaf+Bi/wDxNdkYqKsijdorC/tjWP8AoBp/4GL/APE0f2xrH/QDT/wMX/4mqA3a53XddkimbTNMZTfEAyzEZW2U9z6sey/ieOtTVvEOswx29umnR2kl3L5KXBnEnlnYzk7ccnCHHbOM1StbWO0h8uPccks7scs7HqzHuT60twC1tY7SHy49xySzuxyzserMe5PrXefC3/jy1/8A7Cg/9JoK4mu2+Fv/AB5a/wD9hQf+k0FZVvhExvxViSew8PxSoHjOrAlWGQSLedh+RAP4VyNdj8UP+PXw9/2FD/6TT1x1YI6KPwhQehooPQ0zY9O8C/8AJPfDX/YKtf8A0UtbVxcQ2dtLc3MqQwRKXkkkbCqo5JJPQVi+Bf8Aknvhr/sFWv8A6KWuO8d3Gr6l4sXSoJLQabZW8Ny1vMrETSuz4LYIyF2AhemTk5wMTGLk7I4Ca/v5vF1yk0yPDokTB7a2cYa5YciWQdl7qh+p5wBbrA8/xF/f0v8A79yf/FUef4i/v6X/AN+5P/iq7Ix5VZIo36KwPP8AEX9/S/8Av3J/8VR5/iL+/pf/AH7k/wDiqrXsBv1zWu67K076VpUmLgcXFyBkW4PYerkdB26nsDT1vUvEdrZxjztPjE8yQGSGN96BjglckjPpmq9tbRWkCwwrhRk8nJJPJJPck8k0t9AC2torSBYYVwoyeTkknkknuSeSa7L4Yf8AIT8Q/wDbt/6C9clXW/DD/kJ+If8At2/9Bes63wiZh+P/APkrdn/2Aj/6PqpVvx//AMlbs/8AsBH/ANH1UrnR00fhCiiimaljRv8Akc/Dn/X6/wD6TzV7HJIkUbSSOqRoCzMxwFA6kmvHNG/5HPw5/wBfr/8ApPNXUfE1Li9i0jSkvJba3up3M4jCnzAibgpDAgrnGRjnFK13Y5avxFXVdVk8YS7E3J4eRsqpGDfkdGYdovQfxdTxgGxjAwK537DqgGB4hvf+/Fv/APG6X7Fqn/QxXv8A34g/+N11xhyqyRFjoaK577Fqn/QxXv8A34g/+N0fYtU/6GK9/wC/EH/xuqs+wHQ1z2u67JDKdM0wq18QDJKRlbZT3Pqx7L+J461NTi1i00m8uY/EV55kMDyLmCDGQpI/5Z1m6fAkFlHtyzOPMkdjlnY8lmPcmk77ASWtrHaRbE3MSSzu5yzserMe5Nbfg/8A5H7Tv+va4/8AZKyq1fB//I/ad/17XH/slRU+BiZF4/8A+SvWn/YBP/o+qtWvH/8AyV60/wCwCf8A0fVWuZHTR+EKKKKZqFdP8NP+Q34h/wCudr/7VrlALm6vYdO06D7RqE+fLjJwqqOruf4UHc/QDJIFeqeFvDNv4a0941kNxeTkPdXTDBlbHGB/Co6Be3uSSZZhWkrWN2uC1/X5dfnm0nSZmj06NjHeX0bYMpHBiiI/JnHToOclXfEjUdYQabo+lPDEt+JWuZXkZH8tNmUUqCRu34J6gA4wTkcxBLrttBHBBZ6RHFGoVESWQBQOgA21rTp82rMEb8EEVtBHBBGscUahURBgKB0AFSVgfbPEX/Pvpf8A3+k/+Jo+2eIv+ffS/wDv9J/8TXSM36KwPtniL/n30v8A7/Sf/E1V1PWPEOnaVeXzWumMttA8xAlkyQqk/wB32oA0dc1xdLVLe3QT6hMD5MOeAO7ueyj9egrm7e3aJpJ55TPdzHdNOw5c9gB2Udh2ot7domknnlM93Md007Dlz2AHZR2HarFLzYGz4G/5KFb/APYLuv8A0bb161Xkvgb/AJKFb/8AYLuv/RtvXrVctX42SwooorMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvOPjr/wAkn1L/AK6wf+jFr0evOPjr/wAkn1L/AK6wf+jFoA9FT/Vr9BTqan+rX6CnUAFFFFABRRRQB5T8Vv8AkcfBv/XO/wD/AEGKsitf4rf8jj4N/wCud/8A+gxVkVSOqj8IVU1X/kD3v/XvJ/6Cat1S1h1j0W9Z2CjyHGT6kECmaPY9v0v/AJBFl/1wT/0EV53qH/I6+If+u0P/AKIjr0XTVZNKs1ZSrLAgIIwQdorzrUP+R18Q/wDXaH/0RHV0PjOJBRRRXaUFFFFAGB4m/wBdon/X83/pPNUVS+Jv9don/X83/pPNUVZvdiCu2+Fv/Hlr/wD2FB/6TQVxNdt8Lf8Ajy1//sKD/wBJoKxrfCJi/FD/AI9fD3/YUP8A6TT1x1dj8UP+PXw9/wBhQ/8ApNPXHVgjoo/CFB6Gio7ieK2t5JpnCRoMszdAKZsepeBf+Se+Gv8AsFWv/opa5XX/APkf9R/68LX/ANCmrrvBlvNaeBvD9tcRPFPFpttHJG4wyMIlBBHYg1yOv/8AI/6j/wBeFr/6FNVUfjRwohoooruKCiiigDD8U/8AHlZ/9fsX86r1Y8U/8eVn/wBfsX86r1m9xBXW/DD/AJCfiH/t2/8AQXrkq634Yf8AIT8Q/wDbt/6C9ZVvhEzD8f8A/JW7P/sBH/0fVSrfj/8A5K3Z/wDYCP8A6PqpXOjpo/CFFFMRLu+v4tM0yET38wyFbhIk7yOeyj8yeBzTNG0ldlzQVafxzoMUKtI8M8lxKFGfLj8mRdzeg3Mo9ya6zx9/yFPD3/XWf/0XW74Z8M2nhqwaKJjPdTEPdXTjDzP/AEUdAo4A/EnC8ff8hTw9/wBdZ/8A0XRD40ck5c0rmRRRRXoAFFFFAGfrv/Ivan/16S/+gGsa1/49If8Armv8q2dd/wCRe1P/AK9Jf/QDWNa/8ekP/XNf5VEtxEtavg//AJH7Tv8Ar2uP/ZKyq1fB/wDyP2nf9e1x/wCyVnV+BiZF4/8A+SvWn/YBP/o+qtWvH/8AyV60/wCwCf8A0fVWuVHTR+EKjAubq9h07ToPtGoT58uMnCqo6u5/hQdz9AMkgUAXN1ew6dp0H2jUJ8+XGThVUdXc/wAKDufoBkkCvU/C/he28NWTqr/aL6fDXV2y4aVh0AH8Kjsvb3JJI2FSpy6LcPC/he28NWTqr/aL6fDXV2y4aVh0AH8Kjsvb3JJO9RRUnKcJ47/5GPQP+uN3/wC0ay61PHf/ACMegf8AXG7/APaNZddtD4CkFFFFbDCsnxT/AMijrX/XjP8A+gGtasnxT/yKOtf9eM//AKAaUtgKNFFFQI1PBlzFB8RbFJG2mawuYk46sWhfH5Rsfwr1+vne7vpdM8VaHqCf6q0Zp5j6IJIlP/oePxr6IByMiuSr8RU4pRUl1CiiiszMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzj46/wDJJ9S/66wf+jFr0evOPjr/AMkn1L/rrB/6MWgD0VP9Wv0FOpqf6tfoKdQAUUUUAFFFFAHlPxW/5HHwb/1zv/8A0GKsitf4rf8AI4+Df+ud/wD+gxViTzxWsDzzuEjQZZj2qkdVH4QnnitYHnncJGgyzHtXW+DvB0tzPDrmuQFChD2VhIP9V6SSD+/6L/D/AL3Q8HeDpbmeHXNcgKFCHsrCQf6r0kkH9/0X+H/e6eiUmzOpUvogrzDUP+R18Q/9dof/AERHXp9eYah/yOviH/rtD/6IjrWh8ZkgooortKCiiigDA8Tf67RP+v5v/Seaoql8Tf67RP8Ar+b/ANJ5qirN7sQV23wt/wCPLX/+woP/AEmgria7b4W/8eWv/wDYUH/pNBWNb4RMX4of8evh7/sKH/0mnrjq7H4of8evh7/sKH/0mnrip54raB5pnVIkGWZugFYI6KPwhPPFbQPNM6pEgyzN0ArrPB/g+W7nh1zXIGQIQ9lYSDmM9pZB/f8ARf4ep+b7p4P8Hy3c8Oua5AyBCHsrCQcxntLIP7/ov8PU/N930Wk2RUqX0QV5tr//ACP+o/8AXha/+hTV6TXm2v8A/I/6j/14Wv8A6FNWlH40ZIhoooruKCiiigDD8U/8eVn/ANfsX86r1Y8U/wDHlZ/9fsX86r1m9xBXW/DD/kJ+If8At2/9BeuSrrfhh/yE/EP/AG7f+gvWVb4RMw/H/wDyVuz/AOwEf/R9VKt+P/8Akrdn/wBgI/8Ao+qKJd31/FpmmQie/mGQrcJEneRz2UfmTwOa50dNJpQuwRLu+v4tM0yET38wyFbhIk7yOeyj8yeBzXqvhnwzaeGrBoomM91MQ91dOMPM/wDRR0CjgD8STwz4ZtPDVg0UTGe6mIe6unGHmf8Aoo6BRwB+JO3SbMZzcmFcP4+/5Cnh7/rrP/6LruK4fx9/yFPD3/XWf/0XVU/iRmZFFFFegWFFFFAGfrv/ACL2p/8AXpL/AOgGsa1/49If+ua/yrZ13/kXtT/69Jf/AEA1jWv/AB6Q/wDXNf5VEtxEtavg/wD5H7Tv+va4/wDZKyq1fB//ACP2nf8AXtcf+yVnV+BiZF4//wCSvWn/AGAT/wCj6ogXN1ew6dp0H2jUJ8+XGThVUdXc/wAKDufoBkkCr3j23v7v4xWFtpto1xdTaIUQHhE/fklnbsoHU/QDJIFei+F/C9t4asnVX+0X0+Gurtlw0rDoAP4VHZe3uSSeS5rGpyxstw8L+F7bw1ZOqv8AaL6fDXV2y4aVh0AH8Kjsvb3JJO9RRSMQooooA4Tx3/yMegf9cbv/ANo1l1qeO/8AkY9A/wCuN3/7RrLrtofAUgooorYYVk+Kf+RR1r/rxn/9ANa1ZPin/kUda/68Z/8A0A0pbAUaKKKgQyDTP7X1G9sgu530O8ZB6ustuy/qBXrHgvU/7X8GaTeFtztbqjn1Zflb9VNcH4H/AOShW/8A2C7r/wBG29dB8OP+Je+v+Hm4/s7UGMQ9In5X+RP41y1fiZotabXbX+vwO6ooorIxCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK84+Ov/JJ9S/66wf+jFr0evOPjr/ySfUv+usH/oxaAPRU/wBWv0FOpqf6tfoKdQAUUUUAFFFFAHkvxdnitfFXhCeZwkaRX5Zj2+WKtbwd4OluZ4dc1yAoUIeysJB/qvSSQf3/AEX+H/e6dhqPhzSdX1XTNTv7NZ7vTGd7R3Y4jZgMnbnBPyjGQcEZGDWpQVzPl5QooooJCvMNQ/5HXxD/ANdof/REden15hqH/I6+If8ArtD/AOiI62ofGNBRRRXaUFFFFAGB4m/12if9fzf+k81RVL4m/wBdon/X83/pPNUXSs3uxB0ruPhZG50bVbvYwt7vUDLbuRgSoIYk3D1G5GAPfHpXOeFvCz+LJFu7tWTQUPA6G+I7D/pl6n+LoOOvriIkUaxxoqIoCqqjAAHQAVzVZp6ITOB+K88Vtp2gzTOqRJqZLM3QD7NPUXg/wfLdzw65rkDIEIeysJBzGe0sg/v+i/w9T833e5vtKsdTe0a9to5zaTi5g3jISQKVDY9QGOM/XqBVysR8z5bBRRRQSFeba/8A8j/qP/Xha/8AoU1ek15tr/8AyP8AqP8A14Wv/oU1a0fjQ0Q0UUV3FBRRRQBh+Kf+PKz/AOv2L+dV6seKf+PKz/6/Yv51WZgqlmICgZJPQVm9xAzBVLMQFAySegrtPhfZ3Hk6nqzwtHaXzRfZmfgyKgILgf3SW4PfGehBON4T8Jt4nePUtTjK6IpDQQMMG9PZmH/PL0H8XU/L971gAAAAYA6AVzVZ30QmeQ+PLLUr74v6db6ZamaebRWRWbIjj/f5LueygY6c8gdSK9E8M+GbTw1YNFExnupiHurpxh5n/oo6BRwB+JO3SMyohd2CqoySTgAViF3awtFedz/GrwhDdSIr6hPaxPskvobRmgU/73X8hXeWN7a6lYw3tlOk9tOgeOVDkMp7igRYrh/H3/IU8Pf9dZ//AEXXcVw/j7/kKeHv+us//ourp/EgMiiiivQLCiiigDP13/kXtT/69Jf/AEA1jWv/AB6Q/wDXNf5Vs67/AMi9qf8A16S/+gGsW1/484f+ua/yqJbiJq6L4faXdahria+F8vTYIpIYZGHNwzEZK/7A29e56cDNUfC/hd/FsouroMmgo30N6R2HpH6n+LoOMk+uxxpDGkcaKkaAKqqMBQOgArmq1L+6hMdjnPeiisLxP4v0jwjbW82qTMGuZlhhijAZ3YnHAyOB3NYCN2ikZlRSzMFVRkknAArz26+NPhC2upI1e/uLaJ9kt7b2jPAh92/wBoA9DoqCyvbbUrGG9s50ntp0DxyochlPQip6AOE8d/8AIx6B/wBcbv8A9o1l1qeO/wDkY9A/643f/tGsuu2h8BSCiiithhWT4p/5FHWv+vGf/wBANa1ZPin/AJFHWv8Arxn/APQDSlsBRooq1oeh3fiu/e1tXeDT4W23l6vUH/nnH6v6n+H64FZykoq7Eafw9t5rvxlJqEMbNZ2lnNbSz/w+a7xMEHqQEOcdMj1rcP8AxKPjIp6Ra1p+PrLH/wDYr+tdjp+n2mlWENjYwJBbQrtjjQcAf1PcnvXHfEkfYF0HxAvXTdQQyH0ifhv5AfjXI5c0rmlHWXL30O6ooByMjpRUGIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXnHx1/5JPqX/XWD/wBGLXo9ecfHX/kk+pf9dYP/AEYtAHoqf6tfoKdTU/1a/QU6gAooooAKKRXViwVgSpwwB6HGcH8CPzpaACvHPi18RtT0130rwxKySWbxnUb1ACIdxwsYJ43HqfYfWuw+J/jJ/BXg+S+gXN3PILe3YjKxuwPzH2ABOK8T8Q+LPBqfC/8AsDSL+4u9Umu47q7uJbdlM8m7LsSf0FAH05CxaCNickqCT+FPrD8J+JtM8WaEmo6TK8lsrGEs6FDuUDPB+tblABXmGof8jr4h/wCu0P8A6Ijr0+uS1TwN9v1q71KDW720a7KNJFHHEy5VQuRuUnoo71pTkoyuxo52itn/AIV/cf8AQz6h/wB+IP8A4ij/AIV/cf8AQz6h/wB+IP8A4iuj6xEdzGorZ/4V/cf9DPqH/fiD/wCIo/4V/cf9DPqH/fiD/wCIo+sRC5w/ifibRf8Ar+b/ANJ5q0PC3hZ/Fki3d2rJoKHgdDfEdh/0y9T/ABdBx16KX4YWl9cWrarrF9fW9vL5v2dkjjVztZcMUUEjDEEZ5rukRIo1jjRURQFVVGAAOgArGpVvsJsERIo1jjRURQFVVGAAOgAp1FFYiCs7XdbsfDmi3Wq6jKI7a3Tcx7seyj1JPArRrxLx/wCIrt/iRBa6n4c1fUNB0nbLFDZ25dLicgEM56ELnAHqKAJPAGseItU+MN7NrrywC50v7TDY7ztgjZ12Ar03Y5P1r2mvnqw+Ihb4yz61/wAIzrI8/T0tfshg/ep8w+cj+7719C0AFeba/wD8j/qP/Xha/wDoU1ek1z+reDdJ1nUjqFz9sS5aJYma3u5IgyqWIyFIBxuP51dOXLK4I5Ciuj/4V3on/PfVv/BlN/8AFUf8K70T/nvq3/gym/8Aiq6PrC7FXOcoro/+Fd6J/wA99W/8GU3/AMVR/wAK70T/AJ76t/4Mpv8A4qj6wuwXPP8AxUwWwtGYgKLyIknoOa0/CfhNvE7x6lqcZXRFIaCBhg3p7Mw/55eg/i6n5fvdVJ8M/Dc7Rfa4727jjkWQQ3N9LJGzKcjcpbDD2PFdcAAAAMAdAKyqVebYTYAAAADAHQCloorEQVl+JLB9U8MapYRzrA9xayRCVjgISpGSfStSuS+J1rf3vw31yDTQ7XLW/Cp95lBBYD/gINAHlWg/FDRfD3w0l8N3WkTT3dpHJaMbdUktZmORuMgOMHPNenfCnSJtF+HGlWs1zDcOytLuhkEiAMxYKGHBxntWV4R8Y+BoPhrZRPqWm29tDZiO5tJXUPu24cFDyxJz2Oc0z4HQXMXgi4leOSKxnv5ZbGOTqsJxjHtnNAHplcP4+/5Cnh7/AK6z/wDouu4qlqWjaXrUKQ6rptnfRI25EuoFlCnpkBgcGnF2dwPPaK6//hBPB/8A0Kmh/wDgvi/+Jo/4QTwf/wBCpof/AIL4v/ia6PrHkO5yFFdf/wAIJ4P/AOhU0P8A8F8X/wATR/wgng//AKFTQ/8AwXxf/E0fWPILnAa9x4e1P/r0l/8AQDUXg3wvJ4shgurtWj0FFHsb0jsPSP1P8XQcZJ9E/wCEE8H/APQqaH/4L4v/AImt2KKOCFIYY1jijUKiIMBQOAAB0FROs5bBcWONIY0jjRUjQBVVRgKB0AFOoorEQV4F8S/A7aRY2Wv6tq9zq2s3Gqwx+dJ8scMZJOxEHAHA/wDrV77XmPxw/wCRV0n/ALC9v/7NQBp/GLUpdL+GGrSQOUeYJBuHYOwB/TNcrYeNY9M8FxWml+A9Sv8AwtDbeVNertQSrjDuqEZYE5OePwrsfivolxr/AMN9Vs7SNpLhVWaNFGSxRgxA98A1naB8R/CMfw6tbmXVLOD7NZLFLZtIBKrquCgTqckcYHNAHQeAY9Cj8GWH/CNySPpTBnhErlmXJJKnPQg54rpa87+Cmn3Vh8OYGuYmiF1cS3MUbDBWNiNv54z+NeiUAcJ47/5GPQP+uN3/AO0ay67XXvDFj4hktZbqW6hltd4je3mKHDY3A+v3R+VZX/Cu9N/6Cesf+Bf/ANat6dVRjZjTOforoP8AhXem/wDQT1j/AMC//rUf8K703/oJ6x/4F/8A1q0+sR7Duc/WT4p/5FHWv+vGf/0A123/AArvTf8AoJ6x/wCBf/1qjn+GmkXVvLbz3+ryQyoUdGu+GUjBB49KTxEWtgucToeh3fiu/e1tXeDT4W23l6vUH/nnH6v6n+H64Fewafp9ppVhDY2MCQW0K7Y40HAH9T3J70afp9ppVhDY2MCQW0K7Y40HAH9T3J71ZrnnNyd2SFYfjLTP7X8HarZBdzvbsyD1dfmX9QK3KKkcXytNGD4K1P8AtfwZpN4W3O1uqOfVl+Vv1U1vVwvw4/4l7+IPDzcf2dqDGIekT8r/ACJ/Gu6pvcuqrTaQUUUUjMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmTOY4JHHVVJH5U+mSoZIXQHBZSM0AedeEPiHdXvwu1DxXraRNJZyTApAuwMFxtHU8knFZGnWvxc8S6fFr0PiLTtKS4XzrbTjbKyhDyoZipPI9z+FZUXgX4i+HvCGoeF7W00PV9JvPMJCzNHMpbuC21ewPeu48P6n4p0b4Xxy6l4ekm1qxQW6WMUgLTBSFVsjIHHJxnpQBc+H/i288S2F7bavaLa61pc5tr2JPuluzL7Hn8q7CuG+G/h7V9Mi1bWfECRxatrVz9olgjORCoGFXPrya7mgArzj46/8kn1L/rrB/wCjFr0evOPjr/ySfUv+usH/AKMWgD0VP9Wv0FOpqf6tfoKdQAVg+L/E9v4U0CW/mw8x+S3iJ/1kh6D6Dqfat6vHfjB4e1O5ubbVW1CKW3aRLW1s9pVlZvTqCSRknjoPSmldm1CEZ1EpPQ3fg9qdzqmgapNeTNNcvqDSO7dSWRP8K9Frzn4T+H9Y8OQ6vaatZtblpI3jO4Mr8MDggkdh+dejUPcMRb2r5diOWCKdds0SSKDnDqCP1rjviJ4Jk8V+FG0zSo7G3ujPHJ5kq7F2qckZVSf0rtaKRiQ2tvHa26RRxogAGQgwM1NRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzEPg/yfiNc+Lvt2fOshafZfJ6YIO7fu9umPxrp6KKACiiigAooooAKKKKACiiigAooooAKKKKAOduPAXhK71A39x4c0yS5LbmdrdfmPqRjBP1roERY0VEUKijCqowAPQU6igAooooAKKKKACiiigAooooAKKKKACqt9pthqkSRahZW13GjiRUuIlkCsOjAEHBHrVqigArn7jwN4UutS/tGfw9psl2W3GVrdcs3qRjBPua6CigBAAoAAAA4AFLXLeM/GcPhe2jt7eIXes3QP2SzBx9ZHP8KDue/Qe3N/Cxbxtb8S3Go3sl5ezi1kmlY4Xd+94VeiqBgADsBQOztc9NooooEFFFFABRRRQAUUUUAFFFFAHCn/iUfGRT0i1rT8fWWP8A+xX9a7quF+JI+wLoXiBeum6ghkPpE/DfyA/Gu6ByMjpTZrU1jGXy+4KKKKRkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzPjXT/Et5p9tceFdRjtdQtJfN8mYZjuVxgo3+fy61wDfG68njTQ7Tw5L/AMJg0xtjaO48hHH8W7PI9v1713fjHR9W8VabbWOia6NOtpJiL24gOXaLH3UI6EnHcf0rkr/wX8KbTS18NXF/ptnfI2VuGvEW7WT+8WJzn2PHtQB1/gjRtf0rT7mfxLq39oaleSiVwgxHAMYCJ7D2A/rVzxbrepeH9Da/0vQp9auFkVTawPtbaerdCTjjgA9fTJql4H0zxDo+m3FjruqpqsUUg+w3Y++8OON/uD9fqa6mgDyCX4r+OCv7r4V6qh9XaRv5RCuJ1zxzr3jqePwz4tFr4T0q4lQu89nN5jkMCFy3A57naPU19K15v8dgD8KNRJAJE0BHt+8WgD0cDAAHQUtNT/Vr9BTqACuE8Sf8Tj4leG9HHMVkr6jOPccJ/wCPD9a7uuE8Hf8AE28a+KdfPMazLp9u3bbGPmx9SFP400a0tLy7L89Du6KKKRkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRVW81Kx05rdb27gtzczLBAJZAvmSN0Rc9SfSrVABRRRQAUUUUAFFFFABRRRQAUUUUAFct4z8Zw+F7aO3t4hd6zdA/ZLMHH1kc/woO579B7HjPxnD4Xto7e3iF3rN0D9kswcfWRz/Cg7nv0Ht5ha2swuZ9Q1C4N3qd0d1xcsMZ9FUfwoOgAppGkIOTC1tZhcz6hqFwbvU7o7ri5YYz6Ko/hQdABXZfDT/kN+If8Arna/+1a5iun+Gn/Ib8Q/9c7X/wBq02bVUlCyPRqKKKk5QooooAKKKKACiiigAooooAw/GWmf2v4O1WyC7ne3ZkHq6/Mv6gU3wVqf9r+DNJvC252t1Rz6svyt+qmt6uF+HH/EvfxB4ebj+ztQYxD0iflf5E/jT6Gq1ptdtf0/yO6ooopGQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRXP8Ax6Tf7jfyqWkZQylWGQRgigDw3wFqN3p37P2u3Omvi+ge5ZNh+ZOnzfgMn8K6Twl8KPBlz4NsJbzTItQuLy2Saa7kdi7s4ySCDx17Vavvgj4KupGltrS706Vs5ezunU8+zbh+ladj4AGkeA5vC2l65qNursTHeF8yxAsCQuMYGARxjqaAMb4StLYT+JvDa3Ul1p+j3/lWcjtuKowJKZ9iP516XWF4S8Jab4N0UabpokZSxklmlbc8znqzGt2gArzj46/8kn1L/rrB/wCjFr0evOPjr/ySfUv+usH/AKMWgD0VP9Wv0FOpqf6tfoKdQBna/qY0bw/qGokjNvA7rnuwHyj8TgVj/DrTDpngbTlkB864Q3MhPUlzuGffBA/CqHxNke60rTdAiYiXV76OA47RggsfwO2u2jjSKJI41CogCqB2Ap9DV6Ul5v8AIdRRRSMgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKRmVELuwVVGSScACgBaKwP+E58I/9DTon/gwi/wDiqP8AhOfCP/Q06J/4MIv/AIqgDforA/4Tnwj/ANDTon/gwi/+Ko/4Tnwj/wBDTon/AIMIv/iqAN+isD/hOfCP/Q06J/4MIv8A4qtHTda0rWUkfS9Tsr5YiBIbWdZQhPQHaTigC9RRRQAVjeJvE2neFNIfUNQdiNwjhgjG6SeQ/dRF7sf/AK54o8TeJtO8KaQ+oag7EbhHDBGN0k8h+6iL3Y//AFzxXkDvqOu6ude14qb3aVtrVG3R2MZ/hX1c/wAT9+g4oSLhByYJLqWueMtG13XWH21tRgS3tUbMdlGXHyL6seNz9+g4Fe8V4jD/AMhvRP8AsJ2//oYr26mx1YqLsgooopGYUVy7fEDQfMdYWv7lFYr5tvYTSxsQcHa6qQwz3BxSf8J/o3/PDVv/AAV3H/xFOzA6miuW/wCE/wBG/wCeGrf+Cu4/+Io/4T/Rv+eGrf8AgruP/iKLMDqaK5b/AIT/AEb/AJ4at/4K7j/4iptL8c6Hq+tjRraW5TUDCZxDPaSxEoDgn5lFFmB0dct4z8Zw+F7aO3t4hd6zdA/ZLMHH1kc/woO579B7dTXgsJa58R+I76dmluW1a5g8xzkiOOQqiD0UAdKEXCPM7DrW1mFzPqGoXBu9TujuuLlhjPoqj+FB0AFW6KKo60klZBXT/DT/AJDfiH/rna/+1a5iun+Gn/Ib8Q/9c7X/ANq0mZ1vhPRqKKKk5QoorMm8RaHbTPDPrOnxSodro90isp9CCeKANOisn/hKfD3/AEHtL/8AAyP/ABo/4Snw9/0HtL/8DI/8aANaisn/AISnw9/0HtL/APAyP/Gj/hKfD3/Qe0v/AMDI/wDGgDWoqjZ63pOozmCx1Oyupgu8xwXCOwXIGcA5xkjn3q9QAVwp/wCJR8ZFPSLWtPx9ZY//ALFf1ruq4X4kj7AuheIF66ZqCGQ+kT8N/ID8aaNaOsuXvod1RQDkZHSikZBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5x8df8Akk+pf9dYP/Ri16PXnHx1/wCST6l/11g/9GLQB6Kn+rX6CnU1P9Wv0FKSFBJIAHJJoA4Wb/ic/GGCP70GiWJkPoJZOP8A0Eg/hXd1wvw2B1BNc8RuDnVL9zGT/wA8k4X+ZH4V3VNmtbSXL20/r5hRRRSMgooooAKrtf2iX8dg91Ct5IhkSAuN7IDgsF64GRzXP+MvGVv4WtI4YYxd6vdAi0swcFj3dj/Cg7n8BzXB+CLe4b4kW2o6jcm71O6tbgzzkYHGzCIP4UHYUFKLaueyUUUdBk0Eh0GTXnmta2/iuR7GwkZNCQlZ7hDg3pHVEP8Azy9W/i6DjJJretv4rkksLCRk0JCVnuEODekdUQ/88uxb+LoOMkuREjjWONVVFACqowAB2Fb06d9WNIyf+ET8O/8AQC03/wABU/wo/wCET8O/9ALTf/AVP8K2KK3shmP/AMIn4d/6AWm/+Aqf4Uf8In4d/wCgFpv/AICp/hWxWHr2vGwZbGxVZdSlXKq33YV/vv7eg6k/iQNIDH16x8PWDLY2OgaXLqUq5VWtU2wr/ffjp6DqT+JHWfByxi03RNbtYfuJqpPQDJNvAScDgck8DgVxlrai2V2aRpZ5W3zTP96RvU/0HQDgV3vwt/48tf8A+woP/SaCsaq924md7RRRXOIKw7zxbpVn4q07w00rSanfB2WOMAiJVRny5z8oIUgdz9OaxvG/jc6GV0jSFjuNdnTcqtylqh/5aye3ovUmuG8K2ItPHHh+SSaS4u572aS5uZTl5nNrNyf6DoBQUoNq57dRRSMyohd2CqoySTgAUEgzKiF3YKqjJJOABXnWr6u/jCQwQFk8PKeT0N+R/wC0f/Q/937xq+rv4wkMEBZPDynk9Dfkf+0f/Q/9370wAUAAAAcACt6dPqxpCCNAAAigDoAKXYv90flS0V0DE2L/AHR+VGxf7o/KlrA13XXtpP7O07a+oOuWcjK26n+JvU+i9/pQwE13WzbSf2dpyo+oOuWcjK26n+JvU+i9/pWl8JrVLW+8QqpZ2Zrdnkc5aRiHyxPc1yVrapaxlVLO7sXkkc5aRj1Zj3Ndp8MP+Qn4h/7dv/QXrGqvdEz0asbxN4m07wppD6hqDsRuEcMEY3STyH7qIvdj/wDXPFHibxNp3hTSH1DUHYjcI4YIxuknkP3URe7H/wCueK8gd9R13Vzr2vFTe7Sttao26OxjP8K+rn+J+/QcVzJFQg5MHfUdd1c69rxU3u0rbWqNujsYz/Cvq5/ifv0HFW6KKo64xUVZCQ/8hvRP+wnb/wDoYr26vEYf+Q3on/YTt/8A0MV7dSZzVviCvPdb1t/FUkmn6fKyaGhKXFyhwbwjrGh/559mYfe6DjJJretv4qkk0/T5WTQ0JS4uUODeEdY0P/PPszD73QcZJWONIo1jjRURQFVVGAAOgAranTvqzNII40ijWONFRFAVVUYAA6ACnUUV0DCiisTXddOnlbKyVZtSlXKo33Yl/vv7eg6k8DuQAGu66dPK2VkqzalKuVRvuxL/AH39vQdSeB3IqeBbUW/j2xZpGmnlguHmmf70jYTk/wAgOgHArKtbUW4dmkaaeVt80z/ekb1P8gOgHArc8H/8j9p3/Xtcf+yVnU+FtiZ69Xgtn/yFPEP/AGG73/0c1e9V4LZ/8hTxD/2G73/0c1cqNKPxF2iiiqOoK6f4af8AIb8Q/wDXO1/9q1zFdP8ADT/kN+If+udr/wC1aTMq3wno1FFcX4j8Rz3t1NomiTGNoztvr9P+WH/TOP1kPr/D9cCkk27I5Q8R+I5726m0TRJjG0Z231+n/LD/AKZx+sh9f4frgVkW+k6fawJDFZwhEGBlASfck8k+561LaWkFhax21tGI4kGFUfqSe5PUk9anrrhBRQyv9gs/+fSD/v2KPsFn/wA+kH/fsVYoqxlf7BZ/8+kH/fsVma1d6bo9upNlDNdTErBbqihpG/LhR3Pb8hVjWtah0e3UlDNdTErBbqcNI39FHc9vyFctDDM1xJe3sgmvZhh3AwqL2RB2Ufr1PNLyQGv8O7VoviOt1OUa7uNLuTK0a7VAEtvhVHZRk+/JJ5NeyV5L4G/5KFb/APYLuv8A0bb161XJUVpMlhWH4y0z+1/B2q2QXc727Mg9XX5l/UCtyioHF8rTRg+CtT/tfwZpN4W3O1uqOfVl+Vv1U1vVwvw4/wCJe/iDw83H9nagxiHpE/K/yJ/Gu6pvcuqrTaQUUUUjMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKRmVFLMQqgZJJwAKAForlIviX4Ln1P+z4/EdibktsA34Un0D42n866vrQAUUVna1r+k+HbL7Zq9/BZ2+cB5WxuPoB1J9hQBo0ViaB4v8AD3igSf2Lq1teNGMuiNh1HqVODj3xW3QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFIzBVLMQFAySegqO2uYLy3S4tZ454XGUkicMrD2I4NAEtFFFABRUM93bWzxJPcRRNM+yJZHCl29Fz1PsKmoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvOPjr/ySfUv+usH/AKMWvR684+Ov/JJ9S/66wf8AoxaAPRU/1a/QVz3j3VP7I8Eapcq2JGhMMeOu5/lGPpnP4V0Kf6tfoK4bx3/xNfEPhjw6PmWe7+1zr/0ziGcH2PzflTW5pRSc1f8Aqx0nhXS/7F8LaZp5Xa8MCiQf7Z5b/wAeJrXoopESbbuwooooEFcv4y8ZW/ha0jhhjF3q90CLSzBwWPd2P8KDufwHNdHdSm3tJpgMmNGYA98DNeCaQ02oQrrt/M1zqWoxJNNM3YEZCKP4VXOAKaLhDmZYtra4a7n1HUbg3eqXRzPcEYGOyIP4UHYVveEf+R+0/wD69Lj/ANp1mVp+Ef8AkftP/wCvS4/9p03sdFRJQsj1qvMfG/iW9vdauPDsGnX76bbBRfSWzRhrgsoYRAs6kJhhuPU9OBnPp1eYah/yOviH/rtD/wCiI6qlFSlZnKikmvSRxrHH4d1NUUAKqiAAAdh+9pf+Ehn/AOhf1X/yB/8AHauUV2cvmMp/8JDP/wBC/qv/AJA/+O0f8JDP/wBC/qv/AJA/+O1coo5fMDG1LxVdQRRQwaPdwXNy/lQyXXl+WrbSxJ2uScKrHHfGMis21tRbK7NI0s8rb5pn+9I3qf6DoBwKueJv9don/X83/pPNUVTbUArtvhb/AMeWv/8AYUH/AKTQVxNdt8Lf+PLX/wDsKD/0mgrKt8Imd7XFeN/G50MrpGkLHca7Om5VblLVD/y1k9vRepNdrXzl4Nnlv/D6arduZr++kkluZ2+9I29gCfoAAB0Fc6Kpx5nY1bGxFoJZJJpLi7nfzLm5lOXmc9z/AEHQCtTQ/wDkevDX/X1N/wCks1Vqs6H/AMj14a/6+pv/AElmps6Zq0GkeyV5n4+1PVr7X/7AtbWCXTIbeO4u0kuTEbguzhUJCN8g2EkfxZAPGQfTK821/wD5H/Uf+vC1/wDQpqqkk5JM40ZY1LXVAA0bTwBwANQb/wCM0f2nr3/QHsP/AAYt/wDGavUV28pRR/tPXv8AoD2H/gxb/wCM0f2nr3/QHsP/AAYt/wDGavUUcoGHq2v69aWiY02xgaaVYVmF20vlljjdtMa7semRVC1tUtYyqlnd2LySOctIx6sx7mr/AIp/48rP/r9i/nVeotqAV1vww/5CfiH/ALdv/QXrkq634Yf8hPxD/wBu3/oL1nW+ETKvxQRW8W+FSyglYL4qSOh/cDI/An86wq3vif8A8jX4X/6977+cFYNc6Omj8IUUUUzUSH/kN6J/2E7f/wBDFdn8TJdQmtNN0myvFtY7+ZxcsYy3mRqhJQ4ZSAe+CDjjoTXGQ/8AIb0T/sJ2/wD6GK7bx9/yFPD3/XWf/wBF0RV5JM5q3xHLRxa/FGscepaaiKAqqunMAAOgA82nY8Rf9BXT/wDwXt/8drQoru5UZmfjxF/0FdP/APBe3/x2jHiL/oK6f/4L2/8AjtaFFHKgMbULjxFZabdXQ1PT2MMLybfsDDOATj/W+1ZVhB5dv5zu0txPiSaZ/vSMR1P8gOgHAre13/kXtT/69Jf/AEA1jWv/AB6Q/wDXNf5VLSTAlrV8H/8AI/ad/wBe1x/7JWVWr4P/AOR+07/r2uP/AGSoq/AxM9erwWz/AOQp4h/7Dd7/AOjmr3qvBbP/AJCniH/sN3v/AKOauRGlH4i7RRRVHUFdP8NP+Q34h/652v8A7VrmK6f4ZfPq/iF15QC2jLDpuAkJGfUBl49xSZlW+E0PiFruradHYaXo8X7/AFDzDJcCUI0Uabd2zIPzHeAD25NclaXmo2FrHbW3h+KOJBhVF6PxJO3knqSetdR47/5GPQP+uN3/AO0ay66KMVy3OZFL+19Y/wCgHH/4Gj/4mj+19Y/6Acf/AIGj/wCJq7RW3L5jKX9r6x/0A4//AANH/wATVbUPEeq6fpt1eyaGhS3heVh9sHRQSf4fatasnxT/AMijrX/XjP8A+gGhx03AyYYZmuJL29kE17MMO4GFReyIOyj9ep5qxRRSA2fA3/JQrf8A7Bd1/wCjbevWq8h8F3EUHxEsllkVDLp9zFHn+Ji8LAfXCsfwNevVyVfjYmgooorMRwrf8Sj4yKekOtafj6yx/wD2K/rXdVwvxJH2BdC8QL10zUEMh9In4b+QH413QORkdKbNamsYy+X3f8CwUUUUjIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxvFWhN4m8N3mjrfS2Qul2NNEuWC55GPfp+NbNYXi/xLH4R8N3GtTWc93FAV3xw4yATjPPYZoA82+IMngPw34Nm8HR2ltLq/2dY7WCO3/e+YR8shfGAc8k5zXSXeoeJ/Bfws0u7itINRvLC3j+3xSMS3lgclSDyV/H1rT8Rv4V1zwHd6tqCWUunXFoZRcOFJ+78uG67gcAd88VzHgLxGPDvwMt9W8QszQQpIIlk5aVNxCIM9c9B7e1AGnrfxOjNloMfheCLUtU1sq1vA7HEcf8TPjkYOR+B9K0ta8F2OqeJbHxNr10k8GmWrf6G8WYFbq0nJ/Q56D0ryT4exTeAvGFhq/iDSobOx8SRstpKM/6GWbKoc/dBGPwI969jvPGun2vjmDwle27xSXdsZYbiUjype2wep4NAHntrfaL4q+M+i3vgpIhFYQyHU7qGPykkQjAXBALH3x/Kva68e+J9vp9j408HPokUMPiFr9QVtlCu0HfeB2+vbNew0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHmPxMj8Z6taatYaf5OmaBbWjSz3pfdLdYTcY0UfdHYn9e1bPwqLr8KNBMahnFqSqk4ydzcZ7VteMv+RJ1z/rwm/9ANY/wm/5JZ4f/wCvc/8AobUAP8NfEKw12z1d72B9KutIdlvba4cExqP4s9xwfyqbwx4wuPFXhq71u00aaKFd/wBjSWQbrraDgjj5QSMd68a+LQg1fxzey6DZXVxHp1sn/CQPaybVkQODsPqQBz16dPlr3rw3e6ZqPhvT7rRtg054F8hUGAigY247EdPwoA8Z1e28WyfEvwTqviqeCF7q/K2+m253JaqMdW6Fjnk89OvYe915j8SP+Sh/Dz/sIP8A+y16dQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFecfHX/kk+pf9dYP/Ri16PXnHx1/5JPqX/XWD/0YtAHoqf6tfoK4bRv+Jz8Vtc1E/NDpduljEf8AaPzN+IIYfjXZXV3HYabNeTHEUELSufZRk/yrlPhhaSJ4S/tG4H+k6pcyXkh7/M2B+gz+NNGsNISl8jtKKKKRkFFFFAFbUf8AkGXf/XF//QTXhPh3/kWdK/684f8A0AV7tqP/ACDLv/ri/wD6Ca8J8O/8izpX/XnD/wCgCmjehuzSrT8I/wDI/af/ANelx/7TrMrY8CWs9/4uGoQRk2VjDLDLOeFaVivyL6kBTn04HWmzSq/dPVa8w1D/AJHXxD/12h/9ER16fXmGof8AI6+If+u0P/oiOtKHxnKgooortKCiiigDA8Tf67RP+v5v/Seaoql8Tf67RP8Ar+b/ANJ5qirN7sQV23wt/wCPLX/+woP/AEmgria7b4W/8eWv/wDYUH/pNBWNb4RM72vm7wD/AMiTp3/bT/0Y1fSNfN3gH/kSdO/7af8Aoxq50a0fiOkqzof/ACPXhr/r6m/9JZqrVs+CNHudZ12z11R5WmWDu0MhHN1IUaM7f9gB2+buenAJps1qNKJ6pXm2v/8AI/6j/wBeFr/6FNXpNeba/wD8j/qP/Xha/wDoU1XR+NHKiGiiiu4oKKKKAMPxT/x5Wf8A1+xfzqvVjxT/AMeVn/1+xfzqvWb3EFdb8MP+Qn4h/wC3b/0F65Kut+GH/IT8Q/8Abt/6C9ZVvhEyt8T/APka/C//AF73384Kwa3vif8A8jX4X/6977+cFYNc6Omj8IVHPPFbQPPO4SNBlmPaieeK2geedwkaDLMe1dZ4O8HS3U8Oua5AU2EPZWEg/wBX6SyD+/6L/D/vdBsqc1FC+DfCE09xBr2twtEUO+xsXGDH6SSD+/6L/D3+bpc8ff8AIU8Pf9dZ/wD0XXcVw/j7/kKeHv8ArrP/AOi6dP40cjbbuzIooor0CgooooAz9d/5F7U/+vSX/wBANY1r/wAekP8A1zX+VbOu/wDIvan/ANekv/oBrGtf+PSH/rmv8qiW4iWtXwf/AMj9p3/Xtcf+yVlVq+D/APkftO/69rj/ANkrOr8DEz16vBbP/kKeIf8AsN3v/o5q96rwWz/5CniH/sN3v/o5q5EaUfiLtFFSaXpd74l1JtP09zFDER9svcZEAPO1exkI6DoByewLOmUlFXYaXpd74l1JtP09zFDER9svcZEAPO1exkI6DoByewPrmk6TZaJpsOn6fCIreIcDOSSeSxPUknkk8k0aTpNlommw6fp8Iit4hwM5JJ5LE9SSeSTyTV2pbOSc3JnCeO/+Rj0D/rjd/wDtGsutTx3/AMjHoH/XG7/9o1l120PgEgooorYYVk+Kf+RR1r/rxn/9ANa1ZPin/kUda/68Z/8A0A0pbAUaKKKgRSk0291HW4X06RlvrCxnvrcL/E8ckHHvwzfjXtnhzW4PEWgWmqQYAmTLoD9xxwy/gc15z4G/5KFb/wDYLuv/AEbb1taP/wAUd8QLnRG+TStazdWX91Jh99B9f/iRXLV+Jmi9+Dj1Wq/X/M9AooorIxMPxlpn9r+DtVsgu53t2ZB6uvzL+oFN8Fan/a/gzSbwtudrdUc+rL8rfqprerhfhx/xL38QeHm4/s7UGMQ9In5X+RP40+hqtabXbX9P8juqKKKRkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFR3FvDdW8lvcRJLDIpR43XKsD1BB6ipKKAOAT4LeBUvhc/2U5QPvFu1zIYgf93P6dK6XWPCWh69FZQ6lYLPDYuJLeESOkaEdPkUgHHoQRW1RQBl674d0nxNpZ03WLNbq0LBthZlwR0IKkEfgapa74I8PeJNKt9O1Ww+0Q2yhYHaRvMjwMcPnd2HUnPetKDWtNudZu9IhvYn1G0RXntwfnjVhkEj6EfmPUVfoA5Xw18OfDHhO7a80ywP2xhg3M8jSyAegLHj8K6qiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAq6nYRarpd3p87OsV1C0LlCAwDDBxkHnmqWi+HrfQPC8Gg2NzcrBbxGKOdmUyrnJznbjIz6Vr0UAc94W8F6T4S0m40+yEs63MjSXM10weSdm67iAAfTpSeE/Bth4Ngu7bTLm8a0uJjMttO6skJPUJhQQPqT0q9q/iHTdDuNOg1Cdo5NRuVtbYBC2+Rug4HH1NalAGFrfhOw17WdG1S6luUn0mYzQLEyhWY4+9kEkcdiK3aKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzj46/wDJJ9S/66wf+jFr0evOPjr/AMkn1L/rrB/6MWgDU+Jd7Jb+Cms7f/j51GWOziHqWPI/IEfjXVafZR6dptrYw/6u3iWJfooA/pXGa5/xOPib4d0ofNFp0L6hMB69E/IgfnXeU3saz0hGPzCiiikZBRRRQBW1H/kGXf8A1xf/ANBNeE+Hf+RZ0r/rzh/9AFe7aj/yDLv/AK4v/wCgmvEfAWiXXivR9Nt7d3g02C1hW7vF4JOwZijP971b+H69GjWlJRu2aWiaJdeK757e3d4NMhbbd3icEnvFGf73q38P16eu2Nja6ZYw2VlAkFtCoSONBgKKLGxtdMsYbKygSC2hUJHGgwFFWKREpOTuwrzDUP8AkdfEP/XaH/0RHXp9eYah/wAjr4h/67Q/+iI62ofGJBRRRXaUFFFFAGB4m/12if8AX83/AKTzVFUvib/XaJ/1/N/6TzVFWb3Ygrtvhb/x5a//ANhQf+k0FcTXbfCvLaXrcygmKXUyY3xw4WCFSQe4DKw+oI7VjW+ETO9r5u8A/wDIk6f/ANtP/RjV9I14H8JvCF34h8L2P9oxSW+jQtIJFPyvdt5jfIO4QdGPUnIHeudF05KLuzf8NeGpPF0v2i4DR6CjYLA4N6R1VT2j9W/i6DjJr1qKKOGJIokWONFCoijAUDoAOwoiijhiSKJFjjRQqIowFA6ADsKfSJlJyd2Feba//wAj/qP/AF4Wv/oU1ek15tr/APyP+o/9eFr/AOhTVrR+NCRDRRRXcUFFFFAGH4p/48rP/r9i/nVerHin/jys/wDr9i/nVes3uIK634Yf8hPxD/27f+gvXJV2Hwthlc6zqIjb7JcSRJBKRgSlAwYr6gE4z0yD6VlW+ETKfxP/AORr8L/9e99/OCudnnitoHnncJGgyzHtW98Vp4rbxJ4anncJGltfFmPbmCr3g7wdLdTw65rkBTYQ9lYSD/V+ksg/v+i/w/73TmubQmowDwd4Olup4dc1yApsIeysJB/q/SWQf3/Rf4f97p6LRRSMW23dhXD+Pv8AkKeHv+us/wD6LruK4fx9/wAhTw9/11n/APRdXT+JCMiiiivQLCiiigDP13/kXtT/AOvSX/0A1jWv/HpD/wBc1/lWzrv/ACL2p/8AXpL/AOgGsa1/49If+ua/yqJbiJa1fB//ACP2nf8AXtcf+yVlVu+ALG51DxQurQx/8S+zilhM7dJJGKgqnrt2nJ6A8cnOMqr90TPVq8Fs/wDkKeIf+w3e/wDo5q96rwrQdJv/ABF4m8RafYloIU1u9N3eleIVMzfKueGkI6DoOp7A8qLpyUXdlzS9LvfEupNp+nuYoYiPtl7jIgB52r2MhHQdAOT2B9c0nSbLRNNh0/T4RFbxDgZySTyWJ6kk8knkmjSdJstE02HT9PhEVvEOBnJJPJYnqSTySeSau0mxTm5MKKKKCDhPHf8AyMegf9cbv/2jWXWp47/5GPQP+uN3/wC0ay67aHwFIKKKK2GFZPin/kUda/68Z/8A0A1rVk+Kf+RR1r/rxn/9ANKWwFGiiioEbPgb/koVv/2C7r/0bb12fjvQZdc8PM1nldSsnF1Zuv3hIvOB9Rx9celcd4Aje48dtPEjPDa6fNFNIB8qO7wsqk+pCMceg9xXrFclR++wjJxlzIxvCuvReJfDlpqSYV3XbMg/gkHDD8/0IrZrz+z/AOKO+I0tifk0nXyZYP7sdyPvL+P9VHavQKhlVYpO62YVwrf8Sj4yKekWtafj6yx//Yr+td1XC/EkGwTQvECjnTNQQyH/AKZPw38gPxoQ6OsuXvod1RQDkZHSikZBRRRQAUUUEgAknAHegAornm8e+D1Yq3inRQQcEfb4v/iqT/hPvB3/AENWif8AgfF/8VQB0VFc7/wn3g7/AKGrRP8AwPi/+Ko/4T7wd/0NWif+B8X/AMVQB0VFc7/wn3g7/oatE/8AA+L/AOKo/wCE+8Hf9DVon/gfF/8AFUAdFRXO/wDCfeDv+hq0T/wPi/8AiqP+E+8Hf9DVon/gfF/8VQB0VFc7/wAJ94O/6GrRP/A+L/4qj/hPvB3/AENWif8AgfF/8VQB0VFc7/wn3g7/AKGrRP8AwPi/+Ko/4T7wd/0NWif+B8X/AMVQB0VFc7/wn3g7/oatE/8AA+L/AOKo/wCE+8Hf9DVon/gfF/8AFUAdFRXO/wDCfeDv+hq0T/wPi/8AiqP+E+8Hf9DVon/gfF/8VQB0VFc7/wAJ94O/6GrRP/A+L/4qj/hPvB3/AENWif8AgfF/8VQB0VFc7/wn3g7/AKGrRP8AwPi/+Ko/4T7wd/0NWif+B8X/AMVQB0VFc7/wn3g7/oatE/8AA+L/AOKo/wCE+8Hf9DVon/gfF/8AFUAdFRXO/wDCfeDv+hq0T/wPi/8AiqP+E+8Hf9DVon/gfF/8VQB0VFc7/wAJ94O/6GrRP/A+L/4qj/hPvB3/AENWif8AgfF/8VQB0VFc7/wn3g7/AKGrRP8AwPi/+Ko/4T7wd/0NWif+B8X/AMVQB0VFc7/wn3g7/oatE/8AA+L/AOKo/wCE+8Hf9DVon/gfF/8AFUAcL4XkEv7SHjJl6CwiX8lgH9K9cr5x8GeJorL4zah4n1C4jttE1uS8tra8ncJGwjZGBJPA4Cj6nFe2f8J94O/6GrRP/A+L/wCKoA6Kiud/4T7wd/0NWif+B8X/AMVR/wAJ94O/6GrRP/A+L/4qgDoqK53/AIT7wd/0NWif+B8X/wAVR/wn3g7/AKGrRP8AwPi/+KoA6Kiud/4T7wd/0NWif+B8X/xVH/CfeDv+hq0T/wAD4v8A4qgDoqK53/hPvB3/AENWif8AgfF/8VR/wn3g7/oatE/8D4v/AIqgDoqK53/hPvB3/Q1aJ/4Hxf8AxVH/AAn3g7/oatE/8D4v/iqAOiornf8AhPvB3/Q1aJ/4Hxf/ABVH/CfeDv8AoatE/wDA+L/4qgDoqK53/hPvB3/Q1aJ/4Hxf/FUf8J94O/6GrRP/AAPi/wDiqAOiornf+E+8Hf8AQ1aJ/wCB8X/xVH/CfeDv+hq0T/wPi/8AiqAOiornf+E+8Hf9DVon/gfF/wDFUf8ACfeDv+hq0T/wPi/+KoA6Kiud/wCE+8Hf9DVon/gfF/8AFUf8J94O/wChq0T/AMD4v/iqAOiornf+E+8Hf9DVon/gfF/8VR/wn3g7/oatE/8AA+L/AOKoA6Kiud/4T7wd/wBDVon/AIHxf/FUf8J94O/6GrRP/A+L/wCKoA6Kiud/4T7wd/0NWif+B8X/AMVR/wAJ94O/6GrRP/A+L/4qgDoqK53/AIT7wd/0NWif+B8X/wAVR/wn3g7/AKGrRP8AwPi/+KoA6KisSz8ZeGNQu47Sy8RaTcXMpxHFFeRs7n0ABya26ACiiigAooooAKKKKAPNvin/AMhzwD/2MEH8xXpNebfFP/kOeAf+xgg/mK9JoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzj46/8kn1L/rrB/wCjFr0evOPjr/ySfUv+usH/AKMWgC34G/4m3ijxP4gPKNcLYwN/sRjBx7H5TXeVzHw90w6V4F0uFhiWWLz5M9Sz/Nz+BA/Cunpvc0rNObt6fcFFFcP41+JWneF1e0tdl5qmMeUD8sR9XI/kOfp1pJXFCEpvlijtHmijljieRFkkzsUnlsDJwO9SV5D8KLnUfEnijVfEOqXDzyxQiBN33V3nOFHYAJ29fevXqbViqtP2cuW4jKroUZQysMEEcEVBZWNrptlDZWVvHb20K7Y4olCqo9ABVivLpvA2seNfFur3Pi6e+ttGt5BHptlbXQVJE/56NtJ5+uDz7UjI9Rorybwmt14Q+LNx4NtdTur/AEaax+1pFcyeY1q2egPof6ivWaACvMNQ/wCR18Q/9dof/REden15hqH/ACOviH/rtD/6Ijrah8Y0FFFFdpQUUUUAYHib/XaJ/wBfzf8ApPNUVS+Jv9don/X83/pPNVnw74duPF12wDPDosLFbi4Q4adh1jjPp2Zh06DnJXGclG7Yg8O+HbjxddsAzw6LCxW4uEOGnYdY4z6dmYdOg5yV9ftbW3sbSK1tYUht4VCRxxrhVUdABRa2tvY2kVrawpDbwqEjjjXCqo6ACpq5JScndkhUNzdW9lA091cRQQr1klcKo/E1NXAeIPAE/i3x9Bfa9JFc+G7W3xb2IlYEzd2dQAMde/YVIHa2WpWOpRmSwvba6jBwWglVwD9QatV4xrei6X4M+LPhNPCcX2O6v5GjvrOBjseDj5ivb+L/AL5z2r2egArzbX/+R/1H/rwtf/Qpq9JrzbX/APkf9R/68LX/ANCmrWj8aGiGiiiu4oKKKKAMPxT/AMeVn/1+xfzqvVjxT/x5Wf8A1+xfzq14Z8My+L5/Om3x6DG2HcHDXjDqiHsnYt36DuaxnJR1YmHhnwzL4vn86bfHoMbYdwcNeMOqIeydi3foO5r16GGK3hjhhjSOKNQqIgwqgcAADoKIYYreGOGGNI4o1CoiDCqBwAAOgp9ckpOTuyTK1Lw5pWr6vpmp39qJ7nTC7WpYnajPtydvQn5RjPQjI5rVoqC9vLfTrKe8u5lht4EMkkjnAVRyTUgSSTRRMiySIjOdqBmALH0HrT6+fNR1HV/EnxH8GeJbwPb6Xd6l5WmWjDBESkfvW92J/ICvoOgArh/H3/IU8Pf9dZ//AEXXcVw/j7/kKeHv+us//ourp/EgMiiiivQLCiiigDP13/kXtT/69Jf/AEA1jWv/AB6Q/wDXNf5Vs67/AMi9qf8A16S/+gGqfhTw9ceLvLVWeHR4QFuLlDhpmA5ijP6Mw6dBzkrlOSjqxMl8PeHrjxddsqs8OjwuVuLlDhpmHWKM/ozDp0HOSvsFpaW9haRWlpCkNvCgSOONcKqjoAKLS0t7C0itLSFIbeFAkcca4VVHQAVNXHKTk7skKigtoLZXW3hjiDu0jiNAu52OSxx1JPJPepabIGaJwhw5BCn0NSBzer/EPwjoWoGw1LXrSC6Bw0WSxQ/7W0Hb+NdBaXltf2kV3Z3EVxbyrujliYMrD1BFeFeCdX8H+EdP1rSfHNvDDroupGujd2xla5Q8gq2DkH09812PwUsLyz8JXkssEtvp91fST6fBL95IDjHHYH/6/egD0qiiigDhPHf/ACMegf8AXG7/APaNZdanjv8A5GPQP+uN3/7RrLrtofAUgooorYYVk+Kf+RR1r/rxn/8AQDWtWT4p/wCRR1r/AK8Z/wD0A0pbAUal0vS73xHqZ07Tm8tY8fa7wjK26nsOxkI6Dt1PGATS9LvfEepnTtOby1jx9rvCMrbqew7GQjoO3U8YB9f0fR7LQdMi0/T4fLgj55OWdj1Zj1LE8kmuapUtoiWw0fR7LQdMi0/T4fLgj55OWdj1Zj1LE8kmr9FFcwjnfG3h9vEXhua3gO2+gIuLSQHBWVeRg9s8j8ak8H+IF8S+G7a+YbbkfurmPGCkq8MMdvX6EVvV5/8A8ib8SP7mkeIT/wABiuh/Ldn8S3tTNoe/Bw6rVfqegVh+MtM/tfwdqtkF3O9uzIPV1+Zf1ArcopGUXytNGD4K1P8AtfwZpN4W3O1uqOfVl+Vv1U1vVwvw4/4l8niDw83H9nagxiHpE/K/yJ/Gu6pvcuqrTdgooopGYVxfxZ1R9I+F+u3ETlJHhECkdf3jBDj8GNdpXm3xx+fwDFbHpcajbxH6Fif6UAaWhfDHwlaeH9OguvDmnTXMdtGs0sturO77RuJJ7k5rQ/4Vx4L/AOhW0n/wFX/CunooA5j/AIVx4L/6FbSf/AVf8KP+FceC/wDoVtJ/8BV/wrp6KAOY/wCFceC/+hW0n/wFX/Cj/hXHgv8A6FbSf/AVf8K6eigDmP8AhXHgv/oVtJ/8BV/wo/4Vx4L/AOhW0n/wFX/CunooA5j/AIVx4L/6FbSf/AVf8KP+FceC/wDoVtJ/8BV/wrp6KAOY/wCFceC/+hW0n/wFX/Cj/hXHgv8A6FbSf/AVf8K6eigDmP8AhXHgv/oVtJ/8BV/wo/4Vx4L/AOhW0n/wFX/CunooA5j/AIVx4L/6FbSf/AVf8KP+FceC/wDoVtJ/8BV/wrp6KAOY/wCFceC/+hW0n/wFX/Cj/hXHgv8A6FbSf/AVf8K6eigDmP8AhXHgv/oVtJ/8BV/wo/4Vx4L/AOhW0n/wFX/CunooA5j/AIVx4L/6FbSf/AVf8KP+FceC/wDoVtJ/8BV/wrp6juJ4rW3kuJ5FjhiUu7scBQOSTQBzn/CuPBf/AEK2k/8AgKv+FH/CuPBf/QraT/4Cr/hWVJ8WNGCPPBpWuXNihIN7DZ5h475LDj8K6i18RaVeeHxrkV2n9neWZDM3AUDrkeo6Yq5Upx3QWMz/AIVx4L/6FbSf/AVf8KP+FceC/wDoVtJ/8BV/wrMi+K+gyESSWmqwWTEhL6W1xA59A2e/uK3oPFukTeFh4jadodOKlt8q4PBxjAzzntTdKcd0Fip/wrjwX/0K2k/+Aq/4Uf8ACuPBf/QraT/4Cr/hWXH8WNB8vzbmz1azt2UtDPc2u2ObAzhDk5J7ZxWxf+N9G0zRdN1a7eZLPUCoibZyMjOWGeOKHSmtGh2I/wDhXHgv/oVtJ/8AAVf8KP8AhXHgv/oVtJ/8BV/wp2i+N9O1mO9l+zX9jBaRiV5b6DylZDnDA5ORwayf+FsaFnzfsOsfYN23+0PsZ8jr1znOPwoVKbdrBY6O48KeHrrSoNLn0SwksLc5ht2t1KRn1UY4PJ/OqH/CuPBf/QraT/4Cr/hWpf8AiHStN0M6zc3kYsNgdZVO4OD0246k1y6/FnQViMt3Z6tYxFC8L3VrtWcD+4cnJ/KlGnOWyFY1P+FceC/+hW0n/wABV/wo/wCFceC/+hW0n/wFX/CrWpeLtI0jQLfWbyZ0trlVaFAmZJCwyAFHesSH4paObyC3vtN1jTFnYLFNfWnlxsT05yaapTaukFjR/wCFceC/+hW0n/wFX/Cj/hXHgv8A6FbSf/AVf8K5j4heMTpXivQbKN75IoLlZrtYUO2ZeCAMfe78V1eqeN9G0fR7PUbx5lF4oa3txHmaTPYL6896boysnbcdiP8A4Vx4L/6FbSf/AAFX/Cj/AIVx4L/6FbSf/AVf8Kh0f4h6Rq2qJpktvqGm3sozFDqEHlGT/d5IqXXPHuj+H9UbTLpLuW98pZUhgh3tLk4CrzyaXsp3tbUVhf8AhXHgv/oVtJ/8BV/wo/4Vx4L/AOhW0n/wFX/CtbQ9Zh17S47+C3ubdHZl8u5j2OpBwcjJ71o1DTTswOY/4Vx4L/6FbSf/AAFX/Cj/AIVx4L/6FbSf/AVf8K6eikBzH/CuPBf/AEK2k/8AgKv+FH/CuPBf/QraT/4Cr/hXT0UAcx/wrjwX/wBCtpP/AICr/hR/wrjwX/0K2k/+Aq/4V09FAHMf8K48F/8AQraT/wCAq/4Uf8K48F/9CtpP/gKv+FdPRQBzH/CuPBf/AEK2k/8AgKv+FH/CuPBf/QraT/4Cr/hXT0UAcx/wrjwX/wBCtpP/AICr/hR/wrjwX/0K2k/+Aq/4V09FAHMf8K48F/8AQraT/wCAq/4Uf8K48F/9CtpP/gKv+FdPRQBzH/CuPBf/AEK2k/8AgKv+FH/CuPBf/QraT/4Cr/hXT0UAcx/wrjwX/wBCtpP/AICr/hR/wrjwX/0K2k/+Aq/4V09FAHMf8K48F/8AQraT/wCAq/4Uf8K48F/9CtpP/gKv+FdPRQB5J8VPA+haP4Du9Z0LR7Ow1LTZYbqGe2hCMMSKDyO2CT+Ar1LT7tNQ021vY/uXEKSr9GAI/nWB8SIRN8NfEaHtp8r/APfKk/0qfwFKZ/h74ckPU6Zbg/URqKAOhooooAKKKKACiiigDzb4p/8AIc8A/wDYwQfzFek15t8U/wDkOeAf+xgg/mK9JoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAryP9oXUhbeAYbBT893dKSPVE5P6la9crgLi2g8S/FqS3uYY7ix0jTyrxyKHRpJexB4OVb9KaNKcb3v0R1+larpepWkTaZfWl1EEG028quAMexrQrgb74L+BL6UyjRvsspOd1rPJHj6AHaPyqvD8F9Atp45LfVvEEIRgwRL/wCXg9wVpGZ6NXkfinw9a+PvHM1hpMUNt9giP2/UVTO6U/dTAIBIxyevX057Pxv4im0bTorHTV8zWdRbyLOMdQTwXPsM/njtmr3hTw7D4Y0KKxjbzJj+8uJj1lkP3m/oPYU1pqb05OkvadXt/mZnw68LXHhTw9LaXnlm6luXkdozkEcKuD6YGfxrrqKKRlObnJyfUK4bxr49k0a9i8PeH7M6n4mul/dW6/dgB/jkPYd8fyFdzXkbfB7xBH4h1LWrH4gXFndX8heVorD5sE5C583oOn4UEnUeA/A7+Ghdarq12b/xFqJ3Xl2eg/2E/wBkf09hXaVwvhfwX4m0PW0vdU8d3msWqoym0lttikkcHO89PpXdUAFcXqvgrU7vX77UrHWrS2S8ZGaKfT2mKlUVOGEqcfKD0rtKKabTugOB/wCEH8Q/9DFpn/gok/8Akij/AIQfxD/0MWmf+CiT/wCSK76ir9rPuFzgf+EH8Q/9DFpn/gok/wDkij/hB/EP/QxaZ/4KJP8A5IrvqKPaz7hc85ufhlf6rcWQ1bxBBJaW8/nNHZ2DQPJ8jKV3mZtoIc5wM+hHWvQLW1t7G0itbWFIbeFQkcca4VVHQAVNRUOTe4BRRRSAK4rxz45k8PS22jaNZnUfEd+MWtqvRB/ff0Uf0PSu1rzzxH8HtE8TeI7jXbrVtbgu5gqkW1wiKoAAAGUJA49aALfgjwHJol3Pr+vXf9peJbwfvrk/dhX+5GOw7Z/kK7ivN9K+DGjaTq1pqMOveIpZLaVZVjmvEZGIOcMAgyK9IoAK5jWfBUGsay+qDVtSsppIUhdbYwlWCFiD88bHPznoa6eimm1qgOL/AOFdr/0M+ufla/8Axij/AIV2v/Qz65+Vr/8AGK7Sinzy7gcX/wAK7X/oZ9c/K1/+MUf8K7X/AKGfXPytf/jFdpRRzy7gcLc/C2wvxFHqGua1d26SrI0EjQKsm05wxSJWwehwRXbwwxW8McMMaRxRqFREGFUDgAAdBT6KTbe4BRRRSAK8w+Ltn4o1Q6VYaPosmp6T5nnX0Ecoj80qRtRiT93ucV6fRQB86eLvEfjOfxJ4Qe98FJYT2d2TY2y3KkTthfk4+7jAr33Rrm9vdGtLnUbP7FeyRhprfdu8tu4z3qhrnhOw1/V9G1K7luUm0mczwLEyhWY44bIJI47EVu0AFZmseH9L19IE1O2MwgcvERI6FSRg4KkHoa06KAOY/wCFe+Gf+fGf/wADZ/8A4uj/AIV74Z/58Z//AANn/wDi66eindgcx/wr3wz/AM+M/wD4Gz//ABdH/CvfDP8Az4z/APgbP/8AF109FF2Bysvw48LTwvFLp8zxupVlN7Pgg8EffrpLOzt9Ps4bO0hSC2hQJHFGMKijoAKmopXAKKKKACs7X5LuHw7qUtgCbxLWRoQOu8KcY/GtGigDyf4QaJ4Y1T4fpeXFnZX+oTtIdRluo1kk37jkMWyQMYP6074QOkWteL9P0uVpPD1tfAWJ3bkUnO5UPp0/T1rc1b4Q+DNY1GW+m0x4ZpjmYW07xLIe+VBx+WK6vRtE03w/psenaTZx2lpH92OMd/Uk8k+55oAv0UUUAc/4k8LJ4hnsrgajc2U1oJAjQKjbg+3IIdT/AHRWT/wr6f8A6GfUf+/Fv/8AG67aiqUpLZgcT/wr6f8A6GfUf+/Fv/8AG6P+FfT/APQz6j/34t//AI3XbUU/aS7hc4n/AIV9P/0M+o/9+Lf/AON1Dd/DQ31nPaXHiXUmgnjaKRRDAMqwwRny+ODXeUUueXcCho+j2Wg6ZFp+nw+XBHzycs7HqzHqWJ5JNX6KKkAooooAKwvGHh9fEvhu5sAdtwB5ts+cFJV5U57en0JrdooHGTi7o53wT4gbxD4chnnG2+gJt7tCMFZV4OR78H8a6KvP7z/ijfiNFfj5NJ18iGf+7Hcj7rfj/Vj2r0CmzSrFJ8y2Zwrf8Sj4yKekWtafj6yx/wD2K/rXdVwvxJH2BNC8QKOdM1BDIfSJ+G/kB+Nd0DkZHShhU1jGXy+4KKKKRkFV7uxtNQiWK9tYLmNWDqk0YcBh0IB7j1qxRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY/im903T/DN/c6vF51ikf72LGfMzwF/E4rYrN8QaJb+ItDutKuiyxXCbdy9VOcgj6ECqjbmVwOFs9T8a3+gouk+HdJ0nSTB+5+2TFysWOPlX29RXHrJIvwGt0BIhfU9kxXps3k/lnFd3b+BvE72KaRqHjB30hF8sxwWqpK8Y42l+oGOO9OPh3SfBfw6vtM1u4kvtJaUlmjg2tGrkY7noec/pXYqkFou62v+pVzo9ctLBvBN9bOkYslsWAXA2hQnGPpgV5PLh/hj4It5v+PKXUlFxnoRvbAP61q6v4dSz8GzyXHj24utCS3LW9qAgMnHyIXySwzjjH5VdtrfR7T4M6RZ+JkmjtbgKPMjX5oWZiyP7fX3oglBKzvr+gHVfEK3tZPh9q6XCJ5aW5ZMj7rD7uPxxXCeIYkn8BeAIpFDI9zbqwPcFaZ4w0B7HwbO+peObjUrRIx9itAFXzX6LlgSXx1/CutTwdJrPhHwrbzXRtJNN8i4ZTFvLFVHy9Rj680o8tOKd+v6ARfGGWaL4fypCdqyXESSem3Pf2yBVdLX4iS6Mtilt4S+wtB5YQedjYVx6+ldxrOkWmu6TcaZfIXt512tg4I9CPcHmuIXwL4ti0/+xofGjDSdvljNoDMI/wC7uznpx1/wrOnOPIou2j6iRzN/ol9oekeCtE1qWCa2/tUl/KctGVJBUZIHq1d38UILaX4d6r9oVcRorRk9n3DGP5VQ8R6J4W0HwTY6BqRnhsGmWOG6QZaOY5IkLdu/tXKeOdBmsvCMjap41uNWA2rY2gVU3uSACcEl8DPNaxaqSi79e2+ozoNT1ew07w94RhOijV9ZkhjOnwFtuxgi5bPbtWD8RbjxndeFvM12y0mxsRcR4jikZ5i2eOclfWuu1HwRPq+ieHp7W/fTdY0uBBFNs3gHaMqR9RVPVPhxrPiayKeIfFTzzJg26w2qpFEc8sVBG44yO2M0oTpxabf5/h0DQXxvz4n8B/8AX7/RaSdEuvjtAl2Ay2+mb7ZW6Bs8ke/JrZ8U+ELvXbXSJLPU1tdS0uQSRTtFuVmwAcrnjoD3qPWfBV1rVvpl62rNa+IrFMLqEEQw57gp6e3uaiM48qV+jQjM+MCRp4d068UAXsF/F9ncfeBOcgfkPypHhST48ozqCY9K3LnsckZ/Imrdt4F1TUdXtNR8V69/aYsm329rFAIog395sdfyrZ/4Rf8A4rv/AISb7Z/y6fZfs3le+d27P6Yo54xjy36P8QOhooorlEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEc8ENzBJBcRJLDIpR45FDKynggg8EUQQQ2tvHBbxRwwxqFSONQqqB0AA4AqSigAooooAKKKKACiiigDzb4p/8hzwD/wBjBB/MV6TXm3xT/wCQ54B/7GCD+Yr0mgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEZlRGdiAqjJJ7CuH+Gate2er+IZAd+rX7yIT/zyUkKPwO4Vp/EHVDpPgfU5kOJZYvIjx1LOdvH0BJ/CtLw3pY0Xw1p2nYw0ECq/+/jLH8yafQ1WlJvu/wAv6RqVW1C/ttL0+e+vJBHbwIXdj2A/rVmvPNZdvHfi0eHoGJ0TTHEupSKeJZB92LP8/wAfQUImnDmeuy3LHguwudc1Sfxrq0ZWa5Hl6dA3/LC37H6t6+5P8Vd3SIixoqIoVVGAoGAB6UtJhOfO7hRRRQQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAY3irQYvEvh270yTCvIu6Fz/BIOVP5/oTVHwJr0uueHlS8yup2Lm1vEb7wkXjJ+o5+ufSunrz/AFj/AIo/4gWuuL8ml6zi1vv7qTD7jn6//FHvTXY2h78XD5o6Txlpn9r+DtVsgu53t2ZB6uvzL+oFN8Fan/a/gzSbwtudrdUc+rL8rfqprerhfhx/xL5PEHh48f2dqDGIekT8r/In8aOgo602u2v6f5HdUUUUjIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKjuLeG6t5Le4iSWGRSrxuuVYehBqSigDk4Php4Ot7wXUehweaDuAZ3Zc/7pYr+ldJeWNpqFlJZ3lvFPbSDa0UigqR9KsUVTnKWrYHLWPw48I6bereW2iQidDuUu7yAH1AZiP0rqaKKJSlL4ncAoooqQK2oadZ6rZSWd/bR3FvJ96ORcg1g6b8O/Cek3q3lno0KXCHcrO7ybT6gMSAa6eiqU5JWTAKKKKkAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPNvin/AMhzwD/2MEH8xXpNebfFP/kOeAf+xgg/mK9JoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDhPG3/E28V+FvDw+ZHuTe3C/7EYyM+x+YV3dcJoH/E4+KHiDVT80WnRJp8JPr1f8iD+ddjqOoW2ladcX95II7eBC7sfQf17YpvsbVF8MF2/M5/xx4in0iwh0/Sx5mtak3kWkY6rnq59AP5+wNaHhXw7B4Y0KHT4jvl+/PN3lkP3mP8h7AVz/AIK0+51nUZ/Gmrxlbi7XZYQt/wAsLftj3Pr7k/xV3VD7BUfKvZr5+v8AwAooopGIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZfiLRIPEWgXelz4CzphWx9xxyrfgcVqUUDTad0cn4A1ufU9Dax1DK6ppjm0ulY8krwrfiB17kGqLf8Sj4yKekWtafj6yx//Yr+tQ+I/wDikfG9l4nj+XTtQxZ6kB0U/wAEh/Lk+3vU3xJ/0FNC8Qp/zDdQQyEf88n4b+QH41R0pJzutpL8f+HO6ooBBGRyKKk5QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPNvin/wAhzwD/ANjBB/MV6TXm3xT/AOQ54B/7GCD+Yr0mgAooooAKKKKACiikJCqWYgADJJ7UALRUNpeW2oWkd1Z3EVzbSjMcsLh0ceoI4NTUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVU1PU7PR9Plvr6YQ28QyzHkk9AABySTgADkk4o1PU7PR9Plvr6YQ28QyzHkk9AABySTgADkk4ryfxD4hury+hvLyDN4ctpmls3y269DNMR/Fz17Z2rkkk1GLkwJdf8ZeIi++2v5dPurkf6JpsUULmNB/y0mZlbHuBx0UZPNdt4Z1y5f4dWut6tOJ7hLRpriUIE3lc5OBwM47V5Zb27RNJNNKZ7uY7pp2HLn0A7KOw7V0N3dyJ8FNH063P+k6o6WcYHX5pCT+gx+NaVIJWLhHmkonUfDGykg8Gx3lx/x86jNJeSn1LHg/kAfxrO1dm8eeLhoMLE6FpTiTUJFPE0o6RfQc5/H0FaPivVpPDmh2GgaIu/VbtFtLJB1RQAC59AB+vsDWz4X8PW/hjQodOhO9x888veWQ/eY/56AVn5mzla9Xq9v8/wDI2FVUUKqhVUYAAwAKWiipOYKKKKACiiigAooooAKKKKACiiigArF8ReI4NAt41ERub+4JW1tEbDSkdST/AAoO7Hp7kgE8R+I4dBto1WM3OoXBK2torYaVh1JP8KDqW7e5IB460tJvtM2oahMLnU7gDzZsYVVHSNB/Cg7Dv1OSSa0hByYGn/wl3iX/AKAOk/8Ag1k/+R6P+Eu8S/8AQB0n/wAGsn/yPUFFbexiOxP/AMJd4l/6AOk/+DWT/wCR6P8AhLvEv/QB0n/wayf/ACPUFR3FxDaW8lxcSrFDGpZ3c4CgdzR7KIWJ7jxtr9pbyXFxoujxQxqWd31aQBQO5/0etTwL4tm8YaXeXc+miwktro2/liYybxsRw2SqkZDjgjP8q8uvLybxDcLNMjRadG263t2GDIR0kkH8l7dTz07z4W/8eWv/APYUH/pNBWdSCSugO9ooorEQUUUUAFFFFABWD4k8SJokcdtbRC61W5B+zW2cDA6u5/hQdz+AyTR4k8SJokcdtbRC61W5B+zW2cDA6u5/hQdz+AyTXJWVk8Mk13dzm61C5Ia4uWGCxHRVH8KDoF7e5JJ0hDm9ALY1jxfgZ1PR898aZJ/8fo/tjxd/0FNH/wDBZJ/8fpaK39lDsOwn9seLv+gpo/8A4LJP/j9H9seLv+gpo/8A4LJP/j9LUN3d29haSXV1KsUEQ3O7dAKPZQ7BYS78SeJrC0kurrWdFigiG53bTJMAf9/6u/DvxVrXiV9WXWI7VPszRGDyYWiYo4Y/OpdsHgcA8V5/cXFxrl2l3do0VrEd1rat1B/56P8A7XoP4frXZ/DD/kJ+If8At2/9Bes6kEldAejUUUVgIKKKKACiiigArF8ReIoNAtowIzc39wStraIcNKw6kn+FR1LHp7kgE8ReIoNAtowIzc39wStraIcNKw6kn+FR1LHp7kgHjrW1nNzNqOozC51O4AEsoGFRR0jjH8KD079TkmtIQcmAqjXZwZbvxHfrO53OlqI0iQn+FAUJwOnJJ9aXydV/6GXV/wDvuL/4irVFdHs49hlXydV/6GXV/wDvuL/4ijydV/6GXV/++4v/AIirVRzzw2tvJPPIsUMalndzgKB1JNHJHsMqztf2tvJPP4p1WKGNSzu8kQCgdSTsqj4I1/XL/wAdwRzapey6TPbTeVBdhN7FduJDhQVzngdcdeuBg3l5N4huFmlRotNjYNBbsMGUjpI4/VV7dTzgDb8H/wDI/ad/17XH/slROK5bpCPXqKKK5hBWT4j8R6d4W0eTU9TlZYlISOKMbpJ5D92ONf4mPYfUnABIPEfiPTvC2jyanqcrLEpCRxRjdJPIfuxxr/Ex7D6k4AJHj002o+ItYGva8FW5UFbOyVt0djGeoB/ikPG5+/QYAAoSLhByZ614P1+bxP4YttWuLIWU0skyPbiTzPLKSvHjdgZ+76Vu1yPw0/5EiH/r8vf/AEqlrrqCXuFFFZ+s6zZ6DpzXt67BchI40G55XPREHdj6f0BNAg1nWbPQdOa9vXYLkJHGg3PK56Ig7sfT+gJrjx4j8XTDzQNGtQ/IgeCSVox2BcSKGPqQAKqKt5qmo/2vq4UXWCtvbK25LRD2Hq5/ibv0HAq5XRCkrXkOwf294u/5+ND/APAOX/47R/b3i7/n40P/AMA5f/jtFFX7KHYLB/b3i7/n40P/AMA5f/jtB1/xcBk3Ghgf9ecv/wAdoJAGTwK4rVdVbxC7Wtq5XSFOJJVODdH+6v8A0z9T/F9Oo6cOwWOt8GeO9Z8QeMZNLul06XTfscs0VzbQvGZHR41ONztlP3nXuRxx19HryTwKoX4gWyqAFGlXQAHQfvbevW65pq0rCCiiipAKKKKAM/XNIt9e0W70y6H7q4jK5x909Qw9wcH8K86XU1vvhdruha7MkWo6ShtpN5++ynMJHc7iAB3JHvXpOqapZ6Np0t9fTCK3iHJxkkngAAckk4AA5JNeM+IZrkeJbXxffWMUEEkojkt9u54UxtR3PQvgnOOBwoz1NwTZvRd/d+a9f+CbWg614j1nRLO7XXHsoxEsSRW0ET52DaWZpEYliQTxgDgc9To+b4i/6Gu+/wDAW1/+NVyfhvVrDRBqemXl3FClvdM0O5vvRnpj1/8Ar12gOQCO9dChG2wq0OWb7FfzfEX/AENd9/4C2v8A8ao83xF/0Nd9/wCAtr/8aqxRT9nHsZFfzfEX/Q133/gLa/8AxqjzfEX/AENd9/4C2v8A8aqxRR7OPYCv5viL/oa77/wFtf8A41WFr3iTxHp5FlY+KbybUZF3BWtbbbCv99/3XT0HUn8SLOva8bFhY2IWXUpVyA3Kwr/ff29B1J/EjnoLUW0MpLtLNKS80z8tI2Op/wAOgHApckX0A9l8K3lxqPhDRL68k826ubCCaaTaF3O0aljgcDJJ4Fa9YXgj/kQfDn/YLtv/AEUtbtcggooooAKKKKACiiorq6gsrWW6upkhgiUvJJI2FVR1JNABdXUFlay3V1MkMESl5JJGwqqOpJrznUb2fxfOJblJYNFQ5t7Rso1wf+eko6gf3U7dTzgKt9fT+LbpLi4jeHRomD2to4w07DpLKPTuqHp1POAtuuinT6saRk/8Izo3/PhH+Z/xo/4RnRv+fCP8z/jWtRW3KuwzJ/4RnRv+fCP8z/jR/wAIzo3/AD4R/mf8a1q5nXNclknk0vS5Nsy8XN0ORAP7q+rn9Op7AppdgMnXLXS5J5NL0u0jWZeLm6BJEA/urzy5/TqewPqfw6XZ8PdFTcxC2+0FiScAkDk+1eX29vFaQLDCu1F98knuSe5PUmvUvh5/yIOj/wDXE/8AoRrGsrWEzpqKKKwEFFFFABRRRQAVxOveJrq/vpNJ0G4MKwPtvNRVVby2HWKPcCC/94kEL05PRviLxFPql1NouiztFFGxS+1CM8oe8UR/v+rfw9PvdKVrawWVrHbW0SxQxrtRFHAFbU6d9WMZjW/+hq1b/vi2/wDjVGNb/wChq1b/AL4tv/jVWaK29nHsBWxrf/Q1at/3xbf/ABqjGt/9DVq3/fFt/wDGqs1la3rcekQoiJ597NkQW4OCx7knso7n+ZIFHJHsBW1vWdW0iFETxPq097NkQW4W2BY9yT5PCjuf5kgV2Xw51DUtS8HQzavefbL1Z54nn2Km/bIyjhQB0Ary+CCQTSXd3L597NjzZcYGOyqOyjsPxOSSa9L+GX/In/8Ab7df+jnrGrFJXBnYUUUViIKKK5Sfx3Yjx3Y+FbSFrqeVnW6nRsJasI2cKePmY7enGM5PpQB1dFFFABRRUV1dQWVrLdXUyQwRKXkkkbCqo6kn0oALq6gsrWW6upkhgiUvJJI2FVR1JPpXF/8ACbaxds02naHamyY/uXvLx4ZHX+8UETbQewJzjGQDxWdfX0/i26S4uI3h0aJg9raOMNOw6Syj07qh6dTzgLbreFK6vIdif/hLfEv/AEA9J/8ABnJ/8Yo/4S3xL/0A9J/8Gcn/AMYqCir9jELE/wDwlviX/oB6T/4M5P8A4xR/wlviX/oB6T/4M5P/AIxUFczrmuSyTvpelybZl4ubociAf3V9XP6dT2BHSiFjo9L+I1/eeNLLw9caRaAXDOktzbXrSCF1iaQKQY1ySE6A8ZGe2fQq8T8L20Vp408MwwrtRbqbvkk/Zp8knuT1Jr2ysJx5XYQUUVk+I/EeneFtHk1PU5GWJSEjjjG6SeQ/djjX+Jj2H1JwASIAPEfiPTvC2jyanqcrLEpCRxRjdJPIfuxxr/Ex7D6k4AJHleiXeq698UPD+t623lztLOlrYxvmKziNvIdo/vOcAs/cgAYAAqlNNqPiLWBr2vBVuVBWzslbdHYxnqAf4pDxufv0GAAK1NA/5Hvw7/13m/8ASeWnY29naLbPY6KKKRiFFFU9U1Sz0bTpb+/mEVvEOTjJJPAUAckk4AA5JNABqmqWejadLf38wit4hycZJJ4CgDkknAAHJJrll8cam6h18MTBW5AkvI1YD3HOD7ZrJkkvNf1FNV1WMxJESbKxJyLcHje+ODKR36KDgdyblbwo3V5DsW/+E21X/oWW/wDA5P8ACj/hNtV/6Flv/A5P8KqUVfsYhYt/8Jtqv/Qst/4HJ/hR/wAJtqv/AELLf+Byf4VUrkNY1iTV5ZNP0+VkskJS5ukODIe8cZ9Oxb8BzkhOlELHfeEfHieKtW1HTxp0ls1mit5vnLIkmSQQCPQjH1z6V2FeW/DWKOHxTfxRIqRpp8SqqjAA3txXqVYSVnYQUUUVIHm3xT/5DngH/sYIP5ivSa82+Kf/ACHPAP8A2MEH8xXpNABRRRQAUUUhIVSzEAAZJPagAJCqWYgADJJ7V474q8VS+OJpdK0qZ4/DUbFLq6jJDagwODHGR0iHRmH3ug4yaPFXiqXxxNLpWlTPH4ajYpdXUZIbUGBwY4yOkQ6Mw+90HGTUEcaQxJFEipGihVRRgKB0AHYVvSpX1ZjUqW0R6H8O1VPAGjKoCqIMAAYAG4109cz8Pf8AkQtH/wCuJ/8AQjXTVgzZBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVS1XVrHRNMn1HUbhILWEZd2/IADuScAAcknFXa434lQxXGhWEU0aSRtqUGUdQQevY00ruwHF654nl1K8hvp0SW6OTpumBwy2w6GaYjjdg8ntnauSSTlW9u0TSTTSme7mO6adhy59AOyjsO1NltLa08VXqW1vFChsrclY0CgnfNzx9KtV2RikUFT6RqNq0vhRbyQLY6Jp0uo3B/2i5VB9c7cD3qCsv4e+HrjxZrLrcBhpNv5bXXpJsHyR/QnJP09cVnV6G9CKu5PZI9N8E6dc6tf3HjPV4yt1erssoW5+z2/bHuf/r/AMRruqRVCqFUAKBgAdBS1zMxnPndwooooICiiigAooooAKKKKACisY+KdI/4SseGUuhJqvkGd4kBIjXjG49ASDkDrjnuM7NABWL4j8Rw6DbRqsZudQuCVtbRWw0rDqSf4UHUt29yQDtV5Hr2lW+oePteuJ5b0SxtBChhvZotqeSjbQEYDGSTj1JPerhHmdgNG0tJvtM2oahMLnU7gDzZsYVVHSNB/Cg7Dv1OSSauVzf9gWn/AD86r/4Nbr/45R/YFp/z86r/AODW6/8Ajldii0rIo6Siub/sC0/5+dV/8Gt1/wDHKP7AtP8An51X/wAGt1/8cp2YHQXFxDaW8lxcSrFDGpZ3c4CgdzXE3l5N4huFmmRotOjbdb27DBkI6SSD+S9up56M17SoLWbSQs17Ikl7tdLi+mmRgIZGGVdyOGVTnHarNTbXUArtvhb/AMeWv/8AYUH/AKTQVxNdt8Lf+PLX/wDsKD/0mgrKt8Imd7RRRXMIKK5nxp40sfBumLLLG11fz5W0sYzh52AyT/sqByzHgD3wDtaTePqOj2N9JEsT3NvHM0atuCllBwDgZxnrgUAXKwPEviWPQ447a3jW51W5B+zW27AwOruf4UHc9+gyTW/XlfizStO1L4gXxv7C1ujHYWoQzwq+3LTZxkcVUI80rAWLK0aGSa7u7j7VqFyQ1xcsMFiOiqP4UHQL29ySTc3D1Fc3/wAIv4f/AOgFpn/gJH/hR/wi/h//AKAWmf8AgJH/AIV2qLWiKOk3D1FG4eorm/8AhF/D/wD0AtM/8BI/8KP+EX8P/wDQC0z/AMBI/wDCnZgb13eW1jayXV1MkUMa7ndj0FcZcXFxrl2l3do0VrEd1rat1B/56P8A7XoP4frTfEGg6PZwWU1rpNjBKL2LDxW6Kw59QKsVNtdQCut+GH/IT8Q/9u3/AKC9clXW/DD/AJCfiH/t2/8AQXrOt8ImejUUUVyiCucsfG2lal40uvDFkZJ7m0geWedAPJR1ZFaLd3cb1yBwM4JzkDk/G3ja5v7y48NeGrlomiJj1LVIj/x7+sMR7y+rfwf733aHw8srbTvG9laWkSxQRaRdBUX/AK6235n3osWoPl5j16uf8XeLbHwhpSXV2Q007+TbQ7tvmSEZ5boqgAkseg9TgHoK4fx9/wAhTw9/11n/APRdVFXaRBydr4i0Y3M2o6jrtnc6ncACWUPhUUdI4x/Cg9O/U5Jq5/wlmgf9Be0/7+CrNFdqhZWRVit/wlmgf9Be0/7+Cj/hLNA/6C9p/wB/BVminysCq3i7w8qlm1i0AAyT5grn7u9l8RTpPIrR6YjBreBhgyntI4/VV7dTzgDa13/kXtT/AOvSX/0A1jWv/HpD/wBc1/lUta6gS1q+D/8AkftO/wCva4/9krKrV8H/API/ad/17XH/ALJU1fgYmevVk+I/EeneFtHk1PU5WWJSEjijG6SeQ/djjX+Jj2H1JwASNavKfi0T/wAJV4KXJ2mS9JHbIiXFcYJXdjnpptR8RawNe14KtyoK2dkrbo7GM9QD/FIeNz9+gwABVqiiqO2MVFWR3/w0/wCRIh/6/L3/ANKpa66uR+Gn/IkQ/wDX5e/+lUtddUnE9zP1nWbPQdOa9vXYLkJHGg3PK56Ig7sfT+gJrhFW81TUf7X1cKLrBW3tlbcloh7D1c/xN36DgVP8R7C01DX/AA9HeW8c6LFdsFcZAP7rmuf/AOEZ0T/oGW3/AHxXRRhdcwJHS0VzX/CM6J/0DLb/AL4o/wCEZ0T/AKBlt/3xXRZjOloJAGTwK5r/AIRnRP8AoGW3/fFZfiTw9o8HhbV5YtOt0kSymZWCcghDg0mmgJNV1VvELta2rldIU4klU4N0f7q/9M/U/wAX06iqFUKoAUDAA6ChVCqFUAKBgAdBS0kgNnwN/wAlCt/+wXdf+jbevWq8l8Df8lCt/wDsF3X/AKNt69arlq/GyWFFFRS3EEH+tmjj/wB9gKzAlqnqmqWejadLfX0wit4hycZJJ4AAHJJOAAOSTVe68S6HZxPJPq9ioRSxH2hMnHoM8mvHp/iLYa7qS6pqiXKRxEmxstqkQDpvbnmQj/vkHA7k1GN2UoSeyOqkkvNf1FNV1WMxJESbKxJyLcHje+ODKR36KDgdyef8d2ur3OkEWLK9qBm4iVPnIBzkH09h+tRXPxD0hraVYvtSylCEbyxwccHrXOWPxH1W3wt3FDdL3ONjH8Rx+ldPupWR1UKFVPnS27nKWcXn31vDjPmSKv5nFe/15LJdaXf65YatZWF3ARdIZ4ljDIzZz8pB+8fTHNd//wAJLH/0C9V/8Bv/AK9ENC8bPmcTborE/wCElj/6Beq/+A3/ANej/hJY/wDoF6r/AOA3/wBetLnEbdYeva8bFhY2IWXUpVyA3Kwr/ff29B1J/EilqXi54xFa2en3cd7ckrC91CVjXAyWJzzgdu/t1rNtbUWyuS7SzStvmmflpG9T/h0A4FK99gC1tRbK5LtLNK2+aZ+Wkb1P+HQDgVK/+rb6GnU1/wDVt9DTA9Y8Ef8AIg+HP+wXbf8Aopa3awvBH/Ig+HP+wXbf+ilrdrgJCiisDxZ4ssvCemLcXCtcXU7eXaWcR/eXEnoPQDqWPAH4AgG/RXGfDbWda1vSdUn124iluo9RaNVhjCpEhijcIvcgFzyck12dAPQK8g1nxZJ4j1eUTaZqLaPZzslvDHECtxIjEGV+eQGB2r7bjzjb6/XkGjf8eD/9fNx/6OetaMVKWo0S/wDCSD/oEar/AN+F/wDiqP8AhJB/0CNV/wC/C/8AxVW6K6+XzGVP+EkH/QI1X/vwv/xVH/CSD/oEar/34X/4qrdFHL5gYGp+J7i7m/suwtruynePzJLi4jCmOPOPk5OWJyPbr6A1be3itIFhhXai++ST3JPcnqTTtU/5Gsf9eI/9DNPqbagFem/Dz/kQdH/64n/0I15lXpvw8/5EHR/+uJ/9CNY1+gmdNVLVtWsND0q41PU7lLazt03ySv0A/mSTgADkkgDmrteMeMLi51z4gX9rfS77DRZIhZ2oGE8x4lcyv/ecb8L2UdBkk1zjjHmdixpPibW/EvxJ0K/uXuNP0t5Zo7XS92CU8iQ+ZOB1ckAheiAY5OTXr9eOaD/yPfhz/r4m/wDSaWvY6bHUiouyCvN/F/j/AE9tTn8OWetW1i0Xy39206o6Z/5ZRZP3z3b+Ht83T0ivKIf+QprX/YTn/wDQqulHmlYlENr4j8LWVrHbW2saXFDGu1EW5TAH51N/wlnhz/oO6b/4FJ/jViiuzlYyv/wlnhz/AKDum/8AgUn+NH/CWeHP+g7pv/gUn+NWKKOVgZ174x0pIdum3dtqN6/EVvbzBsn1YjO1R3P8zgViQQSCaS7u5fPvZsebLjAx2VR2Udh+JySTVnXv+Rh0r/r3uf5xUlTbXUAr0P4Zf8if/wBvt1/6OevPK9D+GX/In/8Ab7df+jnrKvshM7CiiuN+JWt6jo3h+0i0uVYLnUb1bL7RjJhVkd2ZR/ewmB9c1zCSuZnjfxvOLqXw54cmAvgMXt8OVs1P8K+spHQduprmfCdjBp/jHw3b26kKLmckscs7G3lyzHuSepqrY2MGn2q29upCgkkscs7HqzHuSeprS0H/AJHrw5/18Tf+k0tO2h08ijBnsdFFFI5iK6uoLK1lurqZIYIlLySSNhVUdST6V51fX0/i26S4uI3h0aJg9raOMNOw6Syj07qh6dTzgLpfE+1jvtK0aznMnkTaogkWOVo9wWGVxkqQeGVT9QK5T/hH7P8A5+NT/wDBpc//AByt6NO/vDSOkorm/wDhH7P/AJ+NT/8ABpc//HKP+Efs/wDn41P/AMGlz/8AHK6bMZ0lFc3/AMI/Z/8APxqf/g0uf/jlNk0C0EbEXGp5AP8AzFLn/wCOUrMA1zXJZJ30vS5Nsy8XN0ORAP7q+rn9Op7A5ltbRWkCwwrtRffJJ7knuT1JqnoKhdA08gcvbo7HuzMoJJ9SSSSa0aS7gXPD/wDyPfhv/r6m/wDSWavZ68Y8P/8AI9+G/wDr6m/9JZq9nrmrfEJhXn/xY507w9/2GU/9ET16BXn/AMWP+Qd4e/7DKf8ApPPWQ4/EjkqtaB/yPfh3/rvN/wCk8tVataB/yPfh3/rvN/6Ty1TOqp8LPY6KKKk4ynqmqWejadLf38wit4hycZJJ4CgDkknAAHJJrgJJLzX9RTVdVjMSREmysSci3B43vjgykd+ig4Hck+IFo2peMNLgkvLqKK2tHuI0hk2gSFwu7p1AyAe2T61kf2RJ/wBBjVf/AAIH+FdFKnf3hpHR0Vzn9kSf9BjVf/Agf4Uf2RJ/0GNV/wDAgf4VvZjOjornP7Ik/wCgxqv/AIED/CsvxFYT2uhzyprGpk7o0IM/BDOqkcD0Jod0gLGsaw+ryyafp8rJZISlzdIcGQ944z6di34DnJFeKKOGJIokVI0AVVUYAHpRFFHDEkUSKkaAKqqMAD0FPpJAdJ8Ov+Ru1L/rwi/9GNXp9eYfDr/kbtS/68Iv/RjV6fXJU+JksKKKKgCC5sbS8eF7q1gnaBxJC0sYYxuOjLnofcVPUc88NtbyXFxKkUMSl5JJGCqigZJJPAAHenRyJLGskbq6OAyspyCD0INADqKKKAEJCqWYgADJJ7V474q8VS+OJpdK0qZ4/DUbFLq6jJDagwODHGR0iHRmH3ug4ya3fjNdTxeF9Ks4ppI4NR1eCzu1RtplhZXLISOQDtGcY446GubjjSGJIokVI0UKqKMBQOgA7CtqVNS1ZlVm46II40hiSKJFSNFCqijAUDoAOwp1FFdZynoXw9/5ELR/+uJ/9CNdNXM/D3/kQtH/AOuJ/wDQjXTV5zO9BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyHxE/5A+nf9hKH/2auvrkPiJ/yB9O/wCwlD/7NVR+JAeb3v8AyN15/wBeNt/6HPUlR3v/ACN15/1423/oc9SV2lBVT4bax4h0u0vn0mBNQtIJBJdaf0kIYY8yM9z8uCOe3HPFus7wLfN4b8daS8jbbbVLZI2+jfKD/wB9oP1rKrsdOHd1KNr6X+49q8O+KtK8T2pl0+f96n+tt5BtliPoy/16VtVyviLwPZ6vdDU7CZ9L1mPlLy34LH0cfxD9fw4rkfEvjXWtD8KaxpXiW3e01FrKZbPUrXPlTvsOMEfdb/OBXNbsZOCkrw+7r/wT0HU/Ffh7RnZNS1zTrSResc1yit/3yTmsKX4t+A4ThvEtqf8AcV2/kprH+H3w48IP4M0XUp9BtLq8urOKeaW6XztzsoJOGyByewrt4vC/h+AYh0LTIx6JaRj+QpGJoW1zDeWkN1buHhmRZI3AxuUjIP5GpaREWNFRFCoowqqMAD0FLQAUUUUAFcF468dS6bOfD/h9o5NdkQGWZhujsIz0dx0LkfdTv1PH3u9rwWElvE/ixmOW/tqYZPXAVMCmi6ceaVmavgHT4tO8b2CI0kkskF1JNPK26SaQ7Czux5JJr2WvJfCX/I/ad/163H/sletUMdRWkFeYah/yOviH/rtD/wCiI69PrzDUP+R18Q/9dof/AERHWtD4yEFFFFdpQUUUUAYHib/XaJ/1/N/6TzVFUvib/XaJ/wBfzf8ApPNUVZvdiCu2+Fv/AB5a/wD9hQf+k0FcTXbfC3/jy1//ALCg/wDSaCsa3wiZ3tc/4w8UxeE9GF39llu7ueQQWlrHwZpSCQCeiqApJY9AD9K6CvP/AIpfd8N/9hJ//SaauYIq7sefTW93P/aGsaxcC71i6hYSygYSJMEiKIH7qD8yeTz09t8Nf8iro/8A15Q/+gCvHr4gafck8Dym/ka9h8Nf8irpH/XlD/6AKbNaySskaleba/8A8j/qP/Xha/8AoU1ek15tr/8AyP8AqP8A14Wv/oU1aUfjRkiGiiiu4oKKKKAMPxT/AMeVn/1+xfzqvVjxT/x5Wf8A1+xfzqvWb3EFdb8MP+Qn4h/7dv8A0F65Kut+GH/IT8Q/9u3/AKC9ZVvhEz0avPvif4h1Ow/srQdLnNnJq/nebeof3kMUYUsI/R23gBv4eSBnBHoNeV/FX/kcPB//AFyvv/QYa5RxV5JHPWVlbadZxWlpEsUEQwqL/nk+9b/gn/kodv8A9gq6/wDRttWRW14AgmvPGUmoQxs1naWU1rJP/D5rvCwQepAjOcdMj1qmdNXSB6nXD+Pv+Qp4e/66z/8Aouu4rh/H3/IU8Pf9dZ//AEXTp/EjkMiiiivQLCiiigDP13/kXtT/AOvSX/0A1jWv/HpD/wBc1/lWzrv/ACL2p/8AXpL/AOgGsa1/49If+ua/yqJbiJa1fB//ACP2nf8AXtcf+yVlVq+D/wDkftO/69rj/wBkrOr8DEz16vKPi1/yNvgn/fvf/RS16vXlHxa/5G3wT/v3v/opa4xw+JGTRRSW1te6vqS6VpSK12wDSSuMx2yf33/XC9WPoASLOxtJXZ6B8NP+RIh/6/L3/wBKpa66s3QdFt/D+i2+mWzyPHFuYySHLO7MXdj7lmJ4454rSqDie5wnjv8A5GPQP+uN3/7RrLrU8d/8jHoH/XG7/wDaNZddtD4BoKKKK2GFZPin/kUda/68Z/8A0A1rVk+Kf+RR1r/rxn/9ANKWwFGiiioES6Lpd1rHjG1tbTVbjTZBYXLme3+8VEkA2/Q5B/Cu1/4V1NL/AMfXjDxHKPRbvaPywa57wN/yUK3/AOwXdf8Ao23r1quSo/eZSqyirI4b/hVeiP8A8fF9q9z/ANdrwnP5AVLF8KPB0fLaY8h9XuZP6MK7Sioux+3qfzM43UPAHhWz0e9lh0W3DpbyMrMWYghTg8k1xGkaPph0mykOn2pdoEZmMKkklRznFet6z/yAtQ/69pP/AEE15jo//IEsP+vaP/0EV0YfVu4vaTe7ZKtjaIpCW0KgjHyoBXJf8I3onhuyN7qjm6cfdVuAzegXv+NdrXMeNrazl0lZJYy13vEdttPJYnpW8krXNqE5c3Ld2Zxh1ubUPENjcyARwwzp5UKcLGoYcAfzNetV5Ra+FtQury6jtGic2jhWZm2gv3A+hr1YZIGRg+lTTvrc1xnJ7qiLRRRWpxnPeIv+QppH+/L/AOgUyn+Iv+QppH+/L/6BTKz6sQU1/wDVt9DTqa/+rb6GgD1jwR/yIPhz/sF23/opa3awvBH/ACIPhz/sF23/AKKWt2uAkK8s+KskcXijwvLKyoiW9+xZjgKP3HOa9TrC1vwlpfiDWdJ1LUUklfTDIYYcjynL7eXGPmwUUgZxnrmgcXZ3Mn4aWVzbaDe3VxA8KX961zAsgwxj8uNASO2dhIB5wRXZ0UUA3d3CvING/wCPB/8Ar5uP/Rz16/XkGjf8eD/9fNx/6Oet8P8AEwRoUUUV2FBRRRQBzGqf8jWP+vEf+hmn0zVP+RrH/XiP/QzT6z6iCvTfh5/yIOj/APXE/wDoRrzKvTfh5/yIOj/9cT/6Eawr9BM6avFdZ/5KN4r/AOvi3/8ASaKvaq8dutD1PX/in4os7RXt7Yz2zXF8V4jX7NF8qZ+857dh1PYHBFU2lK7JfCVrPqXjawmtYy9vpjySXU38Ks0ToqA92+cHHYDnGRn12qWlaVZaJpsOn6fCIbeIcKOST1JJ6kk8knkmrtIUpczuFeUQ/wDIU1r/ALCc/wD6FXq9eUQ/8hTWv+wnP/6FW9D4hIsUUUV2FBRRRQBzmvf8jDpX/Xvc/wA4qSl17/kYdK/697n+cVJWfViCvQ/hl/yJ/wD2+3X/AKOevPK9D+GX/In/APb7df8Ao56xr7ITOwrz74tf8g3w7/2Gk/8ARE9eg1598Wv+Qb4d/wCw0n/oieuYcfiRydaHhG0n1PxrYz2sZa20t5Hupj91WaJ0WMHu3zgkdgOeozU0rSr3xPqT2Fg7Q28RAvL0DIh77EzwZCPwUHJ7A+uaXpdloumw6fp8Cw20QwqjknuST1JJ5JPJJptm1Wp9lFyiiikc5xvxD/499A/7Co/9J56wq3fiH/x76B/2FR/6Tz1hV2Yf4SkFFFFbjCmS/wCpf/dNPpkv+pf/AHTQBx+h/wDIv6b/ANesX/oAq/VDQ/8AkX9N/wCvWL/0AVfrJbCLnh//AJHvw3/19Tf+ks1ez14x4f8A+R78N/8AX1N/6SzV7PXNW+ITCvP/AIsf8g7w9/2GU/8ASeevQK8/+LH/ACDvD3/YZT/0nnrIcfiRyVWtA/5Hvw7/ANd5v/SeWqjMqKWYhVAySTgAV0HgXQbrVNVtfEcwaCwtt5slIw9wWUoZD6Jhjju2c8DGaZ01WlE9OoooqTkPPfF//I8Wn/YNb/0YKpVd8X/8jxaf9g1v/RgqlXbQ+ApBRRRWwwrF8V/8i7P/ANdIf/Rq1tVi+K/+Rdn/AOukP/o1amWzEVaKKKkDpPh1/wAjdqX/AF4Rf+jGr0+vMPh1/wAjdqX/AF4Rf+jGr0+uOp8TJYUUUVAHj/xYu7zVNYk0CS4Mek21il5LAnBuZGaQKHPdF8sHb3Jyc4GPTPDShfC2kKoAAsoQAO3yCub1rwG+v+Om1S+nT+xzZwxSWy53zujyHax7J84zjk9OBnPboixoqIoVVGAoGAB6U21ZALRRRSA80+NP/IF8Nf8AYw23/oElYVbvxp/5Avhr/sYbb/0CSsKuqhszmr7oKKKK3MT0L4e/8iFo/wD1xP8A6Ea6auZ+Hv8AyIWj/wDXE/8AoRrpq85negooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5D4if8gfTv8AsJQ/+zV19ch8RP8AkD6d/wBhKH/2aqj8SA83vf8Akbrz/rxtv/Q56kqO9/5G68/68bb/ANDnqSu0oKz9f0t5fCvg+9hyJZbaW3DL13qxeMD3JJFaFa9/A5+COjahCMzabLHdp+EhX/2bP4VjV6G2Hly1UejeGNYXX/DOn6mCN08QMgHZxww/76BrM+JMMU3w28RCWNHC2EzqGGcMFJB+oNZHw9nTTdZ1vw6p/wBHVxf2PvBKAcD2GV/Emtr4if8AJN/En/YOn/8AQDXOzOrHlm0jh/CGn+JvC/gzRNV0ORtV06exhmuNLlPzoWQFjEfqTx+hr0Lw54s0rxPAzWUxW4j4mtZRtliPfK/1HFQfD/8A5Jz4a/7Blv8A+i1qLxH4IsdbnXULWV9N1iPmK+tuGz/tAfeH6+9BSlGek9H3/wAzqKK8+j8b6l4WY2XjWzZSFPk6lapuiuMDoQOjH/IA5rQ8B+O4PGNtcJJGlvfwMS0IPWMn5WHr2B9/qKLMUqM0nLodjRRRSMgrwA3EVrr3i2aZtqDW5+gySSEAAHUkngAda9/ritC+HltpnivVdevbj7ZLc3r3drEUwluWABbHd+MZ7DpjJoRUJcruReCPCl1a3A17VlaK8eMpb2mf+PeNsE78dXOBnsvT1Nd1RRQJtt3YV5hqH/I6+If+u0P/AKIjr0+vMNQ/5HXxD/12h/8AREdbUPjBBRRRXaUFFFFAGB4m/wBdon/X83/pPNUVS+Jv9don/X83/pPNUVZvdiCu2+Fv/Hlr/wD2FB/6TQVxNdt8Lf8Ajy1//sKD/wBJoKxrfCJne1598VGCx+HGYgKNRckk8AfZpq9BrH1/wxpniYWC6pG0sVlc/aVizhZG2MuHHdfmPHfHORkHmBOzucD4V8Kt4nePUtSjK6IpDQQMMG9PZmH/ADy9B/F1Py/e9WAAAAGAOgoAAAAGAOgooHKTk7sK821//kf9R/68LX/0KavSa821/wD5H/Uf+vC1/wDQpq1o/GhIhoooruKCiiigDD8U/wDHlZ/9fsX86r1Y8U/8eVn/ANfsX86r1m9xBXW/DD/kJ+If+3b/ANBeuSrrfhh/yE/EP/bt/wCgvWVb4RM9Gryv4q/8jh4P/wCuV9/6DDXqlcR438FXvizxB4euYb1LWzsRcrdsCfOKyBMCPgjPyEZJGM5GTXKEXZ3OQ0XRbvxXfva2rvBp8Lbby9XrnvFGe7+p/h+uBXrun6faaVYQ2NjAkFtCu2ONBwB/U+/ejT9PtNKsIbGxgSC2hXbHGg4A/qffvVmgcpOTuwrh/H3/ACFPD3/XWf8A9F13FcP4+/5Cnh7/AK6z/wDourp/EiTIooor0CwooooAz9d/5F7U/wDr0l/9ANY1r/x6Q/8AXNf5Vs67/wAi9qf/AF6S/wDoBrGtf+PSH/rmv8qiW4iWtXwf/wAj9p3/AF7XH/slZVavg/8A5H7Tv+va4/8AZKzq/AxM9eryj4tf8jb4J/373/0Uter1538SPDGt+IfEPhWXSIY9lq9yLi4lYbIA6KoYjOW6HAHUjBIzmuMIuzTOVtra91fUl0rSkVrtgGklcZjtk/vv+uF6sfQAkes+H/D9l4b00WdmGZmO+aeTmSZ+7MfX26AYAwBR4f8AD9l4b00WdmGZmO+aeTmSZ+7MfX26AYAwBWrTbKnNyYUUUUiDhPHf/Ix6B/1xu/8A2jWXWp47/wCRj0D/AK43f/tGsuu2h8BSCiiithhWT4p/5FHWv+vGf/0A1rVk+Kf+RR1r/rxn/wDQDSlsBRoooqBGz4G/5KFb/wDYLuv/AEbb161Xkvgb/koVv/2C7r/0bb161XJV+NksKKKKzAo6z/yAtQ/69pP/AEE15jo//IEsP+vaP/0EV6drP/IC1D/r2k/9BNeY6P8A8gSw/wCvaP8A9BFdOH3Y0Xa5V5l1PxJPeSc2GjoxHo0uMk/hj9BWt4g1M6VpEsyczv8Au4VHUuen+P4Vi6janQ/A5s15ubgqjnuzufm/TI/Ct5M6aMevfT/Mv+D4WTQhcSf626led/xOP5Ct+obO3W0soLZfuxRqg/AYqaqSsrGVSXNJsKKKKZJz3iL/AJCmkf78v/oFMp/iL/kKaR/vy/8AoFMrPqxBTX/1bfQ06nWOn3uv6n/ZWlgCQAG4uWGUtUPc+rH+Fe/U4AJpNpK7A9U8Ef8AIg+HP+wXbf8Aopa3aqaXp8Ok6TZ6bbljDaQJBGXOWKooUZ98CrdcJIUUVy+rfEbwfol+1jqGv2kN0pw8YJcofRtoOD9aAOooqvY39nqllHeWFzFc20oyksThlYexFWKACvING/48H/6+bj/0c9ev15Bo3/Hg/wD183H/AKOet8P8TGjQooorsKCiiigDmNU/5Gsf9eI/9DNPpmqf8jWP+vEf+hmn1n1EFem/Dz/kQdH/AOuJ/wDQjXmLMqKWZgqqMkk4AFenfD1WXwDo25SMwbhkY4JJB/EEGsK/QTOmoopCQoJJAA5JNc4haKpaXrGna3atdaZeQ3cCuYzJC25dw6jNXaACvKIf+QprX/YTn/8AQq9XryiH/kKa1/2E5/8A0Kt6HxDRYooorsKCiiigDnNe/wCRh0r/AK97n+cVJS69/wAjDpX/AF73P84qSs+rEFeh/DL/AJE//t9uv/Rz155XoXwy/wCRP/7fbr/0c9Y19kJnY1y/jjwpP4tstMtYL77GLW/S5klC5bYI5EIXtu+fgngdeeldRRXMIp6Xpdloumw6fp8Cw20QwqjknuST1JJ5JPJJq5RRQAUUUUAcb8Q/+PfQP+wqP/SeesKt34h/8e+gf9hUf+k89YVdmH+EpBRRRW4wpkv+pf8A3TT6ZL/qX/3TQBx+h/8AIv6b/wBesX/oAq/VDQ/+Rf03/r1i/wDQBV+slsIueH/+R78N/wDX1N/6SzV7PXjHh/8A5Hvw3/19Tf8ApLNXs9c1b4hMK8++LTKmmeH2YhVGsKSScAD7PPXoNZOv+GtM8TQ2cGqwGeG0ulukiLYVnVWUBh3XDHjoe/HFZAnZ3PP/AAp4UbxO8epalEV0RSGgt3GDens7D/nl6D+Lqfl+96sAAAAMAUAAAADAFFASk5O7CiiigR574v8A+R4tP+wa3/owVSq74v8A+R4tP+wa3/owVSrtofAUgooorYYVi+K/+Rdn/wCukP8A6NWtqsXxX/yLs/8A10h/9GrUy2YirRRRUgdJ8Ov+Ru1L/rwi/wDRjV6fXmHw6/5G7Uv+vCL/ANGNXp9cdT4mSwoooqACiiigAooooA80+NP/ACBfDX/Yw23/AKBJWFW78af+QL4a/wCxhtv/AECSsKuqhszmr7oKCcDJ6UE4GT0q/wCGvDT+LZFu7tWTQEPA6G+I/wDaXv8AxfTrpOairszjFydkdn8PefAOjHsYMg+oJODXTU1EWNFRFCooAVVGAB6CnVwnaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXIfET/kD6d/2Eof8A2auvrkPiJ/yB9O/7CUP/ALNVR+JAeb3v/I3Xn/Xjbf8Aoc9SVHe/8jdef9eNt/6HPWj4e8PXHi67ZVZ4dGhYrcXKHDTMOsUZ/RmHToOcleuUlFXZQeHvD1x4uu2VWeHRoWK3Fyhw0zDrFGf0Zh06DnJX0/VdFt5/CV5otrAkULWjQQxIuFT5cLgexxWjaWlvY2kVpaQpDbwqEjjjXCqo6ACpq5JScndiTadzxrTtQ+x6f4J8WA4SIHSb4+iZKqT9ME/lXf8AxE/5Jv4k/wCwdP8A+gGuR0nRhqGjeN/CG0b4LxprYHtv+aP9UH51cu9ZOu/AfVLuRibhdKnhnz13ohU5+uAfxoZ04hX1XT8nqjpfh/8A8k58Nf8AYMt//Ra10dc58P8A/knPhr/sGW//AKLWujqTlOO8f+EdR8X2EFraanHaxRMXaF4yRI3YlgeMc8Y715jbeA/HHg/V4dU0+0S5eBs5tpQwcd1KnDEEe1e/0U1Kx0U8TOEeXdFLSdQ/tTTILs281s8i/PBOhV427qQff8+tXaKKRg99Aoorwn4u+M9U1KK5tPD08kOlaVcRx395E5XzZ2OBEpHUL1P+cgj3aio4CTbxE8nYP5VJQAV5hqH/ACOviH/rtD/6Ijr0+vMNQ/5HXxD/ANdof/REdbUPjGgooortKCiiigDA8Tf67RP+v5v/AEnmqKpfE3+u0T/r+b/0nmqrLKyvFBBC9xdTt5cFvH96VvQeg7kngAEms27NiCWVleKCCF7i6nby4LeP70reg9B3JPAAJNeq+C/Dk3hzR5Y7udZb27n+03Hl/cRyiptXuQFRRk9Tk8ZwK/g7wcugI19fMlxrE67ZJV+7CvXy489F9T1YjJ7AdXXJUqc3oIKKK47x34oudJgttF0RRN4h1QmK0j/55D+KVvRVH61mI66OaKUuI5UcodrBWB2n0PpT68l+BdpLY2vim0nna4mh1Z43mbrIwGC34161QAV5tr//ACP+o/8AXha/+hTV6TXm2v8A/I/6j/14Wv8A6FNWtH40NENFFFdxQUUUUAYfin/jys/+v2L+dV6seKf+PKz/AOv2L+dU2aaS4htLSBrm9uG2wQIeWPck9lHUk8AVnJ2bbEDNNJcQ2lpA1ze3DbYIEPLHuSeyjqSeAK9V8IeFx4asJfOm+0ahdEPdSjhcgYCoOyjoO55J60zwj4Rh8OW7zzutzqtwo+0XIHAHaNB2QfmTyfbpa5KlTm9CQqhrOs6f4f0ubUtUuktrSEZeRv0AA5JPoKv15x8atOe88ExXSzW6pp95HdPDcSiNZ1XIKZPGTngd6zAs6X8YfCup6jb2bNfWRujtt5r22Mccx7bW/wAcV31eA+NfiBpXxE0LTPDemWE1nd3txEyXGoBYYrfHUqxPJ7DHX9K96t4zDbRRM5cogUse+B1oAkrh/H3/ACFPD3/XWf8A9F13FcP4+/5Cnh7/AK6z/wDourp/EgMiiiivQLCiiigDP13/AJF7U/8Ar0l/9ANY1r/x6Q/9c1/lWzrv/Ivan/16S/8AoBrBilZbe0hhhee6nCxwQRjLytjoP5kngAEnis5OzESyysrxQwwvPdTt5cEEYy8reg/mSeAASeK9M8HeD10FGv79kn1idNski8pCnXy489umT1YjJ4AAPB3g5dBQ39+yT6xOu2SReUgXr5cee3qerEZPGAOsrkqVObRbCCo7i4htLeS4uJUihjUs8jsAqgdSSelSVzvirwbp/jAWUOqzXRs7aQyPaxSlEnPGA+OSBj9azEVvBnjyw8bz6v8A2bC4trCdYUnZv9eCCdwGOBxSeLfHln4WurXTorK61TWLzJt7C0XLsB/ET2HvXMfCK2gsvEHjq1tokhgi1UJHGgwqqNwAArn/AO3dUT44+Jk0fSF1PWPJitrXzn2RW8QUF2ZvTOOB1zQB3nhv4ipq/iA+H9X0W90PVzGZYoLohlmUdSrDGT1/I129eW6d4hvG+IGmaX488Oafbauys2lajaMWjJx8yjJJB/zjmvUqAOE8d/8AIx6B/wBcbv8A9o1l1qeO/wDkY9A/643f/tGsuu2h8BSCiiithhWT4p/5FHWv+vGf/wBANa1ZPin/AJFHWv8Arxn/APQDSlsBRqK4uI7aEySE4yAABksTwAAOSSeAB1ouLiO2hMkhOMgAAZLE8AADkkngAda7zwZ4Mkt5o9c1yIfbsZtbU8i1B7nsZCOp/h6DuTjOaiiSTwL4TudPmOuaqDHfywmKG1B4t4mKsQ2OrkqpPYYwO5PcUUVyNtu7EFFFFICjrP8AyAtQ/wCvaT/0E15jo/8AyBLD/r2j/wDQRXp2s/8AIC1D/r2k/wDQTXj82pjSvB1tcjmU20aRL6uVGP8AH8K6MO7XLhFydkQf8hzxd/es9L/Jpj/hj9Pen63/AKZ4k0bTxyqO1zIP937v6gir/h/TDpWkRQvzO/7yZj1Lnr/h+FUNM/03xhqt51S2RbZD79W/UH863tp6nTzLmbW0V/wDo6KKK0OYKKKKAOe8Rf8AIU0j/fl/9AplP8Rf8hTSP9+X/wBAosLC+17U/wCy9LwJQA1xcsuUtUPc+rH+Fe/U4AJrKTSu2ILCwvte1P8AsvS8CUANcXLLlLVD3Pqx/hXv1OACa9e0LQrHw7piWFhGQgJZ5HOXlc9Xc92P/wBYYAAo0LQrHw7piWFhGQgJZ5HOXlc9Xc92P/1hgACtKuSc3JkhRRRUAQ3UUk9pNFDN5MrxsqS4zsJHBx3x1rj/AAr8P9D8H+GpbfUUs76Ul5by/uYFBlBJOW3ZwAO2fWuzmmjt4ZJpnVIo1LOzHAUDkk14pPrR+LOqSw3OsW+j+DLaXaY2uFjn1Ag98nIT/PJ6AGx8FEUr4on05HTw/LqTHTlOcbRncVz2+7+VerVm6I2jRafHY6JLZm1tVCLHayKwQduhrSoAK8g0b/jwf/r5uP8A0c9ev15Bo3/Hg/8A183H/o563w/xMaNCiiiuwoKKKKAOY1T/AJGsf9eI/wDQzTmZUUszBVUZJJwAKZqzKninczBVWwBJJwAN5roPCXhJvEjx6pqkRXRlIe3tnGDeHs7j/nn6L/F1PGAcZzUdWIPCXhJvEjx6pqkRXRlIe3tnGDeHs7j/AJ5+i/xdTxgH1cDAwOlAGBgdKK45ScndkhXnfjfVbzxFq6+BdBmaOWZPM1W8T/l1t/7oP99un0PvXoFwJTbSiAgTbD5ZPQNjj9a8U0Hwt8WvDcd6bM+HnmvJmnubid2eSVj6nHbsKQG/8Bo1h+H88S52pqM6jPoNteoV4p8Bx4n+wz+abH+wPtM+8LnzvPyucf7Ne10AFeUQ/wDIU1r/ALCc/wD6FXq9eUQ/8hTWv+wnP/6FW9D4hosUUUV2FBRRRQBzmvf8jDpX/Xvc/wA4qSl17/kYdK/697n+cVTaRpF74n1JrCwcw28RAvL0DIhHXYnYyEfgo5PYHKUlG7Yg0jSL3xPqTWFg5ht4iBeXoGRCOuxOxkI/BRyewPsGlaXZ6LpsOn2EIhtoRhVByeuSSTySSSSTySc0aVpVloumw6fp8AhtohhVHJJ6kk9SSeSTyTVyuSc3JkhXJ/EvWdQ8P/D7VtR0vIu44wEcDJj3MAW/AHNdZXC/FnxFd+HfBTtYpEbm9nSzVpkDogfOSQeDwD145qAOE1XwTYaN8OB4ysfFGpjWkt0ulvzeErNIcHZjuCTjHX1zXrvhTUbrV/Cek6jex+XdXNrHJKuMfMVGeP1ry/UPgbpWneFnurTU7s6pZxm6V5tjW7SKNxzEV2hTj/8AXXoPw98RTeKvA2mavcxrHPKhWQIMKWUlSQOwOM0AdPRRRQBxvxD/AOPfQP8AsKj/ANJ56wq3fiH/AMe+gf8AYVH/AKTz1hV2Yf4SkFFFFbjCmS/6l/8AdNPpkv8AqX/3TQBx+h/8i/pv/XrF/wCgCrzMqKWZgqgZJJwAKz9FZU8OaczMFUWkZJJwANgrrfCXhJvErx6pqkRXRlIa3tnGDeHs7j/nn6D+Lqfl64OajG7JJ/Anh661LU7TxJcBoLG2LPYoRh7hmRkMhz0TazbR1Oc9MZ9QoAwMDpRXJKTk7sRDd3UNlZz3dw2yGCNpJGwThQMk4HsK8YvPiNrniDx94VXT7W803w3c32yOWUeW19jqSP7nIwO/6D2xlDqVYAqRggjg15j8RwB8Q/h4BwP7Qf8AktIDpfiF4ql8I+FZL61iWa/mkW2tI26NK5wM/Tk/hXI3nhD4iafo/wDbVt4zvb3XI1Er6eY1+zyHvGq9Pxx+VN+PJu00bw89o4jlXVU2ORkK+DtJ/GmeI/hXb6V4cu9esdc1YeI7KFrk6hJdMTKyjcQR0AODwP1oA9R0m5ubzSLS5vbVrS6liVpoG6xvjkfnVyuf8Da5N4k8EaTq9yoE9zADJgYBYEqT+JGa6CgDz3xf/wAjxaf9g1v/AEYKpVd8X/8AI8Wn/YNb/wBGCqVdtD4CkFFFFbDCsXxX/wAi7P8A9dIf/Rq1tVi+K/8AkXZ/+ukP/o1amWzEVajnnitoHmmcJGgyzHtRPPFbQPNM4SNBlmPaux8G+DZbmeHXddgKbCHsrGQf6v0lkH9/0X+H/e+7lOaihFv4e+H760e51vUIzbPeRJHDasMOkYJIZ/Rjn7vYdecgd3RRXI3d3YgooopAecfEL4hXmki+0Pw3p9xea1FbmaeYR4is49ud7MeCccgf/qrc+Gl9dal8OdEvL64kuLmWAtJLK25mO48kmr/jBVXwXrzBQC1jMSQOvyGsj4Tf8ks8P/8AXuf/AENqAOzooooA80+NP/IF8Nf9jDbf+gSVhE4GT0rd+NJxovhonp/wkFt/6BLVHw14afxbIt3dqyaAh4HQ3xH/ALS9/wCL6dd6U1GLbMakXKSSDw14afxbIt3dqyaAh4HQ3xH/ALS9/wCL6dfV0RY0VEUKigBVUYAHoKERY0VEUKigBVUYAHoKdWUpOTuzSMVFWQUUUVJQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcx46sL7UNFthp9nJdzQXsUzQxuisVGc4Lso7+tdPRTTs7geQ2fgjW9f8VTT6lY3Gk6U1tDHKZJYzNNtaQlE8t22g7xliQfTk5HrFpaW9jaRWlpCkNvCoSOONcKqjoAKmopyk5O7AKKKKkDhV/4lfxmcdI9X00N9ZIzj/0Ff1rl9f8A+JBF8QdAb5ba+02bUrQdslCHA/H9FrqPH/8AxL9a8K64OBbah9nkb0SUYP6A/nWL8ctOlHhca5bDEtrHLbTEd4pUKnP4nH/Aqo6k7pX6q3zWx2Pw/wD+Sc+Gv+wZb/8Aota6Ouc+H/8AyTnw1/2DLf8A9FrXR1JyhRRRQAUUUUAcR8VNc1jQ/BsjaHaXE95dSC3D28Zd4VIOXAHfAwPc1414p8U2cXwxh8M2PhTXNPiinika6vINokcNlix/vMa+nK5rx14S/wCE18Nto/277HmaOXzfK8z7pzjGR1+tAE3g7xCfE2gJfnTbzT9rmLybtNrnAHzY9Dmt+mxp5cSJnO0AZp1ABXkmu6rp+neOdfjvbyC3d5IWUSuFLDyEGRnqMgj8K9boqoS5XcDxv/hJdD/6C1l/3+Wj/hJdD/6C1l/3+WvZKK2+sPsO543/AMJLof8A0FrL/v8ALR/wkuh/9Bay/wC/y17JRR9YfYLngeu6ta6ld6Lb6VKmo3Zvjst7ZwztmCUfgMkZJ4A5Neo+DvBy6AjX18yXGsTrtklX7sK9fLjz0X1PViMnsB1dFZzqOQrhRRRWYBXhWm3HxF0rxXq2uz+BW1K/u3Mcc8l0qiGAH5UQZOB3PrXutFAHhfwd1nxE3iXW7ZvD4WyutTlkvrjzh/osmCdmP4ucDPvXulYPhvwnYeF5dUkspbmQ6ldtdzecyna56hcAYH1z9a3qACvNfFCXVt43vLgabqM8E1lbqkttaSTKSrS5GVBwRuH516VRVRk4u6A8m+2T/wDQG1v/AMFc/wD8TR9sn/6A2t/+Cuf/AOJr1mitfrEh3PJvtk//AEBtb/8ABXP/APE0fbJ/+gNrf/grn/8Aia9Zoo+sSC54jrseqalBZ29hoOry3Bu4iolsZYkGD1Z2UBR6k16T4R8Iw+HLd553W51W4UfaLkDgDtGg7IPzJ5Pt0tFZzqOW4goooqACvKfjOohuPCmo6hE02g2mohr9Qu5QDjaWHcfe/wAmvVqjnt4bqB4LiGOaGQbXjkUMrD0IPBoA8t+Kvinwlqfw6urODUbDULq5CrYwW0iySeZkbSAvK4/D0r0DwxDeW/hXSYdRLG8jtIlm3HneFGc+9VtO8D+FtIvhe6foGn29yDlZUgXcp/2fT8K36ACuR8baTqmoTaRc6ZaLdG1lkMkZlWM4ZMAgng8111FNOzugPMv7K8Uf9C9/5Oxf40f2V4o/6F7/AMnYv8a9NorT28x3PMv7K8Uf9C9/5Oxf40f2V4o/6F7/AMnYv8a9Noo9vMLnlGpaF4qvNLvLWPw+A80DxqTexYBKkevvXUeCfBa+HbZbzUGS41mWIJJKv3IV/wCecee3qerHk8YA6+iplUlLcQUUUVABRRRQB5j8K/8AkavH/wD2F/8A4qs7VLuP4c/F6+8Q6pDKuha3brG14kZcQSrjhsc84/X2r1+myRpLGySIrowwVYZBoA8gutatfiV8TvDZ8O+ZcabocjXV1feWypuOMIMgEngfn7V7DUcMENtGI4IkijHRUUKPyFSUAcH8QPNi1jQ7oWt5NCkdyjtbWsk20t5eMhFJGdp/Kuf/ALTX/nw1j/wU3P8A8br1yitYVXFWQ7nkf9pr/wA+Gsf+Cm5/+N0f2mv/AD4ax/4Kbn/43XrlFV9YkFzyP+01/wCfDWP/AAU3P/xus7X7qS98Oana2+m6w881pLHGn9lXI3MUIA5j9TXttFDryYXOD8GeDJLeaPXNciH27GbW1PItQe57GQjqf4eg7k95RRWLbbuxBRRRSAKKKKAKupQvc6VeQRDMkkDoozjJKkCvCrKy1nV9WtLNNCvJ10RES5gjlgys+MDJMgUgY7EnjkV7J4t15PDfhq71E4MqrsgQ/wAch4Ufnz9AareBtBfQPDUMVzk39yTc3bt1MjckH6cD8KuMnFaG0Pci5/JfqcbcLrlrbS3E/hbU0iiQu7ma1wqgZJ/13pWL4Rstc/sU3cXh2/uheSvP50UluFbJxwHlVu3cV6F8S79rHwLfJFkzXe21jUfxFzgj/vndXQ6RYLpejWWnpjbbQJFkd9oAzV+2luF7UvV/l/w5519m8Q/9Cnqn/f61/wDj1H2bxD/0Keqf9/rX/wCPV6lRR7eZlc8t+zeIf+hT1T/v9a//AB6j7N4h/wChT1T/AL/Wv/x6vUqKPbzC545f+GfFOuarpkcOi3Gmxo7+dd3csDLEpXGQqSMWPoMYyRkgZr1HQtCsfDumJYWEZCAlnkc5eVz1dz3Y/wD1hgACtKis5TctxBRRRUgFFFFAFa/sLbVNPuLC8jMltcRmOVAxXcpGCMggj8K4j/hSXw8/6F7/AMnbj/45XoFFAGB4Z8FeHvB63C6Dp/2QXJUy/vpJN2M4++xx1PSt+iigArzuLwJr9r5sdvq2mmEzSSJ5lpIWAZy2DiTHevRKKqMnHYDz/wD4Q3xL/wBBXSf/AAEk/wDjlH/CG+Jf+grpP/gJJ/8AHK9Aoqvaz7juef8A/CG+Jf8AoK6T/wCAkn/xyj/hDfEv/QV0n/wEk/8AjlegUUe1n3C55za/DKe68RRal4g1C2u7WKIILK3t2RJWDbgZCzHKj+70PGeOD6MBgYHSiiobbd2IKKKKQBQRkYNFFAGZoXh7S/DVi9lpFr9mt3laZk8xny7dTliT2rToooAK8xn0XxFbavqhi0KW5hnvZJopY7mFQyscjhmBH5V6dRVRk4u6A8w/s/xN/wBCzc/+Bdv/APF0f2f4m/6Fm5/8C7f/AOLr0+itPbzHc8w/s/xN/wBCzc/+Bdv/APF0f2f4m/6Fm5/8C7f/AOLr0+ij28wueP3Hg7xPr2v6d5lg2lWcccy3F088UjKrFOEVWPzHacE8Drz0PqmlaVZaLpsOn6fAIbaIYVRySepJPUknkk8k1corOUnJ3YgoooqQCsbxR4asPFugXGj6ireTLgh0OGjYdGHuK2aKAPLZPh142u9P/sO98ftJopXy3CWSid4/7pfOenGcn8a9D0bR7PQNHtdK0+Py7W2jCRqTk49Se5J5q/RQAUUUUAcT8S54rXT9EuJ3EcMeqAu7dFBgmHJ7ckD8a5L/AISTRP8AoKWv/fwV7HRWsKrgrIdzxz/hJNE/6Clr/wB/BR/wkmif9BS1/wC/gr2Oir+sPsFzxz/hJNE/6Clr/wB/BTJfEmi+U/8AxNLX7p/5aCvZqKPrD7Bc8b+HPg6XX9G0vUNYgaPSYreIw2rjBu2Cj53H/PPPQfxdT8uM+yAYGB0oorBtvcQUUUUgCuO8W+E7/XvFXhXVLWW2SDSbppp1lZgzKcfdwCCeO5FdjRQBz/jTwpbeM/DU+kXErQsxEkM6jJikX7rf57GuHvNA+KmtaOfDWo32hw2DqIrjUod5mli7jb0yR14H1r1iigCjo2k22haLZ6VZgi3tIliTPUgDqfc9avUUUAeb+N7y2tPG1mbm4hhDac4UyOFz+8HrWV/bOl/9BKz/AO/6/wCNerz2drdFftFtDNt+75iBsfTNQ/2Rpv8A0D7T/vyv+FbQrOKtYdzy7+2dL/6CVn/3/X/Gj+2dL/6CVn/3/X/GvUf7I03/AKB9p/35X/Cj+yNN/wCgfaf9+V/wq/rD7Bc8u/tnS/8AoJWf/f8AX/GsbxXrOmf8I3ckahath4iQsqk4Eik8A17V/ZGm/wDQPtP+/K/4Uq6Xp6OHSwtVZTkEQqCD+VJ4htWsFzhPBvg2W5nh13XYCmwh7KxkH+r9JZB/f9F/h/3vu+jUUVg227sQUUUUgCiiigDO1+wl1Xw7qWnwMiy3VtJChckKCykDOAeOaoeB9CuvDXgvS9GvJIZLi0i2O0JJQncTwSAe/pXQUUAFFFFAGN4k8LaV4stLW01eFpoLa6S6RA2AzqCAG9RhiCK10RY0VEUKigBVUYAHoKdRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIw3KVOcEY4ODXllg95J8bdR8PvquptpcGnJcRwG9k4c7ec5yep4zXqleWab/ychrH/YHT+aUAep0UUUAcp8SbA6h4B1RVH7yBBcKR22EMT+QNU/F11HrXwY1S9cBhcaQ0+PRtm79CP0rsbu2S8s57WUZjmjaNvoRg/wA68rsbl5PgH4gspj++0+2vLWT2IBP8mAp9DVa0vR/n/wAMb/wf1hdW+GulKSPNs4xayD02gbf/AB0rXd15B8MCfD+paTZH5bXXdFtrmL085IxuH1I3E/UV6/QxVIpPTZhRRRSMwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorH8Ua7F4b8OXmpyYLRJiJD/HIeFH5/pmgcU5OyOYv/wDirviRb6cPn0vQQLi4/uvcH7q/h/RhXf1zHgPQpdE8No15ltRvWN1du33jI/OD9BgfXNdPTZpVavyrZHC+Mf8AiaeNvCmhjlFna/mHbEY+XP1IYV3VcLof/E2+KviDUvvRadbx2ERPqfmb8iG/Ou6oYVdFGPZfnqFFFFIyCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAIyMV5Wz3n/AAu8eHf7V1P+yjpn2nyPtsn+szjO7O78M16pXljf8nKL/wBgT/2agDofFUOp+GtCuNb0O9upXsl86azu5mmjnjH3hlsspxkgg9uQa3/DuuWviXw/ZaxZE+RdRhwD1U91PuDkUzxTLHD4S1iSYgRrZTFs+mw1x/wOt57f4Wad5wIEkkskYP8AdLnH9aAPRqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARs7TtALY4BOBmvPrTwt4lg+KF54teDSTBc2a2v2cXsm5cbfmz5OD06V6FRQAUUUUAFeP6x/xLbf4oaSeFlsnvoh674zvP5kD8K9gryD4tg6Zqk96Plj1LQryzc+6oXH6lRTRrS1Uo91+WpLdW0sHwk8G+IbVc3WjW1pcDH8UZRQ6/Q/Ln2Br1W1uYry0huoG3QzRrIjeqkZB/I1zPgyzh1D4VaHZXC7objSIYnHs0QB/nVX4aXk39gXGiXbZvNHuXtHz3UElT9OoH+7R0H8VP0/J/1+J2tFFFIxCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuA1f/irviJaaMvz6ZomLu8/uvMfuIfp/wDFCuq8Sa3D4d8P3mqTYIgTKKf43PCr+JIrK8AaJNpPh0XN9ltT1Fzd3bN13NyAfoO3qTTXc2p+7Fz+SOqqK5njtbWW4lOI4kLufQAZNS1yfxJ1BtP8Caj5efOuVFtGB1YucEf987qSM4R5pKPcq/C6CQ+FpdUnGJ9Uu5btyevLYH8ifxrtqo6Lp66Todjp64xbQJEcdyAAT+dXqbHUlzTbCiiikQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAc4461543hbxMfiiPF4g0jyRY/ZPs/wBuk3dc7s+Tj8K9DooA5PX9D1rxXYHSb5rTTtNmI+1G1naaWZAc7ASiBAe5547V0tnZ2+n2UFnaRLFbwII4416KoGAKZp2pWWrWa3dhcJcW7EhZEOQSDg1aoBq2jCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8x+O1gbj4eyXiD57SXJP+wylSPzK16dXKfE23S6+GXiKN+gsZJPxUbh+oFBUJcsrlj4f/8AJOfDX/YMt/8A0WtY0/8AxTvxagm+7aa/b+U/p58fQ/lgfVjWj8MrpLz4Z+HZU6LYxxfig2H9VqL4k6dLdeFGv7Xi90uVb2Fh1Gw/N+mT+Apoul8XK+uh2FFU9J1GLV9ItNRg/wBXcxLKB6ZGcfh0q5SM2rOzCiiigQUUUUAFFFFABRRRQAVFc3MFnbS3N1NHDBEpeSSRgqoo6kk9BRdXUFlay3V1MkMESl5JJGwqqOpJrzq+vp/Ft0lxcRvDo0TB7W0cYadh0llHp3VD06nnAWoxcnZAdT/wnnhP/oYdO/7/AK0f8J54T/6GHTv+/wCtYNFbew8x2N7/AITzwn/0MOnf9/1o/wCE88J/9DDp3/f9awaKPYeYWN7/AITzwn/0MOnf9/1rT0vWdN1u2e40u/t7yFHMbPBIHCuACVOOhwRx715RrmuSyTyaXpcm2ZeLm6HIgH91fVz+nU9gej+ElvFa6XrsMK7UXVPXJJ+zQEknuSeSaznT5VcR6FRRRWYBRRRQAUUUUAFVdR1G00mwmvr6dYLaFdzu3b2HqSeAByScUajqNppNhNfX06wW0K7ndu3sPUk8ADkk4rz6ee78R38epalE0FrC26xsG/5Z/wDTST1kI6DooOBzk1UIOTsgN8eP7AgEaXrOD/05n/Gj/hP7D/oF6z/4Bn/Gsyit/YodjT/4T+w/6Bes/wDgGf8AGj/hP7D/AKBes/8AgGf8azKKPYoLGn/wn9h/0C9Z/wDAM/41d8NeMNL8VvfJp32gPYyCOdZoimCc9Ox6Ee2K8y1rWpNRmk0zTJWSBCUurtDg57xxn19W7dBz06L4VQx297r0MKKkaC2VVUYAG16znTUVdAelUUUVkIKKKKACiiigAqG7u7ews5ru7mSC3hUvJJIcKqjqSaLu7t7Czmu7uZILeFS8kkhwqqOpJrzu9vbjxVeR3d3G8GlQsHtLNxhpGHSWUevdUP3ep+b7tRi5OyA0x451K4zLZ+HC1sxzE1xeCJ2XsSmw7c9cE59cHil/4TPW/wDoWoP/AAZf/a6rUV0exiOxZ/4TPW/+hag/8GX/ANro/wCEz1v/AKFqD/wZf/a6rUUexiFiz/wmet/9C1B/4Mv/ALXTNA+Icus+Lz4fm0dYGELu1xHd+aquuPkPyjnByeeOPXjkdc1yWeeTS9LlKOvy3V2v/LH/AGF9X/8AQfrgVJ4Ht4rXxvpcMKBI1tbjA/745PqfeonTSV0B7HRRRWAgooooAKKKKACiikJCqWYgADJJ7UABIVSzEAAZJPauX/4WDoTEmEahcR5IWWDT5njfHdWC4Ye44NYesaw/i+RrW1Zk8PqcSSDg35HYf9Mff+P/AHfvSqoVQqgBQMAAcAVtCldXY7Gv/wAJ/o//AD76v/4LJ/8A4mj/AIT/AEf/AJ99X/8ABZP/APE1k0VfsF3Cxrf8J/o//Pvq/wD4LJ//AImj/hP9H/599X/8Fk//AMTWTWDruutZv/Z+n7ZNRdcktysCn+N/6L3+mTSdFdwsd3o/jbRNc1qTR7SS5W/jgNw0M9rJEfLBAz8wHdhXRV498PbVbbx/CAzSSPpt08srnLSMZbfLE/5x0HFen6/rEGgaFeapcYKW8ZYLn7zdFX8SQKxlGzsCTbsjkte/4q3x/Y+H1+bTtKxe3/o0n8CH8/yJ9K7+uS+Hujz6foLahf5Op6rIbu5YjkbuVX8AenYk11tJmlVq/Ktl/TCuF8a/8TTxh4U0IfMhuWvpl/2YxkZ+vzCu6rhdH/4m/wAWdcv/AL0WmWsdlGf9pvmb8iGH40IKOjcuy/4B3VFFFIyCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOH+En/JPbP/rrL/6Ga7iuH+En/JPbP/rrL/6Ga7im9zWv/Fl6hRRRSMgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5n4if8AJN/En/YOn/8AQDXTVzPxE/5Jv4k/7B0//oBoA5X4E3zTeAhYyZD2sgIB7I6hh+u6vTZY0mieKRQ0bqVZT0IPUV5L8LP+JZrNnaH5Y9U8PWV2o7FkRUP/ALMa9dps1qr3rrrY4X4cSvpyav4WnYmXSbphFu6mFyWU/wAz+Iruq4PXf+Kf+JmjayPlttVQ6fcntv6oT7k4H0U13lDCtq1Pv/TCiiikZBRRRQAUUUUAFRXV1BZWst1dTJDBEpeSSRsKqjqSalrynxhqGt6r4tudOjt7KTStMaIrBLcOnnSlFfe4CHIXcML0yMnJxioxcnZAXL6+n8W3SXFxG8OjRMHtbRxhp2HSWUendUPTqecBbdYP2/xF/wBA/S//AANk/wDjVH2/xF/0D9L/APA2T/41XXGKirIo3qKwft/iL/oH6X/4Gyf/ABqj7f4i/wCgfpf/AIGyf/GqoDermdc1yWSeTS9Lk2zLxc3Q5EA/ur6uf06nsDV1jWNfijtrZ4bK0+2TGDz4J2keP5GckBkAzhCM9iRwarW9vFaQLDCu1F98knuSe5PUmluAW9vFaQLDCu1F98knuSe5PUmu7+Fv/Hlr/wD2FB/6TQVxNdt8Lf8Ajy1//sKD/wBJoKyrfCJne0UUVzCCisy48Q6Va+ILPQZbxRql3G0sVuqlm2KCSzYGFHBwWxkggZrToAKq6jqNppNhNfX06wW0K7ndu3sPUk8ADkk4q1XlnjZNS1Px0LdNS8m10+1hmht2hDp5rtIDIeRlgEAGemTjBNVGLk7ICxPPd+I7+PUtSiaC1hbdY2Df8s/+mknrIR0HRQcDnJq5XPeRrn/Qbj/8A1/xo8jXP+g3H/4Br/jXZGPKrJFHQ0Vz3ka5/wBBuP8A8A1/xo8jXP8AoNx/+Aa/409ewHQ1yWta1JqM0mmaZKyQISl1docHPeOM+vq3boOelbXm1y3solbWQY550hkEdsEbYx5wwPB96SGGO3hSGFFSNBtVVGABS1egBDDHbwpDCipGg2qqjAArsPhh/wAhPxD/ANu3/oL1yVdb8MP+Qn4h/wC3b/0F6zrfCJno1FFFcogqJbq3e6ktVnia5jRXeEOC6q2QCR1AODg+xrkvHHjgeHgml6XHHd6/dJuhgY/JAnQyykdEHYdWPA9ub+Ftm9t4q1uS4upbu9uLWCa5upT80sheQZx0AwAAo4AAFA+V2uerVDd3dvYWc13dzJBbwqXkkkOFVR1JNTVwHxMtvt8mg2Mk88du9y8jrFIU3MiZXOPQ8/UCmld2EVL29uPFV5Hd3cbwaVCwe0s3GGkYdJZR691Q/d6n5vu265z+xR/0E9V/8DHo/sUf9BPVf/Ax67Yw5VZFWOjornP7FH/QT1X/AMDHo/sUf9BPVf8AwMenZgdHXL65rks88ml6XKUdflurtf8Alj/sL6v/AOg/XAqvq+lvb6LfTxarqqyR28jq32x+CFJBqlp8McGnwRxqFUID9SeST6knvSd9gJLe3itYFhhQJGvQf19z71teD/8AkftO/wCva4/9krKrV8H/API/ad/17XH/ALJUVPgYmevUUUVyCCvO/G/jeeO5k8O+HZR/aOMXd6BlbJT2HrIR0HbqaPG/jeeO5k8O+HZR/aOMXd6BlbJT2HrIR0Hbqa42xsYNPthBADjJZmY5Z2PVmPck9TTSNadPm1ex6b8OTIfAGk+bPNPJscGWeQu7fO3JJ5NdTXL/AA6/5EHS/wDdf/0Y1dRSMmISFUsxAAGST2rzvWNYfxfI1rasyeH1OJJBwb8jsP8Apj7/AMf+796X4mPqN1JpOjWl7HbWt4JpLpXhL+csezCHDKdp3nIzzgDpkHn1j8QKoVdU08KBgAae2AP+/tbUqd9WNI6BVCqFUAKBgADgClrn9viH/oLWH/gvb/47Rt8Q/wDQWsP/AAXt/wDHa6dewzoKK5/b4h/6C1h/4L2/+O1S1e78Radot9fLqdgxtreSYL9gYZ2qTjPmn09KNewF/Xddazf+z9P2yai65JblYFP8b/0Xv9MmsK1tVtkYBmkkdt8srnLSMerE/wCcdBxRa2q2yMAzSSO2+WVzlpGPVif846Dip6SXVgbPgb/koVv/ANgu6/8ARtvW34l/4qvxxp/hhPmsLDF9qPox/gjP1z09G9q5XQdWg0PxQ+p3J/dW+j3bkZ+8fNt8KPcnA/Gu5+Hmkz2uiy6vqAzqesSfa5yRyFP3F+gBzjtnFc1T4mzSn7qc/u9TsKKKKyMSOeZLe3knlbbHGpdj6ADJrjPhdC8nhq51eZcTarezXTE9cFsAfmCfxq78R9ROm+BNTZCfNnQWyAdSXO0/oTW1oWnDSNA0/TwBm3t0jbHcgDJ/PNPoarSl6v8AI0KKKKRkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVzfi7xlaeDobWa9s7qeK4ZlDQBSFIwcHJHXn8jQVGLk7Lcy/hJ/yT2z/wCusv8A6Ga7ivIvhP4ytEsrHwutndPds8jGVQvlqMlsk5z09q9dpy3NcTFxqu/UKKKKRgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXBfEvWNWgbQ/D+iXn2G81u7MBvAMmFFGWK+/Nd7XNeNfB0HjHS4YDdy2N7ayiezvIfvQyDvjuPbNAHmmveH/ABdoGp6X4Xj8ZaheaZ4hl8mS5umLT25X5mCMSThl4xT/ABP8PoPhjo58WeFNUv4LmxdGuIZ5t6XSFgCGGBzzXrHhxbuLRILbUNUi1O+gzFc3MYUBnB5BA6EccVyPjjwleeIdWS41vxHHZ+ELYJLLZYCGR1PO9+Pl6dz7DvQB3tncC7soLkLtE0ayAHtkZqamxhBEgjACADaB0x2p1ABXM/ET/km/iT/sHT/+gGumrmPiMwX4b+JCxAH9nTDn/cNAHE6f/wAS2y+FusDhWs4rGU+okiUL+pY167XlOoWrz/ALQrmH/XWNlZ3UZ9CqqCfyY16fY3SX2n215H/q54llX6MAR/On0NZ604v1X6/qYHj/AEdtZ8G3sUIP2m3AuYCOodOePcjI/GtDwzrC6/4a0/U1I3TwguB2ccMP++ga1q4PwL/xJPEHiDwq/EdvP9rtB/0xkxwPYfL+JNHQa96m121/z/Q7yiiikYhXi/xH8WXniJdZ0LS5XtdJ08SRX9wpxJdSquTCvdYxxuPVvujjJPtFfPmm6beeIfFXi/RNPTMs+tXfnzsDstomwN7epPIVepI7AEgKja+p73YknT7Yk5PlL/IVYpkMQhgjiBJCKFBPsMU+gkK8w1D/AJHXxD/12h/9ER16fXmGof8AI6+If+u0P/oiOtqHxjQUUUV2lBRRRQBgeJv9don/AF/N/wCk81RVL4m/12if9fzf+k81RVm92IK7b4W/8eWv/wDYUH/pNBXE123wt/48tf8A+woP/SaCsa3wiZ3tZHinVJtE8J6vqtsqNPZ2cs8ayAlSyqSM47ZFa9c/45tp7zwF4gtraGSaeXT50jijUszsUOAAOST6VzCPNPBli1t8QNLubm4kvNRu2nku7yX78z+UfyUDhVHAHAr2uuJ8F+EJrGVdb1hQNSdCsNuGytoh6jjhnPc9B0HGSe2oZU2m9ArzbX/+R/1H/rwtf/Qpq9JrzbX/APkf9R/68LX/ANCmrWj8aEiGiiiu4oKKKKAMPxT/AMeVn/1+xfzqvVjxT/x5Wf8A1+xfzqvWb3EFdb8MP+Qn4h/7dv8A0F65Kut+GH/IT8Q/9u3/AKC9ZVvhEz0aiiiuUR86eEppNQ0htYu2MuoX80klzcOctIQ7KPoAAAAOB2r0D4d/8jXq3/XjB/6HLXm/gyeK28EWs0zrHEhmLM3QDzXr1r4faFfWr3etX8ZtmvYo44bVxh0jUsQz+jHd93sAM85Ab2OibSppHc1w/j7/AJCnh7/rrP8A+i67iuH8ff8AIU8Pf9dZ/wD0XVU/iRzmRRRRXoFhRRRQBn67/wAi9qf/AF6S/wDoBrGtf+PSH/rmv8q2dd/5F7U/+vSX/wBANY1r/wAekP8A1zX+VRLcRLWr4P8A+R+07/r2uP8A2SsqtXwf/wAj9p3/AF7XH/slZ1fgYmevUUUVxiPBNMA23z4G59RvGY92P2iQZPr0FXqpaZ/qrv8A7CF5/wClElaOl6Xe+JtSbT9PcwwREC8vQMiEddi9jIR26KOT2Bo7FJRgmz0H4df8iDpf+6//AKMauoqppmm2ukabb6fZR+XbW6BI1JJOPcnknuTVupOM4Tx3/wAjHoH/AFxu/wD2jWXWp47/AORj0D/rjd/+0ay67aHwFIKKKK2GFZPin/kUda/68Z//AEA1rVk+Kf8AkUda/wCvGf8A9ANKWwFGiiioER2Ggf8ACSeNdJsnOLdIpZrgZ4eJXiJUjvltg/M9q93AAAAGAK8l8Df8lCt/+wXdf+jbevWq5KvxMJSbSXYKKKKzJOF8cf8AEz8U+FNBHzLJdm8mX/ZiGRn2PzCu6rhdL/4m/wAXNYvfvRaVZx2cZ7B3+Y/j94V3VNmtXRRj2X56hRRRSMgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuW+Imif274Kv4EXdPCv2iH13JzgfUbh+NdTRQVCTjJSXQ8e+CGicahrki+lrCfyZ//AGX9a9hqho2j2mg6Ymn2SbIEZ2A/3mLf1x+FX6bd2XXqe0m5BRRRSMgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKpatq+n6Fp0uoapdxWtpF9+WQ4A9vc+woA8g+IZh8B+JTrvhfXGi12/lUz6IQZlvCT12DlT/kYrO8PSH4oeLpbfx5qb2c9nJmDw2FaBTjnJzyx9uv0FdTouvfC+xm1zxlZajFdXZlMtxPKjecm44CxowBAPTgc9zWVqPir4e/EzULXT9QtdS0nU2I+wX9xAIXLZ4CuGORns3HpzQB7QqhVCgYAGAKz9d0+61XQ7yxstSl025njKR3cS7miPqBkfzB54INX0XZGq5JwAMnvTqAPH3+EfjML8nxX1kt6FZQP/R1cj4l+Fni3RYJte1nVoPFGnWKGee2vbudWZFGSRz1A/wBr8DX0dXM/ET/km/iT/sHT/wDoBoAlsFtfEnw8tltrVbW11DTFEVuMYhV4+FGPTIH4VT+Gl8b7wFpwfPm24a3cHtsYgD/vnFWvh/8A8k58Nf8AYMt//Ra1keBP+Jd4j8WaGflWG+F1Gv8AsyjPH0AX86fQ1jrTku1n+h3VeR+NPGOk6N4+03VrCf7Td2iSWt/AgIynYbiMZBJ/IV65XmHxT8A/2tbvrulw5v4lzcRIOZkHcf7QH5j6CiO5eGcOe09mdX4I8UP4u0SXUntVtgLholjD7uAFOScDnn0rpK87+C+P+EHkx/z+yZ/75SvRKHuRWio1GkFV7Wws7Fp2tLWGBriUzTGKML5kh6s2OpOByasUUjIKKKKACvMNQ/5HXxD/ANdof/REden15hqH/I6+If8ArtD/AOiI62ofGNBRRRXaUFFFFAGB4m/12if9fzf+k81RVL4m/wBdon/X83/pPNUVZvdiCu2+Fv8Ax5a//wBhQf8ApNBXE123wt/48tf/AOwoP/SaCsa3wiZ3tFFFcwgooooAK821/wD5H/Uf+vC1/wDQpq9JrzbX/wDkf9R/68LX/wBCmrWj8aGiGiiiu4oKKKKAMPxT/wAeVn/1+xfzqvVjxT/x5Wf/AF+xfzqvWb3EFdb8MP8AkJ+If+3b/wBBeuSrrfhh/wAhPxD/ANu3/oL1lW+ETPRqKKK5RHlHwy+G17pWn2k/ieJBNaSO1rZBg6o29iJXIJDNz8o6L16/d9XoooBu4Vw/j7/kKeHv+us//ouu4rh/H3/IU8Pf9dZ//RdXT+JAZFFFFegWFFFFAGfrv/Ivan/16S/+gGsa1/49If8Armv8q2dd/wCRe1P/AK9Jf/QDWNa/8ekP/XNf5VEtxEtavg//AJH7Tv8Ar2uP/ZKyq1fB/wDyP2nf9e1x/wCyVnV+BiZ69RRRXGI8K8M6TfeJL6+0+wZoIYtQu/tl7jIhBuJDtXPBkIPHYA5PYH2nStKstE02HT9PgENvEMKo5JPUkk8kk8knkmpre1t7ONo7aCKBGdpCsSBQWY5ZsDuSSSe5NTUFOTYUUUUEnCeO/wDkY9A/643f/tGsutTx3/yMegf9cbv/ANo1l120PgKQUUUVsMKyfFP/ACKOtf8AXjP/AOgGtasnxT/yKOtf9eM//oBpS2Ao0UUVAjZ8Df8AJQrf/sF3X/o23r1qvJfA3/JQrf8A7Bd1/wCjbevWq5KvxslhTJZUhheWRgqIpZiewHJp9cv8RNSOmeBNUkU4kli+zoB1Jc7ePwJP4VmVCPNJR7mf8L4nn8P3mtTKRLq19LcnPXbuwB+Yb867is3w9po0jw7p2n4wbe3RG92x8x/PNaVN7jqy5ptoKKKKRAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeGfHCy8RaJqFr4o0zVNS/sxikV1aRXckaIw6HCMMBhwSO/wBa7TwtovhnxZ4dtNYsbnWTFOnzJ/bd3mNx95T+96g12mqabaaxpdzp19EJbW5jMciHuD/WvAfBuo3fwh+JVz4U1eVjot+4MEzfdBPCSe2fut/9agDa+KngnV9B0OXX/DfiTXY4bbBubSTUZnATONyktnjuCTXsumMz6VZu7FmaBCSTkk7RUesaZDrei3umTsVhu4WhZl6gMMZFWbaEW1rDApJWJAgJ6nAxQBLRRXO3/jLT9N8S2eg3NtereXpItyIh5cmOpDZxx+dAHRUVj6f4ih1LVrvT4bK+V7R/LmlkiAjDYyAGzzwQePXnFbFABRVb+0bL/n8t/wDv6v8AjR/aNj/z+W//AH9X/GgCzRVdb+zZgq3cBJ4AEg5/WrFABRXn3iDxxrk3i6Twr4O0y0vNQt4xLeXN65EEAPQELgk8jv8Ah1o8O+OtXj8Q3nh3xlp9rY6hb2xu0ubRmMEsQ6kbskYwe/Y9KAPQaK8rsfG3j7xdFNqnhLQtJj0ZHZYH1ORxLc7TglQpAH48e9a+ifEZtY8H65qD6f8AZNZ0aOQXdjK2QsiqSOf7pwfyP1oA72isHwdrs3iTwdputXEMcU11D5jRx52qckcZ+lcpp3xIv734Xaz4rextlubCaWNIQW2MFKgZ5z3oA9JqK5uYLO2kubqaOGCNdzySMFVR6knpXli+NfiNqfh9fEmkeHtITShD53k3Urm4mUDLMoBAA4OAecetVPiB4pvvFXwQGsaXZQizvI/9OEsnzQYcD5f73zDH0oA9fgniubeO4gdZIpVDo69GUjIIqSuT+HU+tz+D7H+27O2tmWGNbYW8hbfFsXazeh9q6ygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAry/4wfZ4rnwpd6tGZNAg1LN+CpZBkfIWHcda9QqG6tLa+tZLW7giuLeQbXilQMrD0IPBoA8/1bwFo3ijxB4a8S6LHpT2NtIXuDFgJcRj7uNoIYhh3x6VT+NmpaK/hNtGeSGbXZZYvsFtGQ0yvuGGAHKjGRnvXpOn6faaVYQ2Nhbpb2sI2xxRjCqPQVTfw1osmvjXZNNgfVFQRrcuuWUDpjPTr1HNAF2xWZNPtluDmdYlEh/2sDP61YoooAK5n4if8k38Sf8AYOn/APQDXTVzPxE/5Jv4k/7B0/8A6AaAH/D/AP5Jz4a/7Blv/wCi1rIn/wCJX8ZbaTpHq2nNGfeSM5/9BUfnWv8AD/8A5Jz4a/7Blv8A+i1rI+I3+g3HhvXRx9h1JFkPpG/Df+ggfjTRrR1ly90zuqKKKRkUtO0qz0lbhLKIRRzzNOyDoHYDOB26Z/GrtFFA229WVdS1G00jTbjUb6YQ2tvGZJZD2ArzkfF68ls21a28Da3NoQy324bQSg6uE7j3zivQda0Ww8Q6TPpeqQGeznAEkYdkzg5HKkHqBXN+M/FOleBPDCWcaCS7kh+zafp8fzPKcbVGOu0cZP8AWgR0eh63YeItGttV02bzbS4XcjYwR2II7EHitCuN+F3hu78LeArLT7/5bti08sf/ADzLnO38Bj8c12VABXmGof8AI6+If+u0P/oiOvT68w1D/kdfEP8A12h/9ER1tQ+MaCiiiu0oKKKKAMDxN/rtE/6/m/8ASeaoql8Tf67RP+v5v/SeaoWZUUszBVUZJJwAKze7EDMqKWZgqqMkk4AFd38LradND1G9kheOG/vvtFsXGDJH5MSBsdQCUbGeowehrB8JeEm8SPHqmqRFdGUh7e2cYN4ezuP+efov8XU8YB9XAwMDpXNVmnohMK4Tx34u1jTdY0nwz4at7eTWtU3Mstzny4I16sQOvf8ALoa7uoLy6tbC0kvLyaOC3gUu8shAVB3OTWIjy7UfEPjv4f3en3nia907WdFurhbeZ7eDypLdm6EYwCOvr07V6wCCMjoa8ellvPjH4htPs0Elv4M0y4ErTyLta+lXoFH93/E9+B7D0oAK821//kf9R/68LX/0KavSa821/wD5H/Uf+vC1/wDQpq1o/GhohoooruKCiiigDD8U/wDHlZ/9fsX86r1Y8U/8eVn/ANfsX86qTTRwQvNM6pGg3MzHAArN7iCaaOCF5pnVI0G5mY4AFd78NtIvbS2v9UvIWt11BozDDIMSBEBAZh/CTuzjqBjPPAzfB3g6TUZodb1uBkt0IksrGQYJPaWUevdVPTqecBfS65qtTm0QmFFFef8AxR8bf8I3p9rpVpdRWup6qxiiuZm2pbR9GlJ9s8D1rERma78UbhPiZpHhrRkjks2vFtr66ZNwLnrGh6ZA6/WvU6+etW1HwbouqeALTRtas7i20+/aW8uBICSx27pHPuQa9+sr221GyhvLOdJ7aZQ8cqHKsD3BoAnrh/H3/IU8Pf8AXWf/ANF13FcP4+/5Cnh7/rrP/wCi6un8SAyKKKK9AsKKKKAM/Xf+Re1P/r0l/wDQDWNa/wDHpD/1zX+VbOu/8i9qf/XpL/6AaxIHWOxid2CosQJYnAAxUS3ESu6xozuwVFGSxOABXV/D/Qbu61KPxJcq1vaLC8dnEy4eYPjMhz91cD5R1Oc9MZq+EfCLeIHi1bVoSukqQ9raSDBuj2kkH9zuFP3up4wD6pXLUqX0QmFFFFYiPHJ9PPxB+K+vaLr2pXkGn6VGn2TT4JjEJQRzIcdf/rirvw/lutD+JGveDrfUrjUdGtIEnhaeTzGtnOMx7vxPHt9aybDw9D8WvGuu6lrU8lvaaPcmxtYbMLHIcZyzvjcfp7mr/hGxPw7+KJ8HWkoudK1S2a8ieRF86J1zkM4ALDg9fUe+QD12iiigDhPHf/Ix6B/1xu//AGjWXWp47/5GPQP+uN3/AO0ay67aHwFIKKKK2GFZPin/AJFHWv8Arxn/APQDWtWT4p/5FHWv+vGf/wBANKWwFGiitDw34bm8X3BkkLxaFExWWVSQ12w6xoeydmYfQdyMpSUVdiNH4dWNze+JH1yOPGnQWs1okzf8tpGeMnZ6qvlkE9MnAzg49SqOCCG1t47e3iSKGJQkcaKAqqOAAB0FSVxylzO5IVwvjv8A4mfiLwroA+ZZ703Uy/7EQzg/UFvyruq4XTv+Jv8AF/VLv70WkWSWqHsHf5if/QhQjWjo3LsjuqKKKRkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhIUEkgAckmvPn0qy+JHia11a4tIpND0iRhaSuvN7Lnlh/0yUjj+8R6Vz3xL+KOi2mtr4WnuLoWSn/iaSWahnYf88VJIxn+I54HFS2/7QHga0tore3stVihiUIkaWyAKo4AA30AerX13Fp+n3F5LxFbxNK30UZP8qi0fUk1jRrLUo42jS7gSZUbqoYZwfzrwzx98dtG1vwhe6Todtfrc3ieU0lxGqKiH73RiSSOPxr2LwR/yImg/wDXhD/6AKAN6uK+JekjWdDtra03DXFuFl0t0OGSVeS2eygZz+HfFdrWUfDunNrq60y3Jv0Qorm8mKqp6gJu2AHA4x2oAxvhxrFvq/hOIrG0V9BI0WoRSHLrcA/OW+p5/H2rrW+4cruGOnrWHpng/RdH1e51WxguIry6bdcOb2ZxKemWVnKnr6cVu0AecNYaPuP/ABZ9jz1+x6fz/wCRKT7Bo/8A0R5v/APT/wD45XpFFAHn1nY6St7AU+E7WrCRSJ/slgPKOfvZWTPHXjmvQaKKAPKvBM0em/GTxtp16yx3d68VxbBzgyR4P3fXGR+XtW34w8TWd++r+CrFJ59Xn0qaXMKgpH8pwrnOQTxgY7itfxR4F8PeMPKbWLHzJ4eI543MciD03Kensaf4Y8E6B4PilXRrEQyTf62Z3LySfVjzj26UAYXwf1Sxu/hjpccMsYeyjMNymQDG4JzuHbPWuK0ZhrN/8V9X0/8AeWE8DQxSJysjrG2SPX1/Gu61f4R+DNa1KS/uNMaKeY5m+zzvEsp/2lU4/LFdTpWi6boemR6bpllFbWaAgRIvHPXPqT6mgDj/AIY6rYwfB7SruW6iSC1tWEzs4AQqTkH0Nee+HZFm/Zv8USr917mdh9CUr0Zfg74IXVTfjSDkv5ht/Ofyd3rszj8OntW5D4L8PQeHrzQYtPC6ZeO0k8Amk+dmIJOd2R0HQigCp4eAHwr08Acf2Qn/AKKry6w5/ZUuv91//R9e42+m2lrpUemQxbbOOEQLHuJwgGMZJz075zWbbeENBtPC7+GoLBV0h1ZGt2kduGOT8xJbrz1oAl8KkHwhopByPsMHT/cFa9YPhXwhpPg6xms9IWdYJZPMZZZjJg4xxnoK3qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuZ+In/JN/En/AGDp/wD0A101cz8RP+Sb+JP+wdP/AOgGgB/w/wD+Sc+Gv+wZb/8AotaZ8QtP/tLwHq8IGWSHzl+qEP8A+y0/4f8A/JOfDX/YMt//AEWtdBNEk8EkMgykilWHqCMGgqEuWSl2M7w3qH9q+GdMvictPbIzn/awN365rUriPhbK6eFZtLlOZdMvZrVgevDbv/Zj+VdvTe46seWbQUUUUiDnPHfiqPwb4QvdZaMSyRAJDGejSMcKD7dz9K8R8GfEHwXp1+/iTxPdahqfiaflpmtsx2w/uRjPGPX8vf6RooAxfC3inTfGGijVdKMxtjI0Y81NrZHXj8a2qKKACvMNQ/5HXxD/ANdof/REden1y+peBrHUtWudS/tDUraa52mVbeVQpKqFBwVPYCrpyUZXYI5iit7/AIV3af8AQb1r/v8AR/8AxFH/AAru0/6Detf9/o//AIiuj6xHsVcwaK3v+Fd2n/Qb1r/v9H/8RR/wru0/6Detf9/o/wD4ij6xHsFzgfFLKkmjMzBVW+Ykk4AH2eatjwl4SbxI8eqapEV0ZSHt7Zxg3h7O4/55+i/xdTxgHo2+GWjT3NrLf3eo38dtL5y29zKhjZsEDcAoyPmPGcHvkcV2gGBgdKyqVebYTYAYGB0ooorEQV5L8W9E8Z+I9U02y0jRP7Q0KDE1xEbuOFbiTPCtlw2AAPzr1qigDymy1z4r2kUFrD8PdLt7WMBFSO9iARfYCSvVVyVGRg45FLRQAV5tr/8AyP8AqP8A14Wv/oU1ek1j6n4U0LWbz7ZqGmQT3GwR+YwIYqCSBx6ZP51cJcsrgcRRXV/8IB4V/wCgLb/m3+NH/CAeFf8AoC2/5t/jW/1jyHc5Siur/wCEA8K/9AW3/Nv8aP8AhAPCv/QFt/zb/Gj6x5Bc818XTR2+mW00zqkaXkTMzHAAzXR+DvB0mozQ63rcDJboRJZWMgwSe0so9e6qenU84C9TF4D8LQ3EM66JaGWFxJGWUttYdCAT1FdFWU6rlsFwooorIQVkax4X0LxDJFJrGk2l88QIjM8YYqD1xmteigDyjxZ8KtPuPEnhiTRPDNiNPiuy2pCNY0Bi4xuBILDrwM16hZ2dtp1nFZ2cCQW0KhI4oxhVA7AVPRQAVwPxHurezvvD011PFBF50w3yuFXPl9Mmu+pskUcq7ZEVxnOGGacXZ3A8g/4SHRf+gxp//gSn+NH/AAkOi/8AQY0//wACU/xr1v7Ha/8APtD/AN8Cj7Ha/wDPtD/3wK3+sPsO55J/wkOi/wDQY0//AMCU/wAaP+Eh0X/oMaf/AOBKf41639jtf+faH/vgUfY7X/n2h/74FH1h9gueLa3r2jyaDqKJq1izNaygKtwhJO08da1fA3hFvENvZ6vq0JXSVRHtbVxg3RwCJHH9zuFP3up4wD6p9jtf+faH/vgVNUTquQXCiiishBRRRQB55qnw71W18SXeveDvER0a4vjm8t5bcTQyt/eweh/DuelXfCfgKbR9cuPEWu6xJrOuzx+V9oaMRpEn91FHT/PHWu2ooAKKKKAOE8d/8jHoH/XG7/8AaNZdd3rHhzStfMB1O185rfd5TCR0K7sZ5Ug84H5Vmf8ACvfDP/PhN/4GT/8Axdb06ygrWGmcvRXUf8K98M/8+E3/AIGT/wDxdH/CvfDP/PhN/wCBk/8A8XV/WF2C5y9ZPin/AJFHWv8Arxn/APQDXff8K98M/wDPhN/4GT//ABdMl+HPhWaJ4pdOkeN1KspvJ8EHqPv0PEJrYLnDeG/Dc3i+4MkheLQomKyyqSGu2HWND2TszD6DuR6/BBDa28dvbxJFDEoSONFAVVHAAA6CiCCG1t47e3iSKGJQkcaKAqqOAAB0FSVzyk5O7EFFFFSA2R1ijaR2CooLMT2ArifhgjXOi6hrkqkSatfy3AJ/uA4A/Ahq0viDqX9l+BdVnBw8kPkJjrlzt4/Ak/hWl4a03+x/DOm6fjDQW6K/+9jLfrmn0NVpSb7v8jUooopGQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGXP4b0K6nee40XTppnOXkktUZmPqSRzUf/CJ+HP8AoX9K/wDAOP8AwrYqKW5t4CBNPFGT0DuB/OgDM/4RPw5/0L+lf+Acf+FasUUcESRQxpHGgCqiDAUDoAB0FRx3trK4SO5hdz0VZASanoAKKwNT8X6fpOtWmk3MF59rvCwtlSHcJdoycHPYeuKsDxHYpeQWt2s9lNcNshF1EUWRv7ob7u72zn2oA16KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArmfiJ/yTfxJ/wBg6f8A9ANdNXM/ET/km/iT/sHT/wDoBoAf8P8A/knPhr/sGW//AKLWujrnPh//AMk58Nf9gy3/APRa10dAHC+G/wDiWfE3xRpnRLtIr+Ifo5/76b9K7quF8Q/8Sz4o+GdS6R3sUtjIf1Qf99N+ld1TZrV1tLuv+AFFFFIyCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4Xx9/xMta8L+HxyLq++0TL6xxDJB+oJ/Ku6rhbL/ib/GHULj70Oj2KW6+gkk+bP5Fh+Fd1TZrU0UY+X5hRRRSMgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4/XPFl94f8U2llqEdpDpF7HJ5N8dxIlUZEbD1I5B79K3tDn1S502OfVobeCeQbhFDuOwdgc9/5Vz3i7SL3xYJ9Jl0+8t7GCIzw3cckWXuR/q9o37hjryBk+nfY8KXWt3Og248Q6c9lqUahJsyRushHG5djHr1wcdaAJvE1/PpfhjUr62BM8Fu7x4GeccGuQt7TRUiUz/DvUr2dgDJc3dnbTSyt3ZnaQk16DNFHcQvDKivHIpV1YZDA8EGueXQNcs1EGmeJTHaLxHFd2aztGOyh9ykge+T7mgCno0OjrqsBtvAU2mTZO27axtoxHx/eRiw9OB3rsKxLHT/ABDDeRyXuvW1zbjO+JNP8stx/e8w4/KtugDzrxp/yVbwD/v3X/oArR+LFsk/wz1l2O17eIXETjgo6MCCD2NVfFWmaxffEHwvqlno1zPZaW85nlWWFch0AG0NICefYVd8V6ZqnjLSxoS2U2nWNxIpvbieSMsYgQSiKjNljgDJwAPWgDa8K382qeEtIv7n/X3FnFJIfVioJNa9RW1vFaWsVtAgSGFBGijsoGAKloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuZ+In/JN/En/YOn/wDQDXTVzPxE/wCSb+JP+wdP/wCgGgB/w/8A+Sc+Gv8AsGW//ota6Ouc+H//ACTnw1/2DLf/ANFrXR0AcR8Uo3i8M22rRDMul30N0COuA23+ZH5V2kUiTRJLGdyOoZT6g9KzPE+n/wBq+FtUsQMtNbOEH+1jK/qBVHwBqH9p+BNInJyywCFvqhKf+y0+hq9aS8n+Z0lFFFIyCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGZURnYgKoySewpa5vx9qX9leBtWuQ2HaAwp67n+QY/PP4UFRjzSUV1Mr4Yq13peqa9IDv1XUJZlJ/uA4Ufgd1dzWR4W03+x/C2mWBXa8Nugcf7ZGW/Umtem9yqsuabaCiiikZhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzPxE/5Jv4k/7B0/8A6Aa6auZ+In/JN/En/YOn/wDQDQA/4f8A/JOfDX/YMt//AEWtdHXOfD//AJJz4a/7Blv/AOi1ro6ACuF+G/8AoLeIdCPH9n6k5jHpG/K/+gk/jXdVwtr/AMSv4yXsXSPVtOSYe8kZ2/yBP400a09Yyj8/uO6ooopGQUUUUAFFFFABRRRQAUUVzXiXxO+nSrpelrHPq8q7sPzHbIf+WkmO3XC9WPoASGlfRAdLRXnv9p+Kv+g1Z/8Agv8A/tlL/afir/oNWf8A4L//ALZV+yn2Cx6DRXn39p+Kv+g1Z/8Agv8A/tlH9p+Kv+g1Z/8Agv8A/tlHsp9gseg0V5nqPiTxDpVk91da7ZrGvAA07LOx6Ko8zknsK2vhz4h1jxDpGoy60IBc218YVEKbfkMUbgHk/N85BxxUyg47gdlRRRUgFFFFABRRRQAUUVynibxNLb3B0bRij6oygyzMNyWaHozDu5/hXv1PHVpNuyA6uivNRBqgAz4l1gn18yP/AOIo8jVP+hk1j/v5H/8AEVp7GQ7HpVFea+Rqn/Qyax/38j/+Io8jVP8AoZNY/wC/kf8A8RR7GQWPSqK8o1S+u9Iszc3PiXWTk7Y40eMvI56Ko2ck/wD1zxWn8LtT1u/m1uPWdQlujE8LRJJtPkhg2V3ADd0GT+QFTKDjuI9EoooqACiiigAooooAKKK5rxN4mbTnXS9LVJ9XmXcFblLdOnmSY7dcL1YjsASGlfRAdLRXlQ8O2UmZLwzXly53S3E0rbpGPUnBwPoAAOgpf+Eb0n/n0/8AIj/41r7FjseqUV5X/wAI3pP/AD6f+RH/AMaP+Eb0n/n0/wDIj/40exfcLHqlFeQ6jpmgaXZPd3cG2NeAA7lmJ6KozyT2FUvAMMi/EW1uyrWyz2s6raLIWWNBsI3c8t3J6dAOmTMqbirhY9rooorMQUUUUAFFFFABRRRQAUVi+I/EcOg20arGbnULglbW0VsNIw6kn+FB1LdvckA8gsniOUeZceKb6OVvmZLaC3Eak9lDRM2B05JNXGDlsB6TRXm//E9/6GzVv+/Vp/8AGaP+J7/0Nmrf9+rT/wCM1XsZDsekUV5v/wAT3/obNW/79Wn/AMZqO4uNXtLeS4uPGOpxQxqWd3jtAFA7n9zR7KQWPTK4X4hf8TLU/DPh8ci8vxNKo7xxjLD8ifyrF8BeJNe1Pxu1teapdXOlS2E0sEV3DEsm5JIgHOxFIyHPynt154G1bf8AE3+Md3L1h0awWIegkk5z/wB8lh+FRaz1NaOknLsjuqKKKkxCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5n4if8k38Sf8AYOn/APQDXTVzPxE/5Jv4k/7B0/8A6AaAH/D/AP5Jz4a/7Blv/wCi1ro65z4f/wDJOfDX/YMt/wD0WtdHQAVwvjj/AIl3ijwlrY+VY702krf7Moxz9AGruq5D4m2TXngO/ePPm2pS5jI7FWBJ/wC+d1NbmtF++k+un3nX0VU0q9XUtIsr5MbbmBJRj/aUH+tW6Rm1bQKKKKBBRRRQAUUVyvirxamlSrpWnPBJrEy7gJG+S2T/AJ6Sf0Xqx9ACQJXAk8TeJn0+QaXpapNq8y7gG5S2Q8eZJ+uF6sR2AJHOWNillG/7x5p5m8ye4lOXmc9WY/oB0AAAwBUFilnZRv8A6Ys08zeZPcSyAvM56sx/QDoAABgCrf2y2/5+If8AvsV104KPqMmoqH7Zbf8APxD/AN9ij7Zbf8/EP/fYrQZNVTUdRttKsnurp9sa8AAZZ2PRVHcnsKjvtZsNPtHuZ7lCq8BUIZnJ6KoHJJ9K5N3udTvRqGoDa65Fvbg5W3U/zc9z+A46q/YAd7nU70ahqA2uuRb24OVt1P8ANz3P4Djr3vwt/wCPLX/+woP/AEmgria7b4W/8eWv/wDYUH/pNBWVZWiJne0UUVzCCiiigAoorifG/ju20G5j0S2uoYNVuIvMM0w/d20RJG89mYkEKvtk8DkSuBb8TeJpbe4OjaMUfVGUGWZhuSzQ9GYd3P8ACvfqeOuFY2MWn25iiLuzMXklkbc8rnq7HuTWNY694b0+3MUWrQOzMXklkk3PK56ux7k1Z/4SzQP+gta/9911QiooZs0Vjf8ACWaB/wBBa1/77o/4SzQP+gta/wDfdaXQzZqlqmqW2kWZubkscnbHGgy8jnoqjuT/APXPFZ1z4z0G3hLrqEU8hIWOGI7nkY9FUeprBAub68Oo6iVNyQViiU5S3Q/wr6k927/TAov2AALm+vDqOolTckFYolOUt0P8K+pPdu/0wK7X4Yf8hPxD/wBu3/oL1yVdb8MP+Qn4h/7dv/QXrOqvdEz0aiiiuUQUUUUAFFFct448UzeGtNt1srSS51C9kMNuFTcseBlnYdwAOnc4HHUG4EnibxM2nOul6WqT6vMu4K3KW6dPMkx264XqxHYAkc3Y2K2SSEyPPcTN5lxcSnLzP3Zj+gA4AAAwBWHY6tDZJITp2sT3EzeZcXEtuC8z92Y5/AAcAAAYAq3/AMJKn/QK1X/wH/8Ar11U4KPqM26KxP8AhJU/6BWq/wDgP/8AXo/4SVP+gVqv/gP/APXrW4zbqrqOo22l2T3d3JtjXgADLMT0VR3J7CsqfxXBbW8k8umaoscal2P2boAMnvWEZbjV7pNSvhtwM21vnKwKe59XI6nt0HfKv2AV3udUvV1DUF2sufs9tnKwA9z6ue57dB3zueD/APkftO/69rj/ANkrKrV8H/8AI/ad/wBe1x/7JUVFaDEz16iiiuQQUUVna5rmn+HdJm1LUpxFbxD0yzseiqO7E8AUAaNFcp4D8UX3iuw1O6v7GOya3vjBFCpJZY/KjkXec4LfvOcYHbtk9XQAVi+I/EcOg20arGbnULglbW0VsNIw6kn+FB1LdvckA1/F/jHTfB+nxzXk0IurljHawSSrH5rd8seFUZGW7ZHUkA+fWniLQRczahqHifSbnU7gDzpvtcYVVHSNBu+VB2HfknJJNXCHMwNi0tJhczahqEwudTuAPOmxhVUdI0H8KDsO/JOSSauVj/8ACW+G/wDoYNK/8DI/8aP+Et8N/wDQwaV/4GR/411KyVkUbFFY/wDwlvhv/oYNK/8AAyP/ABpD4u8NqpJ8QaXgDPF5Gf607oDVuLiG0t5Li4lWKGNSzu5wFA7muJvLybxDcLNMjRadG263t2GDIR0kkH8l7dTz0Ly8m8Q3CzTI0WnRtut7dhgyEdJJB/Je3U89JqNwNjwQwX4gQMxAA0u6JJ7fvbeuh+Gam9stY19wd2qahJIhP/PNThR+BLCvPjqX9k3l9dBtr/2JdxIe4Z5bdB/6FmvYvCWm/wBj+EtLsSu14rdd4/2yNzfqTXNV+Jmi0pt93/X6GzRRRWRiFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzPxE/wCSb+JP+wdP/wCgGumrmfiJ/wAk38Sf9g6f/wBANAD/AIf/APJOfDX/AGDLf/0WtdHXOfD/AP5Jz4a/7Blv/wCi1ro6ACq2oWiahpt1ZSfcuIXib6MCP61ZooBOxx3wvu3ufA1rBL/rrKSS1kHoVY4H5EV2NcL4M/4lvjTxdox4X7St7EvtIMtj6fKK7qm9zWsvfb76/eFFFU9X1KLRtFv9UnR3hsreS4kWMAsVRSxAzgZwKRkXKK8o8B6zreufEKTUNXumRbrS5Xi0+KQmG1QSRbR/tPhjufuTgYAFer0Daa0YV5LrOl6deeOvEUtzYWs8nnQDfLCrHHkR9yK9arzDUP8AkdfEP/XaH/0RHWtH4wRn/wBg6P8A9Amw/wDAZP8ACj+wdH/6BNh/4DJ/hWhRXbZFGf8A2Do//QJsP/AZP8KP7B0f/oE2H/gMn+FaFFFkByuvaZp9nd6LJa2NtA5vWUtFEqkjyJjjIHsKmqXxN/rtE/6/m/8ASeaoqjqxBXbfC3/jy1//ALCg/wDSaCuJrtvhb/x5a/8A9hQf+k0FY1vhEzvaKKK5hGF4k8XaT4VSzGoyuZ72dYLe3iAaSQkgEgZHyrnJJ4H1IB3a8D1fdqXj3Wnk33Gotq8VjbDlmESeU+xB2UZZjjHcmvfKBtWCvNtf/wCR/wBR/wCvC1/9Cmr0mvNtf/5H/Uf+vC1/9CmrWj8aBENFFFdxQUUUUAYfin/jys/+v2L+dV6seKf+PKz/AOv2L+dV6ze4grrfhh/yE/EP/bt/6C9clXW/DD/kJ+If+3b/ANBesq3wiZ6NUc88VtBJPPKkUMSl5JJGCqigZJJPAAHepK5/x3/yTzxL/wBgq6/9FNXKI4/TPH+p+JviJpUemH7N4Zdpo18yIeZfERMwk5GUQFRtAwTyT1AHqFeP+DbaW+8Z6dJaxF4NOV3uZB92MtEVVc/3juzjsOT2z7BQyppJ2QVw/j7/AJCnh7/rrP8A+i67iuH8ff8AIU8Pf9dZ/wD0XV0/iRJkUUUV6BYUUUUAZ+u/8i9qf/XpL/6AaxrX/j0h/wCua/yrZ13/AJF7U/8Ar0l/9ANY1r/x6Q/9c1/lUS3ES1q+D/8AkftO/wCva4/9krKrV8H/API/ad/17XH/ALJWdX4GJnr1FFFcYirqWoQaTpV5qN0WFvaQPPKVGSERSxwO/ANeJ3OpXvi/UYtd1QeXAo3afY5ytuhHDt6yEdT26CvVvHf/ACTzxL/2Crr/ANFNXk2k/wDIHsf+veP/ANBFNG1FJu7O++F//Hl4g/7Cv/trb13dcH8LiGsNfccq2qnBHQ4t4AfyII+oNd5SM5/EzhPHf/Ix6B/1xu//AGjWXWp47/5GPQP+uN3/AO0ay67aHwAgooorYYVk+Kf+RR1r/rxn/wDQDWtWT4p/5FHWv+vGf/0A0pbAUaKKKgRmTac+q+MfD9ivMc8jRzL6x7o3b9EJ/CvoavIvBUMcvxFs2dAzR6dcyIT2bfCufydh+Jr12uSr8RUpXioroFFFFZmYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXM/ET/km/iT/sHT/+gGumrK8S6S+veF9U0mOVYnvLWSBZGGQpZSAT7c0AUfh//wAk58Nf9gy3/wDRa10deT6PrXxB8G6NZ6PfeBV1O2sYUt47rTr1SXVQADsILZwPar//AAte+i4uvh54sjP/AEzsi4/PigD0mioLO4+2WNvc+VJD50ayeXKuHTIzhh2I6Gp6AOA1m6t9A+LWm6hczxW9rqGnyW8skjhVBQ7sknp/CK7XT9Ss9VtRdWFzHcQFiokjOVJHBwa+ePiV4Wl8OeJXkTe1jeEywOxJx/eQn2/kRXs/w3tfsfw+0iPGC0RlP/A2Lf1qmtLnZXpRVKM079DqqxfGFrPfeCNftLWJpbifTriKKNRy7NGwAHuSa2qKk4zhvh/4RutIhTVtX+TU5bcQrbK2Vto+CVJ/iclQSegwAOhJ7miigbd9WFeYah/yOviH/rtD/wCiI69PrzDUP+R18Q/9dof/AERHW1D4wQUUUV2lBRRRQBgeJv8AXaJ/1/N/6TzVFUvib/XaJ/1/N/6TzVFWb3Ygrtvhb/x5a/8A9hQf+k0FcTXbfC3/AI8tf/7Cg/8ASaCsa3wiZ3tFFFcwjC0rwhpOka9qetwRu9/qMpkkklbd5YIAKpx8oO0E9zxk8DG7RRQAV5tr/wDyP+o/9eFr/wChTV6TXm2v/wDI/wCo/wDXha/+hTVrR+NDRDRRRXcUFFFFAGH4p/48rP8A6/Yv51Xqx4p/48rP/r9i/nVes3uIK634Yf8AIT8Q/wDbt/6C9clXW/DD/kJ+If8At2/9Besq3wiZ6NVPVtNh1nRr7S7hnWC9t5LeRoyAwV1KkjIIzg+lXKK5RFDRtGsdA0uHTtPi8uCIdzlnY9WY9SxPJJq/RRQAVw/j7/kKeHv+us//AKLruK4fx9/yFPD3/XWf/wBF1dP4kBkUUUV6BYUUUUAZ+u/8i9qf/XpL/wCgGsa1/wCPSH/rmv8AKtnXf+Re1P8A69Jf/QDWNa/8ekP/AFzX+VRLcRLWr4P/AOR+07/r2uP/AGSsqtXwf/yP2nf9e1x/7JWdX4GJnr1FFFcYjn/Hf/JPPEv/AGCrr/0U1eXeENFu/FVtaWtq7wafDDGt5er1B2jMUZ7v6n+H64Fe039jb6np11YXkfmWt1E8MybiNyMCGGRyOCelM0zTLLRtMttN063W3s7ZBHFEucKB7nkn1J5J5NBUZNbDtP0+00qwhsbGBILaFdscaDgD+p7571ZoooJOE8d/8jHoH/XG7/8AaNZdanjv/kY9A/643f8A7RrLrtofAUgooorYYVk+Kf8AkUda/wCvGf8A9ANa1ZPin/kUda/68Z//AEA0pbAUaKKKgRs+Bv8AkoVv/wBgu6/9G29etV5L4G/5KFb/APYLuv8A0bb161XJV+NksKKKKzAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDB8YeGofFfh2fTpCFm/1lvIf4JB0P0PQ+xNaGi2R03QtPsW621tHCfqqgf0q9RQVzvl5egUUVieKrzXrPR8+HNOivdSkkEaLNJsSMHOXb1Ax096CTVF3bNdtaLcRG5VA7QhxvCngEr1x71NXjPw1sNV034weJoNb1AX+omwieedRhdzFTtUegzgdOnSvZqACvMNQ/5HXxD/ANdof/REden15hqH/I6+If8ArtD/AOiI62ofGNBRRRXaUFFFFAGB4m/12if9fzf+k81RVL4m/wBdon/X83/pPNUVZvdiCu2+Fv8Ax5a//wBhQf8ApNBXDxRXd/fxaZpkInv5hlVJwka95HPZR+ZPA5r1zwx4cg8M6UbSKV55pXM1zcPwZZSAC2OwwoAA6ADr1rCtJWsJmzRRUc5lFvIYApm2nYG6FscZ9s1ziKmo61pukzWcV/dxwSXs629sjZJkkPQAD+fSr9eCeIvDWu2HjfwVrfibWBfapd6xFH5MC7YLZAwO1AeTz3/n1r3ugArzbX/+R/1H/rwtf/Qpq9JrzbX/APkf9R/68LX/ANCmrWj8aGiGiiiu4oKKKKAMPxT/AMeVn/1+xfzqvVjxT/x5Wf8A1+xfzqvWb3EFdZ8MP+Qn4h/7dv8A0F65O2tr3VtSTS9LRXu3G53cfJbp/ff+g6sfxI9c8O+HbLw1potLXc8jnfPcSffmfuzH+Q6AYArCtJW5RM16parq+naHYve6pewWlsvBkmcKM+g9T7VdrkPE/gSLxV4n0XUdQulk07TtzNpzxbkmc9GJz244welc4i3ofj7wr4jvPsmk63a3NzjIiyUZvoGAz+FdJXjvxestKhvfDVnotpBD4me/ja1+yxhHWMHktj+HOOvofevYRnAz170ALXD+Pv8AkKeHv+us/wD6LruK4fx9/wAhTw9/11n/APRdXT+JAZFFFFegWFFFFAGfrv8AyL2p/wDXpL/6AaxrX/j0h/65r/KtnXf+Re1P/r0l/wDQDWNa/wDHpD/1zX+VRLcRLWr4NO74g2CryyWlwzAfwg7ACfQZ4rIjju76/i03TYRPfzDKoThY17yOeyj8yeBkmvWPC/he08M2DRxsZ7yYhrq7cYaZv6KOgXoB6kknCrNW5RM3aKKK5hBVGTWdNi1iLSHvYF1GaMyR2xf52UdTj04NUfFnie08J6DNqVyDI+RHbwL96eU/dRR6k15J4d0nVdP+OGiXuvTmTVtTsJrq4T+GHIYLGvsoAFAHu9FFFAHCeO/+Rj0D/rjd/wDtGsutTx3/AMjHoH/XG7/9o1l120PgKQUUUVsMKyfFP/Io61/14z/+gGtasnxT/wAijrX/AF4z/wDoBpS2Ao0UVFLK6yRQQQvcXU7eXBbx/elb0HoO5J4AyTUN2Eb3gb/koVv/ANgu6/8ARtvXrVcr4O8Hr4fja+vnSfWLhNssq/ciTOfKjz/DkDJ6sRk9AB1VcU5c0rokKKKKkAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8x8O/8l+8W/8AYPg/9kr06sKy8J2Fj4v1HxNFLcm9v4UhlRmXywq4xtGM547k1u0AFeYah/yOviH/AK7Q/wDoiOvT68x1qDULbxhrMo0jUZ4bh4nilt4C6sBCinke6mtaLSldjQlFV/Ov/wDoA6z/AOAbUedf/wDQB1n/AMA2rr9pHuO5Yoqv51//ANAHWf8AwDajzr//AKAOs/8AgG1HtI9wuZHib/XaJ/1/N/6TzVBFFd39/FpmmQie/mGVUnCRr3kc9lH5k8DmrWrabrutXWlQafod8kqXZdpLuExRIpikXczegLDgcntzXp/hjwxaeGbBoomM93MQ91duMPM39FHQL0A98k41KqWwmw8MeGLTwzYNFExnu5iHurtxh5m/oo6BegHvkncoorlEFFFFAHmnxR/5Gf4f/wDYcj/mtel1map4f0vWrrT7nULXzptPnFxat5jL5cg6HAIz06HIrToAK821/wD5H/Uf+vC1/wDQpq9JrgfEeia7J4tudQsNNS7tp7SCIH7QsZVkaQkEH/fFaUmlJNjRnUU7+yfFH/Qvj/wNjo/snxR/0L4/8DY66/aw7juNop39k+KP+hfH/gbHR/ZPij/oXx/4Gx0e1h3C5g+Kf+PKz/6/Yv51Xtra91bUk0vS0V7txud3HyW6f33/AKDqx/EjW1bwr4t1iO2totKgtMXKSNPNdK6xgHk7V5P0r0bw74dsvDWm/ZbXc8jnfPcSffnfuzH+Q6AcCsalVfZE2Hh3w7ZeGtN+y2u55HO+e4k+/O/dmP8AIdAOBWvRRXMIK4f4iePf+ESt7Ww0+OK41zUDstYpXCog6GRySMKP89K7iuX8RfDrwr4s1BL/AFvSzd3KRiNX+0yphQScYVgO5oA5zwToeh6Hdy65rfiTT9U8TXY/fXT3SER5/gjGeB2/wHFel9a4FPgr8PY3V18P4ZSCD9suOv8A38rvQAqgDoOBQAtcP4+/5Cnh7/rrP/6LruK5rxb4dvtdfTprC7t4JrOR2InjZ1YMu3sRg1UHaSbA5Wir3/CHeJv+glpH/gPJ/wDF0f8ACHeJv+glpH/gPJ/8XXX7eBVyjRV7/hDvE3/QS0j/AMB5P/i6P+EO8Tf9BLSP/AeT/wCLo9vALmDrv/Ivan/16S/+gGsSxju76Sz03TYRPfzRgqhOFjXAzI57KPzJ4GSa7K98C+Jb2xuLVtU0lVmiaMsLaTIBGM/f966nwl4UtPCmli3jc3F5IFN1eOuGmYDHT+FR2XoB6kknOdZfZE2O8L+F7TwzYNHGxnvJiGurtxhpm/oo6BegHqSSd2iiuYQUUUUAeW+O/C3jfVfHVhrOhtpc1pYRf6NDfOdqSnO59oHJ6YJridQHxK/4W1pH2htE/t/7DJ9n27vJ8r5t273619EVlzeHtKuPEVvr8tru1O2iMMU/mMNqHORtztPU9RQBoQeb9ni8/b52wb9vTdjnH41JRRQBwnjv/kY9A/643f8A7RrLrc8b6Xqt3qekXmm6c98tuk6SpHLGjLv8vB+dgCPlPesL7D4l/wChWvP/AAKtv/jtdVGcVGzY0LRSfYfEv/QrXn/gVbf/AB2j7D4l/wChWvP/AAKtv/jta+1h3HcWsnxT/wAijrX/AF4z/wDoBrV+w+Jf+hWvP/Aq2/8AjtUda0XxTqGhahZReF7sSXFtJEha6tsAspAz+896TqwtuFzFlldZIoIIXuLqdvLgt4/vSt6D0Hck8AZJr03wf4PTQI2vr5kuNYnXbLKv3YV6+XHnovqerHk9gDwf4PTQI2vr5kuNYnXbLKv3YV6+XHnovqerHk9gOrrlqVObRbCCiiisxBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q=="
}
},
{
"id": "/page/1/Caption/1",
"block_type": "Caption",
"html": "<p><span id=\"page-1-0\"></span>Figure 1. Fully convolutional architecture diagram (not to scale). Arrows show separate columns that all take the same input. At the end of the columns, the feature maps are merged (concatenated) together and passed to another series of dilated convolutions: the aggregator, which can aggregate the multiscale information collected by the columns <a href=\"#page-8-5\">[25]</a>. The input image is I with C channels. The output single channel density map is D, and integrating over this map (summing the pixels) results in the final count. Initial filter sizes are labeled with brackets or lines. Convolution operations are shown as flat rectangles, feature maps are shown as prisms. The number below each filter represents the dilation rate (1 means no dilation).</p>",
"polygon": [
[
50.0537109375,
352.24700927734375
],
[
545.1107788085938,
352.24700927734375
],
[
545.1107788085938,
416.49609375
],
[
50.0537109375,
416.49609375
]
],
"bbox": [
50.0537109375,
352.24700927734375,
545.1107788085938,
416.49609375
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": null
},
{
"id": "/page/1/Text/2",
"block_type": "Text",
"html": "<p block-type=\"Text\">our paper follow this method of producing a density map via regression. This is particularly advantageous because a sufficiently accurate regressor can also locate the objects in the image via this method. However, the Lempitsky paper ignores the issue of perspective scaling and other scaling issues. The work of <a href=\"#page-8-7\">[27]</a> introduces CNNs (convolutional neural networks) for the purposes of crowd counting, but performs regression on similarly scaled image patches.</p>",
"polygon": [
[
49.38134765625,
438.1144714355469
],
[
286.875,
438.1144714355469
],
[
286.875,
531.7640075683594
],
[
49.38134765625,
531.7640075683594
]
],
"bbox": [
49.38134765625,
438.1144714355469,
286.875,
531.7640075683594
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
},
{
"id": "/page/1/Text/3",
"block_type": "Text",
"html": "<p block-type=\"Text\">These issues are addressed by the work of <a href=\"#page-8-4\">[18]</a>. Rubio et al. show that a fully convolutional neural network can be used to produce a supervised regressor that produces density maps as in <a href=\"#page-8-3\">[15]</a>. They further demonstrate a method dubbed HydraCNN which essentially combines multiple convolutional networks that take in differently scaled image patches in order to incorporate multiscale, global information from the image. The premise of this method is that a single regressor will fail to accurately represent the difference in values of the features of an image caused by perspective shifts (scaling effects) <a href=\"#page-8-4\">[18]</a>.</p>",
"polygon": [
[
49.306640625,
534.4453125
],
[
286.576171875,
534.4453125
],
[
286.576171875,
665.15625
],
[
49.306640625,
665.15625
]
],
"bbox": [
49.306640625,
534.4453125,
286.576171875,
665.15625
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
},
{
"id": "/page/1/Text/4",
"block_type": "Text",
"html": "<p block-type=\"Text\" class=\"has-continuation\">However, the architectures of both <a href=\"#page-8-4\">[18]</a> and <a href=\"#page-8-7\">[27]</a> are not fully convolutional due to requiring multiple image patches and, as discussed in <a href=\"#page-8-5\">[25]</a>, the experiments of <a href=\"#page-8-8\">[11,</a> <a href=\"#page-8-9\">17]</a> and <a href=\"#page-8-10\">[9,</a> <a href=\"#page-8-11\">12,</a> <a href=\"#page-8-12\">16]</a> leave it unclear as to whether rescaling patches</p>",
"polygon": [
[
49.08251953125,
667.5794143676758
],
[
286.3651123046875,
667.5794143676758
],
[
286.3651123046875,
713.49609375
],
[
49.08251953125,
713.49609375
]
],
"bbox": [
49.08251953125,
667.5794143676758,
286.3651123046875,
713.49609375
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
},
{
"id": "/page/1/Text/5",
"block_type": "Text",
"html": "<p block-type=\"Text\">of the image is truly necessary in order to solve dense prediction problems via convolutional neural networks. Moreover, these approaches seem to saturate in performance at three columns, which means the network is extracting information from fewer scales. The work of <a href=\"#page-8-5\">[25]</a> proposes the use of dilated convolutions as a simpler alternative that does not require sampling of rescaled image patches to provide global, scale-aware information to the network. A fully convolutional approach to multiscale counting has been proposed by <a href=\"#page-9-0\">[28]</a>, in which a multicolumn convolutional network gathers features of different scales by using convolutions of increasing kernel sizes from column to column instead of scaling image patches. Further, DeepLab has used dilated convolutions in multiple columns to extract scale information for segmentation <a href=\"#page-8-13\">[8]</a>. We build on these approaches with our aggregator module as described in Section <a href=\"#page-2-0\">3.1,</a> which should allow for extracting information from more scales.</p>",
"polygon": [
[
308.390625,
438.11541748046875
],
[
545.1151733398438,
438.11541748046875
],
[
545.1151733398438,
651.3159484863281
],
[
308.390625,
651.3159484863281
]
],
"bbox": [
308.390625,
438.11541748046875,
545.1151733398438,
651.3159484863281
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
},
{
"id": "/page/1/Text/6",
"block_type": "Text",
"html": "<p block-type=\"Text\">It should be noted that other methods of counting exist, including training a network to recognize deep object features via only providing the counts of the objects of interest in an image <a href=\"#page-8-14\">[21]</a> and using CNNs (convolutional neural networks) along with boosting in order to improve the results</p>",
"polygon": [
[
307.79296875,
655.1015625
],
[
545.1151733398438,
655.1015625
],
[
545.1151733398438,
713.4069519042969
],
[
307.79296875,
713.4069519042969
]
],
"bbox": [
307.79296875,
655.1015625,
545.1151733398438,
713.4069519042969
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": null
},
{
"id": "/page/2/Page/438",
"block_type": "Page",
"html": "<content-ref src='/page/2/PictureGroup/435'></content-ref><content-ref src='/page/2/Text/2'></content-ref><content-ref src='/page/2/Text/3'></content-ref><content-ref src='/page/2/SectionHeader/4'></content-ref><content-ref src='/page/2/SectionHeader/5'></content-ref><content-ref src='/page/2/Text/6'></content-ref><content-ref src='/page/2/Text/7'></content-ref><content-ref src='/page/2/TextInlineMath/8'></content-ref><content-ref src='/page/2/Text/10'></content-ref><content-ref src='/page/2/Equation/11'></content-ref><content-ref src='/page/2/Text/12'></content-ref><content-ref src='/page/2/Equation/13'></content-ref><content-ref src='/page/2/Text/14'></content-ref><content-ref src='/page/2/Text/15'></content-ref><content-ref src='/page/2/Text/16'></content-ref><content-ref src='/page/2/Text/17'></content-ref><content-ref src='/page/2/Footnote/9'></content-ref>",
"polygon": [
[
0.0,
0.0
],
[
612.0,
0.0
],
[
612.0,
792.0
],
[
0.0,
792.0
]
],
"bbox": [
0.0,
0.0,
612.0,
792.0
],
"children": [
{
"id": "/page/2/PictureGroup/435",
"block_type": "PictureGroup",
"html": "<content-ref src='/page/2/Picture/0'></content-ref><content-ref src='/page/2/Caption/1'></content-ref>",
"polygon": [
[
48.708984375,
70.91455078125
],
[
286.3586730957031,
70.91455078125
],
[
286.3586730957031,
216.38336181640625
],
[
48.708984375,
216.38336181640625
]
],
"bbox": [
48.708984375,
70.91455078125,
286.3586730957031,
216.38336181640625
],
"children": [
{
"id": "/page/2/Picture/0",
"block_type": "Picture",
"html": "",
"polygon": [
[
48.708984375,
70.91455078125
],
[
285.6796875,
70.91455078125
],
[
285.6796875,
153.333984375
],
[
48.708984375,
153.333984375
]
],
"bbox": [
48.708984375,
70.91455078125,
285.6796875,
153.333984375
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {
"/page/2/Picture/0": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADcAngDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDovin8U9c8EeJ7bTNMtdOlhlsluGa5jdm3F3XA2uBjCjt61xS/tBeKz10/Rf8AvzL/APHKZ+0J/wAj/Yf9guP/ANGy15WlAHryfH3xS3XT9G/78y//AByrMXx08Tv1sdI/78yf/HK8gjNXIXxigD2O3+M/iGX71npY+kUn/wAXWxafFTV5seZbWA/3Uf8A+Krxi2mxite2u9uOaAPZ4viFdMuXhth9Fb/GoLn4kXsQJjgtD9Vb/wCKry9dRIHWoJtQLDrQB3d38XdbgJ2Wmmn/AHo3/wDi6yJ/jh4ljJ22Okn6xSf/AByuFurndnmsu5lRgABg9zmgD0F/j34pXpYaP/35l/8AjlQn9oDxWP8AmH6L/wB+Zf8A45XmctVW60Aepn9oPxYP+Yfov/fmX/45TT+0L4s/6B+i/wDfmX/45XlRqM0Aesf8NDeLf+gdon/fmX/45Sf8ND+Lf+gdon/fiX/45Xk2KTFAHrP/AA0R4u/6B2if9+Jf/jtH/DRHi7/oHaJ/34l/+O15LilxQB6z/wANEeLv+gdon/fiX/47Sf8ADRHi7/oHaJ/34l/+O15QFzSbaAPWP+GifF3/AEDtE/78S/8Ax2k/4aJ8Xf8AQO0T/vxL/wDHa8n2mjZmgD1j/honxd/0DtE/78S//HaP+GifF3/QO0T/AL8S/wDx2vKDGaaVoA9Z/wCGivF3/QO0T/vxL/8AHaT/AIaK8X/9A7Q/+/Ev/wAdryUikxQB9g+H/F+oar8Jj4rnhtlvxZXFx5casIt0ZfaMFicfKM8+teT/APC/vFX/AED9G/78y/8Axyu58Gf8m4t/2C73+ctfOVdmGpxknzI68NCMk7o9U/4X94q/6B+jf9+Zf/jlH/C/vFX/AED9G/78y/8AxyvK6K6vYU+x0+xp9j1T/hf3ir/oH6N/35l/+OUf8L+8Vf8AQP0b/vzL/wDHK8roo9hT7B7Gn2PVP+F/eKv+gfo3/fmX/wCOUf8AC/vFX/QP0b/vzL/8cryuij2FPsHsafY9U/4X94q/6B+jf9+Zf/jlH/C/vFX/AED9G/78y/8AxyvK6KPYU+wexp9j1T/hf3ir/oH6N/35l/8AjlH/AAv7xV/0D9G/78y//HK8roo9hT7B7Gn2PVP+F/eKv+gfo3/fmX/45R/wv7xV/wBA/Rv+/Mv/AMcryuij2FPsHsafY9U/4X94q/6B+jf9+Zf/AI5R/wAL+8Vf9A/Rv+/Mv/xyvK6KPYU+wexp9j1T/hf3ir/oH6N/35l/+OUf8L+8Vf8AQP0b/vzL/wDHK8roo9hT7B7Gn2PVP+F/eKv+gfo3/fmX/wCOUf8AC/vFX/QP0b/vzL/8cryuij2FPsHsafY9U/4X94q/6B+jf9+Zf/jlH/C/vFX/AED9G/78y/8AxyvK6KPYU+wexp9j1T/hf3ir/oH6N/35l/8AjlH/AAv7xV/0D9G/78y//HK8roo9hT7B7Gn2PVP+F/eKv+gfo3/fmX/45R/wv7xV/wBA/Rv+/Mv/AMcryuij2FPsHsafY958BfF3X/FPjOx0e+s9Mjt7gSFmgikDjbGzDBLkdQO1avxM+Jer+C/ENrp+n21jLFNaiYm4R2bcWYcYYcfKK8r+Dv8AyVHSPpP/AOiXre+P3/I6ad/2D1/9GSVg6cPbKNtLGEqcfaqNtLEn/C+PE2OLHR/+/Mv/AMcqE/HvxUD/AMeGjf8AfmX/AOOV5gjADBprMvauj2FPsaKjDsen/wDC/vFX/QP0b/vzL/8AHKP+F/eKv+gfo3/fmX/45XljEHpSUvYU+xXsafY9U/4X94q/6B+jf9+Zf/jlH/C/vFX/AED9G/78y/8AxyvLfloyvpR7Cn2D2UOx6l/wv7xV/wBA/Rv+/Mv/AMcpf+F++Kv+gfo3/fmX/wCOV5tBAHxgVcFl8vSmsPT7GUvZR3R33/C/PFWM/wBn6N/35l/+OUn/AAv7xT20/Rv+/Mv/AMcrzm4hMZ4FUW60nQp9i406clex6n/wv7xV/wBA/Rv+/Mv/AMco/wCF/eKv+gfo3/fmX/45XldFHsKfYv2NPseqf8L+8Vf9A/Rv+/Mv/wAco/4X94q/6B+jf9+Zf/jleV0Uewp9g9jT7Hqn/C/vFX/QP0b/AL8y/wDxyj/hf3ir/oH6N/35l/8AjleV0Uewp9g9jT7Hqn/C/vFX/QP0b/vzL/8AHKP+F/eKv+gfo3/fmX/45XldFHsKfYPY0+x6p/wv7xV/0D9G/wC/Mv8A8co/4X74q/58NG/78y//AByvK6KPYU+wvY0+x6p/wv7xV/0D9G/78y//AByj/hf3ir/oH6N/35l/+OV5XRR7Cn2H7Gn2PVP+F/eKv+gfo3/fmX/45R/wv7xV/wBA/Rv+/Mv/AMcryuij2FPsHsafY9U/4X94q/6B+jf9+Zf/AI5RXldFHsKfYPY0+x6Z+0L/AMj/AGP/AGC4/wD0bLXlK16t+0KCfH9jgf8AMLj/APRsteUKa8k8ssIasxtVNTU6tQBoxSVdjn296x0cjpUyymgDYF16mo3uCe9Z4mpDJmgCeSXNVZCTQXzSZFAD4LV7yRIsqi55c9qq39strdyQJKkyocB06GrRmKpheK1PC+nWV1q8R1PJtAcyBTgke1AHKMKjNdH4osbSHVbl9NGLMN8il8lRXOkUAMNPWCR42kVGKLwSBwKTFW7O5ktw6Kx2P95exoApbaeqZ7VaaNWbIqW3hG8ZoA6PwP4LfxRqi2xbZHglmPFUfFXhmTw9rE9kx3CNiAw6EV0Xh/Wm0YboW2sRjiqfiHUv7UlM0p3OepoA4cx4qxa2jXEyoo5JxU7wjccVp6VshnR8DIOaANrXfhzd6L4ftdTlOVmGcenpXByxbGIr1zUvFEmoaMtnO+6NRgA9q821CFd7FaAMVlphFTuuDUZFAH094N/5Nxb/ALBd7/OWvnGvo/wYN37OhHrpl6P1lr54Nuw7V34P4WdmFaSZXoqQxMO1NKGuw67obRS7TSYNAwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA7r4O/8lR0j6T/APol63/j8CfGenf9g9f/AEZJWB8Hf+So6R9J/wD0S9dR8doDJ4vsGA/5cFH/AJEeud/7wvQ5pu1ZN9jx85ptWntn96haFweldFjdSTI6KcUI7U2goKKKKANPT5BtAYitUMu3tXNxyFD1q2L3C9apM461Bzd0W70jPGKxm+8asS3O89arUmzelBxjZhRRRSNQoHWilBwaADFJTiwwaTt0oASiiigAooooAKKKKACiiigAooooA9P/AGgv+R+sf+wXH/6Nlry2LaHDMoOOx6V6p+0BgePLEkZH9mR/+jZa8s+XAIFeIeOK6h3LKAuew6UrR+WFO4EnsO1KqgnAPNDAhwpzn3oAcgY52qTjk4FKHxT0keJTjjcMVCx59KAJfMpd9Q/xYU094pY0R3UhX+6fWgB+6l3VGEPk+ZuGN2MZ5qW2ge5mESFQT3Y4FAAGyavW9z5I4OKzjlGIPanEsEDdj0NAE9zd8tlVcHs1Y7fePFWpCX6AmqrdaAG09etIil2woyaUUAWENTxtg1XVD5e/IxnGO9Sx5ZgM9fWgC8s/y4zSPKWHJquwMbFSQcHGR0o3cUAPJqSOTaar5pN2KANB7o7cZ4qhPJupWDiNXP3WOBVdzmgCtIMmoiKsFSckAkDrURFAH0/4DTf8AIk/vafdj/x6WvHH0v2/SvaPh4B/wou1B6fYrr/0OSuBkgj28YrpoV/Z6Hl4/GTw84qPU4qXTcdqrNppz0rsJbdc9BTEs1Y9K7lXja7IhnMktTkG0xvSq8mnMO1ehx6KZBwopk3h9wP9XWX12hezZtDO31R5q9oy9qiMLDtXdXGilScpVCTRzn7tdEZwlqmehSzejPqckY29KTY3pXUHRz/dqNtII/hqtDpWY0X1Ob2mk2n0rfbSj/dpv9lt/dosarGUn1MLafSjaa3f7KOPu0w6Yf7tFhrF031MXBo2n0rZGmH+7Ui6Ux/hosDxdNdTD2H0o2GuiXR2/u046QR/DRoZ/X6Pc5vYaTafSuiOkn+7TDpLf3aLFLG0n1MDafSjafSt7+yj/dpP7LPpRYf1yl3MLafSjBrbOmMP4aifTmHaixaxNN9TIorQaxYdqjNm3pRY0VWL6nXfB3/kqOkfSf8A9EvXo/xasDdeI7NwucWgHT/beuB+EVu0fxN0piOgm/8ARL17H43WA6tB5u3PkDGf95q8vHYh4eaqJX0PIzWcuS8HbY8Sk0vB5T9Kpyab1+X9K7u7hgJO3bWW9qjE49a2o43nV2jwKeZ1YO0mce2lk9j+VV5NIPpj8K9Ag0kS9AKnl8P7VPSiWY0Iy5ZPU7IZzV3S0PK5tNZMkH8KpMjKcYr0W90gL1ArFm0hN/TmuuFSE1eLPUw2cU6i945PB9DRg+hrpzpAx0/SmPpDZwoH5Veh2LMKL6nNYPpRW+2kPnlQfwpn9is38NFjRYyj3MOitv8AsRgfu01tIYD7hosNYui9mY1Fag0lyeFNTx6MxI+Qn8KLDliqUd2YoBPQGja390/lXTxaI+B8g6elObRXH8FLTuc7zKhe1zltpHY0ldFJpLf3R+VUZ9LkGSB+lOxvDF0p7My6Kne0kTGQefal+zMBlsge9Kxvzx7leipzGucGgW5bpRYOZEFFWxZN3pxsGFOzF7SPcpUVObVxRSsPmR6r8dohJ44sen/INTPHpJLXmcOlm4ZWReMGvV/jVF5nja1zepb501AAXwSfMkrz+1ttQ81I7e7imbuodSfyrxDyTIOl3EBwzR88g7qU2E7wl5ImBQjL+ta8tjqLF1a1ic+gwT+lWn027gsRM0AKsMNGjNuHHWgDl3jlhYbgc4oMDGIOV+UnGa3AzqVMtrNjB++u7/CnyNZTptO6JsbsGPA/Q0AYCI1vJiSPkjIz6VNcXPnReWR90cVs3scOolmAijdAAPLOAfzqJtGihLLNKZAVypiXPPvQBz6Lhee9PUY5HT1rUFnLHEwCoULYbIOVNXp/Dr29rBdNHIUkbBjxnb7/AI0Ac4UfIOODStuA24rov7JmSIhbVyG5JMZytSafoqtNukRjCAwZmIBbjHGfegDlM7MjoTUKrnORXSXuhXNrDE8kOIpGIR2xg4qCfQLyCJXNuTlsfKe3rQBgCNieAacIyHxjNaiQuIWR4yGjbgY657VNcWIWfY0bKWAOFB4BFAGegCrytTLtRQGAUHnkVca1YbY4Y5Sf4iV4q9baHJdu4mUrEiFywIJ+nFAGDKc9xikRMjORircljIp5J24yMggmmrYzGNnwFUcAE0AQhFPG4Z+tI6qhPXpTjbyLyfu+uKTY2Nx6UASbzJGBjgD0qo20n2pw3ElRTWUFSADnPWgBwkRYiuOo61T25qZgcY64phz3GMUAfTngNtnwGhb+7Y3Z/wDHpK8u/tEEfer07wZn/hn8Y6/2def+hS14grSe9d2Epxknc5MThI12nLobrXwJ61NBeqGHNc/+8PrT0aRT3rrdGLVjknl1Nxsmd7YarEuAxFbkd9aSpyVrzOGeQVdS9kUda8XFZLTqy5k7M4vZVaGkbNHa3S2kg421Q+w28j8Yrnf7Rk9ali1JwwOaVPLqtKNozOacJt8zidMmhQyLkAVWuNBRegFQ22uOigEipX1kv6VyKnmEJ73QOVLl2aZRk0bH8IqIaRz90VfOo7qjN/8ASu2NTFWszH2j6NlOTSgo+6KqPp6g/drTe8LCoDKSa6KdSt9oFWqLZlNNODH7talpoXmn7oqOKTBFbVnfCPrXNjMTiIx/d7lwqucrVJaEsHhVSuSBUF14bWMHAFbsOrrs7VSvtU3A4xXzdDGZpKtaWx6Vang40rxbuYK6DuOABT28NnGdoq7BqOH5xWj/AGipTtXo1sZjqclY46SpSWsmcw+glT90Uz+wz/dFb8t6CahN8B6V0QxuLa1REnFPSTOfl0coPuiqMmmjP3a6Wa7D8cVUOG7V30cVWt75n7ecH7sjnH00f3agbTR/drpJFUdqgKqTXbDEyZvDMKy6l74a2Ih8e6dJjGBL/wCi2ro/ipfG28R2iAkZtAf/AB9qpeAVA8ZWJHpJ/wCi2qt8aGceK7HbnH2Ff/Q3qVatWXN2PUw7eMw7U+/+Ry8mpFv4j+dRrf8APWsTdJ6Gk3yA9DXWqEErAssp2Ous9W8sjLd62I9dhdBuOeRnkV5/HLIPX86tJPMAOT+Yrir5bRqu7RzTwMqfwSOtu761ljH7vnA/iHrWbIYXkyFx/wDrrGNxLjqfzoFw+eaqlg1SVosweCm9bm6kUDDkH86fJb2+7jrn+lYi3hHGB+RqRboMRwPyNN0J3vcylhasTTFjHI+M8n2q5baGJW4x07qazYZvnBGOvpW1Z3ap1IHH9wn+tcWKlXhH3GYqTUrSegTeHgiZ+X/vk1lXGlhM8D8q3J75GTAKH/tmf8aybi43E4x+VY4Opin/ABH+A5zSf7t/iUE04FgNo/Ktey0PzCuQvaqEdwysD3+orWttWkj2856dxW+MnieX91uCqNy/et2Nm38ORfLlV6Cobrw9GM4x27U0a63ygnsO2ahk1gP39O1fO06eZ+05pSOydTB8lorUxrjTI42wcde1Uxp8Uy/dY/d9O7Yq9cXjO2QSOf7wqtDdOvOW6r/GP71fS03X5Lt6nFGclqmUptETbGRGx3BCOR3ziqF1pQRFzERkf1rpjesYoQGbhY8/N6Zqndy71X6f1rajXrc1pHZDGVYtWf4nLNp4DfcqeDTQxHyVpbAzdO/pV+0g3EAkD6111K3LG501syqKJmppOQPkFJJpWP4R+VdbHbAJyV/75NV5o4/TP4GvPjmDlKxw/Xa61bOObSxn7g/KiujkjTPANFdixDaN1mtWxvfGTQlvvEseoyRhorfTk3nAJAEj9BkH+IV5Rpeny6nrs/2Z5EjijLl+hAH4/wBa9E+OcqL4wjjad4nOlR7QDwf30nH6CvKreecEiOUjzP8AWY449K8w+iNNdEaZri6tZnlEQ3SAjkD161lw3V5BdrOkzoiOcFTnBHTirtpdzWrXUMRIEsZVsc4BrLJMOYAxdQ2Tx2oAvDXNYe5jkNzMzyvkqThTV1/EGp2N06XEMcmQRslAYDPvVGNV3LyctyFHUCoZ5zcNHG+SgOBjrQBdXxJM0eZrG2cg9fLwP0q2fEunS7PN0oLhfmZXPJ/wrHHmW6NEsbNk8A1GiyznCQEheH46UAdBBq2mzMHb7REpYgj7yqDW4nivRbBbqIyXF69ygBkK8JjpjNcThmWVkUhH4z2HNJCkluzFgGUqQeMkUAbUmvWLyMGku3z3KirLanos8JYSyqQuAkibj2/nXNyKnIUlsDLdqFk8sMWJ+Zei9hmgDXl1u2O4K9wiHAVCOF9cCprfXbR23Nd3SM3y7mwQB9KxEuZYvLlZMRlwQxX0p9zfLNM37sEk9doFAGw2oaX9qKm7nkVsYZI+B9c9arXGpaashVGu2J6swHzfT0qKWGdrENBGixIA5foRniqsY58yRRIw+Xjk0AakNzYxTMbmC9iBXcOByfanweIILVJhHaXJ81SpJYdPyrON7LcCKOZmIUeWM+lPjAhlxIHGRgMvp70AOS4s50Lsl0CBhQcHP49q3tD1Gz0+8NxLZNIrwmNUJDYOevNc+0NzbuVUK2FDE9fl7UkCP5skh3yIByVPSgDt7jxHpE1sANMwQeTsXNcVrF3b3t+8kayRR/wpsAxSg+XIrrlgw5z1+tE0huAYxCeOfqPXNAGe/kA4WRz77acjRlhiQg+64FWfPAG6OALjgjGRT1vFeSL7VGphiOMKMZoAplIskfaFB+lOjgSZtwniLAfxVYC27W8jyKMclcdvxquY7aQMd6pgYBA6mgD6N8GqW+BiqSpJsLsZXp96SvI1sRnpXr3ghVX4IRBPu/YbrH/fUleaIVzXVQm4xdjyMzrzpyiolNdPyOlKNNyelbEJQ4rQgijYjgVnVx0qe6PIWJqye5gxaQzDhTUj6S6jpXXwwRhegqRoI27CvJlnc1K1jo9jVkr8xwT6ewPQ0iWDk8A13J06Nz0FWLfSYsjIFVPiGnCN2XChiZvlTOHTT5QOhoNs6nkGvR20uJY+grA1G2iiJwBWWEz+OJnypE4nBVqC5ps5pIGNSfZHNW1ljVqtJPFjtXpVMTUWyPPWvUz47B2qZdMY1e+2RIO1Ojv4y4rlnicQ9UjRQh1ZHBorPVwaK61p2V7DgdK0RewH0r5zFZrjYztynsYfAYWcLuRhxaRJjvUN1pL4NdTHdwAdqoXt7CM9K5aGZ4udX4TorZfhYU78xy66W4arkWlSMKuR3sJftWva3MOO1duMzLFU1flOTC4GhUlZyMBtGfHeqNxpjpmuyuLuEL2rEur2EkjiowOZYupLWOheMwOGpL3ZHPLp7s2Kvx6OxTNWoruHf2rRW/hEfau3FY/FqyjE5MPhaEtZSOWu9PaM1SWzcnGK6G9vInPGKqQzxb+cV6VDF1/ZXlHU5KlOCnaL0NHwPZPF4rs5COAJP/QGqD4t23neJrNvSzUf+PvXR+FZIm1q324zhv8A0E1nfEpA3iG1z/z6j/0Jq6sBi51LzkrNOx6a/wBnwbcH1/yPMP7PGOlN/s/npXSLChAGB+VBhT0H5V3/AF1nAsbW7nPx2HHT07VZj0wsBhT+VaoVB2H5VoW3l/3VrKtjpxV0ifrNSb3OdOktj7j/AJVC+mMP4T+VdnsjYfdWohbxu33a5Y5tLqi+aqtpHG/2Y/YGpI9PYHnH513IsIvLzjmsu9jjgJxVUs39tLliiqs68Y3kzLt7HcRnb+daKWKAgHb19faqQvfKbqaf/ahZvvH8xVVY4ibutjkWurH/AGZSWAI4A/i9jTGsdwBB9O+e1RR3ZLN8/Ydx6GtO2uVEY3N6dx6VFWValqgUV1M0ae2TjP5VZi0yRux4NakN3DxmtKC5gyOnJHauDEZjiILSB0UqEKj1kc+dLk+XPoO9Kmln0H4muhe5h+TDDkD096h+1xf3h09RXIsyxMl8Js8LST+Ixm0jjt+dRpoxI4I/h/nW01/EpxuH6UJfxN0YDkdCK0WNxij8JPsKF7cxhyaSUVcsOi96o3NjsHVT9K6Ke6Xavz9cfxisa+uwQOc8f3vevQweIxE2uY56sYxfusx2g2t+NXbSHJHzAf8AAsVVknBcn+tT21wVIIOPxFetV53AmXM1qbQtv3f3h+DVnTRkNjn8qurejYMkfmPSq81whk6DpXmUfaqTuiJcttCqIWY8fyoq3BcJz2oraVaonaxKS7h8cntR4stUlh3yvp8YDE4AXzJP64/KvKIVLXqRRJy/HB6c16Z8diB4/wBPL42jTExu6A+bJXndmlleKPKuJEuFOflIUntj3pn2w+/Kx3QXasUynaxHcfhUKXcEEgkABY5yX4DCrM9rZTq4kkkSaFcnzOd5HXBFU722sVlEcFyJEVON6bTmgBbh45LhXQgMyjdg4HA7n3qxb/ZBLDCIgFDhpJif4fak1C2ltbjy7iJoXKrhccMmODxVR8xS+TFnaQDtPXP1oAtX5t4753szJJADw7LgsPWrNpdPp1k89vsIlYqW9SB0/WslAv8AqmO7aectjH0pxlWJWCOV3NnqfzoAsfay0bqwAVySRjGD60+zuIoLqNpGcW8n+sIXPFKb61EeEhkLbMMxHOfUGqMUcsoaJAwUnv2H4UAXtSjtUcS2yslvIeCeT9KzWkVQVJY479qmSOWWUQQ7GY8ZI/U+lQmOfzHRtvyHBwoIzQAG5ZY0RizxL8wTPAPrU5JdEldNqkcEDNQLBdMxUhhjGc4GKmh0+6uPLVJixckABvSgCwktuyIJI5CMYxv6n1pzXTx2kaImI43JDKMEk+p/CqbWN24kw0uY+NpqVNHuZN2HbC4zhs0ASW9zEjkywlxj8QfWkuJxNKiwiTp0PrVdtMn2lxKxXjgZzSDTbgx7xMVIHIycUAXLa+uoZvNyQehLDIFOTWLq3ysLfIzbmGzG4n1qslnKG2mR2YkYw3BzWhZ272Vxb3geNwrhgkh3Zx6igCpLK80okJcZHORgfhQrKsyqWcoOM1q6pqM2tyJK0NvAyAjECBARnqQKzBE+x2eRhtGQByTQAwSEbvLJOcg8VDKWJO8EfhUiQzOx2zMmQSuaU20mdss778Z5H5UAMgbGFYAqOOR1p9yIgURUGV6tnrTfIfODOpJ6ADJpPs0zK5EqZH8JHJ/SgD6P8FHHwNjP/Thdf+hSV5Us2O9ep+DQyfApd+NwsLvOP96SvHPO967cLHmTPOx1H2kka8dxjvV2C9Kkc1zq3HvUyXJ9a0qYZSWp5NTByWqOxh1IY5apG1NQfvVykdw3rUhlc9682WV03K7MP3sdLnUprKg/eq3DriD+KuJ3vTllcHqaxq5Jh5rVGka1eGqkdxNrymM4audv9SMzHms8SMR1NROCTVYPKqGGd4oiriKtZ2qMa07Z60C5f1NN8vNOEVetaIrU7AZ3Pc05JHz1NKsIzVyC2U9qynOEUZylHZISO7lQcMasR38xP3jSPbqtSW0KbucVxVHSceaxmm72Rcju5yvU1WuZp2zkmt21tYmUcCpZNNiI+6K8NZhQpVLOJ3/VKs4XTOTWSYN1NaVtdTAdTV99OiXsKiMccZ7V1TxdKurKJgqE6b1diG4uZivU1jTzS7jkmt5zEwxxVCaCNjxitsJUhDRxIqpt3vcyxcSDuaU3kuPvGrJtQTTlsN3avQdWju0Zr0KDTyN1JoWZweprUXTPalOmj0pfW6GxXK+xqeA7qR/F9lGScESf+gNV/wCJ0mzxDaj/AKdR/wChtUPgqz8nxdZP6CT/ANAaoPi1MY/EtmM/8uan/wAfero8lSXubHp0abngpR/vf5HLC6weSakW6BPWsP7Qc9akjuOetdTwyOWWDklc2vNz3qxDPtPJ71jrMT3qUSkd6wnh01Y5XTlFm39rGOtNS9AYcisfzjjrTfNPY1gsFGw/fOoGpHyeCOnofSsXUbl5GPI/I1WE0mzAP6n0qKXex6/qaWHwUKU+ZFucptKTKUrPu61ApbPU1cMRJ5/rSpbjd0/zivVU0kdka0IxsU42YHq3b+VXopGwOtMWAA9PT+VWoYQccVFScbGVerCXQVZpB61Ot1ICvJ4IqaO1BHIpTbqCOP1FcUqlNu1jjuMFzIxXnoBR5kpH4VPDCm4VejtI2A47VzVK9On0CMHLYw3eTNLG7571ry2KZOF4+lRLaqvarWKpuOiBwa0M6R2Kjr27Cs64kIH/ANatu4jUDp29axboDn/GuvDSUtka0Lc9mUmkOT1/KpY5G4xVc/f7fnViIZIrvaVj06kYqOxZE0nHWlMr7uc0Kh29qcEz1/lXO+U89uC6DEmIPU/mKKsJCvv+QoqJThczlOF9if49SbfHFjuUlF0xTx7ySD+leRRyDeCq7TnPy8YFer/tAeY3jezRWwv9mRlv+/steVGDy4VZs88jFcJ9iNkm/euVd8NwR7VJCTIuUhJIwOT71YitopItxOyRv9WSOD7VLGNw8mPDs+AAowQc80AJNcag2BM20bduX5IA4piWc15KoeYZddwYnoKY8ruV8zcnzYXPcVJM8WwbR93C7lPJoAjW2xI0YwzAgVpT28e4LCFJjXkNwD+P+elVLUtFvkOMlsE56ChJ4235LYVhz6rQBJCfMbaikRbfmYcnbU7yRQSs0EgPI+UcZFV7qciKC3tWVUkX5nHTk5xVONnSQRIhMmfvDuKANOJy9xEI22SMGyzHoKltmjXnYZA5y+7g5zwfp0rOGpt5y+Z97gAEdh2NWPt015LcxrGBI7KVG3BJHGB+dACXFzFJM3mJIIkPAHBrSgkaC088KkK5BVcZbdjr7VmR+XPeXAkkKCAjgnJ9605FeaOUBkZmTk46e1AFV7y4dDnjzDuXB5Y5qSS6nuoZYHbyZNzOzE9TgZH6VUs1LXD7V3+SuS7HhfTFRmUpLcSAFIowEO47ssR/XFAGtpsiyO8d0smxPlKr93mpTbxWYdJVChclM8lgemT2rMa5MpVvJeCNyNzf3vpUy3bXV7NamJwvlkx7hk8UAX7aWOSNCsqGTccI4BxzgDNZt0t2l7FK0SrHEcdeGyc0RLOk1rPa24mWL76r/Eal1DzZpShRo4eu1DkBuKAJbceayyySxoqck8YOex96ej28UDSxktK65YPgZPtVCNYJJpIFOUK7lDdCfWnX1osiwSySeUiqFyvNAFpLXMYuJS2CPnZegz2qGc+fMJ7YfIRgq3UAUtqklxb/AOkzAwEFIweOnGfrVc20yJK+VwuOc9AOpoAfJFGFaZiI2/hZW6Go45kiDlQrsODk9f8A69K3lFXvIiGjPyiMjofWkijtoGjmlwVkG0qOoNAH0N4VZj8CiWzu/s67zn6yV4gNzV7l4UTb8DynP/Hhdjn/AHpK8bSAV6GDdos5sRVULXKioxNXIYScVKsQFWIgoronPQ8uvim1oPht84q6lqMVHHIFqY3QArhqSqN6HkTnKT1GvbqKjMaike5zUDz04Rn1CMJsmZlWoGlGarS3BqsZjmuiNLudtLCN6s0fNFHnD1rNM9N+0e9X7I2WCbNhZuatRXO0dawUuPeplueOtZzw6ZhUwcuhry3ZPeo0vSrcGsp7jPeohOc9aSw0bWsOOCbWp2Vlq5XAJrT/ALYBTqK4SG5I71aF0cda8yvlFKpLmsR+/pe6mdHcavnODWbNqTMetZMlwT3quZzmuijl1KmtEJUqlTWTNf7e3rR9vY96xzNTfPNdX1WHYpYNs3FvTnrVqK/APJrmxOaeLgg1nPBwkS8LJbHVjUl29RUbakM1zouT60huD61zrLYJk+yq7Hf+Cr3zvF1knqJP/QGqh8Yc/wDCVWWP+fJf/Q3qr8O5t/jnT19RL/6LatP4sR7/ABPZn/pzX/0N63o0o0aqS7Hq4a9LCycu/wDkebiNj61LHC3oaurEoFSoiiuqVU454vTQjihY46/5FWxaGpIii+lWDPGPT864qlad9EefKpKTKRtwO1MMeO1WXmUntUJkB9KqMpvcSchnQU1n96Gaq7NxWsY3NYQuSbvemmXB61XaTFV3l68/rWyp3OunhuYuibnrVqGbkViCbkc9/WrcM3vROldDrYWyN1LnCngdKie66/jVA3HBqu9x159a5o4ZXucsMNKRrxXRD9e9advd8fe7Vysdx83Wrkd1gdazr4NTQTozpvQ3p73GcN+tZ73pz1FUJbrPeqrXHPWijgoxQRoznqzRkuSw6iqFw+aaJge9Mdwa64U1HY3pUOSRB/HVmLg9KrGTBqVJ+On+cVtJOx2VYya2L6txTwaqCYU8TCsHBnnSpSLiviiqvmjHWio9lcz9i2S/tBn/AIr2xBDH/iWR8Kf+msteZvOoVQu3Bj5xn5a9N/aDkJ8dWEWRt/s1G6c582XvXmNpaQLNm6EioRu2dCwrgPsBYQJMAOTtxt46mpJrjy7qJUJUAY3JkYP41HL9lsDM1tcS5kAKMhxt9jVZ3uRBuV9yN94E5zQAXF400Sq5LMqhQT7VdkugYo/KhjR0QZAJy9UzaXKDe8RiJXcu5cEg+lMtY5pJSseQ4ySe4oAv29q91Arxq+5sscc9KfzbRor8K4zzz9abY3dzbSojPtVkKKGbbjNEtzd3DPEm4nHlLtG7I7gGgBzN+7ggQDaxY7gen1q9YxRwWpnbaZGcqr4yAPWsoRRW6zFWLFR8p6EeoqWa6ElmsYzhU+Xtk96ALsNnHdNIMqJI/wB4HfjIHaqkN8z68AsY3yPgemfX8KZau9tdSSPNwITjLdfan3+yyWyu4nV3dMv35P8AKgBstvJ/aXkK6fvGw3bJFbGl30FkLl542ZhkeUp4PHY1BqUEMsKamsgSfdnAIYAf1qD7WJNLSxlZQzuW8zoeaAJLJJr8zNbW0oaRCx24A25qQaW9xYN5LKJGQtMjkDHOAfrxWfp2qnTrs2wJdMFMjqfQfnWoy3mmSTRSMxuLoZi8twVGOcNnHagC1ffZ9ttC1ztgjIXDY6gdTWdc3aHzN7O8mdkc65A2+maisLKC9s7u8l8x7lW4hQ7h78dcVetUiWaONvJurdoywTZtCN780ANgEUYE4n8l1cIAvK47mteeH7NpJVpV2yRgjjBzj/69YeoLJpVokEyRpG7eYFjcljnpmtq98Q6TGhhRkdnt1+bbuwccj2NAGUdJlmheWK3KuwAXJ2kAd8H1p96rx5tDKibFBZOuDWdPqLSNbtCX8zaA6gn5sVG6/a76W7RDHs2743PegDVGlXv2YB7qFY3jLFv7pPOPr/hUel2bXtlP9qulQKccj19/fFU9U1W5Fu9o6qoyCCDkgenFWrSOSy0SJ1AmST966vgbT6nPWgCYW9r5knlh4YYSAUccM1PuLYSuALdsFd2EHK47+lOCxxWcN9PcHddPtaPOPk9cVKUt2v8AzfM8+1iXDBgVyPw60Ae4eC8D4FJjdj7Bdn5+v3pK8i80CvZPDk1vN8E3ltV2w/2fdbR9DIP6V4YZveu/BxvFnJiKPtGi6Z8UC596zmlpnmnPWu3kRksEmjaW596GuPestJ/elaf3qfZoxeCV9i8Z/ekMuaz/ADvelE1VyGiwluhaZs1CzYpnnComkFUkbwpNDnkqLzfeopJKgMnNM7YUVYvLL708TVQWSpA/FApUUWzNR5tUWlxTfNpAsOjVjmqys3HWseOWrAm460nG5y1cKmy803vULT89aqNN71A0xoUR08IjQM9J53NZ4lJ71KrZp2NXh0i+stOEtUd+BSiWixk8OmXxLR5tUfNoEtLlI+rHdfDR8+P9OHtL/wCi2rf+LL7PEtn/ANeY/wDQ3rl/hfJu+IWmD2l/9FPW58ZJNnimyH/Tkv8A6G9cs43xCXkFShek4HGm4xQLr3rL80560wz4zzW/s0ciwKZsfaj6mkN2fWskTk96d5hxR7JCeAijT+1c9aeLkZrK82j7RjvR7NCeBT2Rqm4FQPMKoG6GP/r017kZx/U+lCp2KhgWnsWpJKpyS4zTZJxVOWXrWiVj0KGHsWRNz1qzHPjHNYwl5qwk3Tmjc6KmGTRrG44PNQtP161SafrUJn68+tFkYwwiRppPz3qwk5x1rFjn561bSXjrQ0mTVwqL7zHH4VXeYg1GZP5VE5yaErEUqCRaS45qQzcVnbiPX86cZeO9Fi5YZN6E0kpx1pq3BA6nr/Sq8jblNRf4/wBKZvGjG2pqC4O7rUyzH1rJVuetTo/v+lKxz1MNE0jMcdaKp7+OtFLlMVh0b/7Qxx8QdPIGSNMj49R5steZXFz5jxkvtO0D14r079oTyx8QLAvk/wDEqTgf9dZa8muGSds8pxgGvCO0mmb7TEoQhVUck96dGsk1kqxID5Zw2OrGobVHe1l2DJXk8U+wuXtHcliu4Y9qAL4vJZrnfIrOyKMAnIAFRWEiT302crvU9KgkcpJ5qsctwwHcVoeWiW0EIHzZyrDrzQBJZ6ZbXJmS6kKkKfLYN0PbNQWMcmlOklxIhUyfKmc5BBGf1q3qemNbyb7YttQAynPTNadnpEY02eW5gDAgeXvzx6kUAczcXkcd7MpVWXdkGt22EUGnR3Dxxs0gIxgEAfT1rlmg/fMYnBKZbBra8P3EV1fQw3QwqK3HZj2oAlsvDM+s30/lXUUMcab8uf0qGPS3u0ltri4/490JQKOCc4rW03R5Lhbu5tLmNmjcoLbd8zD1x6Vv6R4O1CHWtNkvULWUm4zbDx0zt/SgDjrDTp7zTpXZisUPAx3NWodMtZdNt5bgbfOcorq3IP0r2afQtBligtoIkgVSR5aj731rgvFvhqDSr+zNoxSByXVR0BFAHG6jZR+H7xWKiSRTuRqfc6umtXNkiQyeYxCykds4zj8q3bqW3TVxPdLFcJcWpEYIzg965ryZ7C3DJEVikYsjge/rQB1V1YiC8J06PyfOi2gKMbyPTHeo7vw9bW2gmWaN4r/aW5yCT9KdF4jtoV0xZYmLwBZMqeSfStCbxvY+Ib+SDU9KMLsP3bOx6DsaAOchWC90iC4vIA0vmqhOedoxUviXw2sWoJHZrGFcEgDqqjFaOl3Gk6NqF/feWtzamPEduORvyOlPttdF7P8AaWsWB2uoG7JUY9KAObvXsLE2z2n/AB8Qgbz/AHjishGmuprmZ5gu8bjnua6Xw9p66hqV1fy2ZFpHk5boD+PWor3Rze6gyWMapaSn5nHOD6+1AGTeQ2n9lW0sW8zOo3H8TmnaXexYe2v0DxhcpvzwfSoXtUt9Q+wRXAaRZdodvu9quavaW+manHZmRpCrK07cED6UAbEL2eo6UltOoEqZCN0OB0qrJLMktrYmGSEKQuXGN4NdRdW2iJp8N1DHGDwQd2K53xBrMS6hEIgs3lfMcn9BQB7x4cijt/gdLHE25F0+8wQPeTP614H5le6eEZ2uPgC0zgBn068JA7fNLXge6vRwXwsuEbljfTS1RhqaWruLUCYSY70GX3quXphkxSuV7NMsmX3pPN96qGX3pPN96Ll+yLRnx3o8/PeqLye9NEpouV7FF13zUW6oTL70wy0rlKFi0HxT/NGOtUDKaBKaLjdO5cZ803JqFXqQGgOWxMj4qTzaq7qN1O5DgmWTJTC9Qb/ejdRcagWA1TI9URJjvUqS0XJlC5aaSm+ZUJem7qCVAn8z3o8z3qsXpvme9FyvZnf/AApfd8R9LHtN/wCinre+NbY8WWIz/wAuK/8Aob1zXwkfPxJ0se03/op66L43HHi2x/68V/8AQ3rmf+8L0MJx96x51v8Aeomemb6azZFdQRhYlWUCpPPGOtUyajL470i/ZJl1rjjqKia496oyTEDrUfnZouaRoJF4znHWmtOc9aq+ZQWpXL9mi005NRM5NRFjRuouNQSJM0okxUfUUh4FA7ExlPP+NQtL15ppbnrULE80XHGKLCS89atJPgdazV61YUmhMJwTL/n89ad5me9UgxzTw5p3MHTRaMnv+tMMnv8ArVcyN60wuaLjVMub8inAA/59qpLL71cjZSP/AK1BMo8o4qBSBttKxXB/wqB2AP8A9amTFXLnmfL1oql5vHWii4vYne/tDQCTxdYsqjzP7PQZHX/WSf8A168fD5t/LYEhfXtXtXxteP8A4WVp0Uqgo2mx8np/rZa8vtPLW8vrOVlUSLgAgHOD614BgZMVzKtm0KsI4zyQOpqOWOH7CJBNmZm5THSoblDDM8fOFPGavaFpy6rfm3LsvylgQucUAS21vPcWzWaIhfaHLZHTrWnbeH9RFlb3cU8Db3IBZwCmPXNZ8AbTNVbziGGOCRwarT3Mc88x3OoLZXaeBQBa1a5vpJ/MuHQOny/J3x3960NAm8SauZ49OPnBEAcSEYAzx171TtI7G6t0+2XeGztCAYP4mtbQJ7LQiru87s0m47VygwCB+hNAHMW1uG1Jre7kaEgkPxzn0q9ZGOx1aPbG0gLBfm6kH0q1KunJOtxDmW4a43ksSBgnp1rVuLnSpb+KcqyohDOQckYoAn8S6Yui67BLYtJHHPFvUOeQe44ratvHzWdolpeqTImJFkTpgetY3jDXrPVbSwltGZmik+YlcYBrmdUldziKMlI+C4HqKAPWpbu4nEd0q3EexTIrr8wAP0rm7ldY8aXLW9jMqLZp1uG2s2aq2PxGgi0AWMltKJQoQ7TncMdc9qteEtZNw13G9quzcCiNyw96AOBvbO90nVntZZf30BxvDZA+ldzreqWKeFreyhWKS4eMFpIxxmuW8TTx3eqyNDF5bISrr6kd8U3w09suqRNeAGDn73TPb9aADRYGbVIbl3XbC4Ownk13Pii0jutNhvLbyo7jdkNIeSPY+lcTevLd6zNJZBpHY/dQZzWtqU81z4RgjlDxz27lJA2QQDQAzwxbzx+Iobm6WJYkLHnlCcdh3rZ8YXaW8kd7YOkchG1jGgC7R2x+Nc/4RtE1PxJZ2dwCYCSGUNt3cdM+9a/j3SbfS/ENna2KCC2uFz5ZfcBzgmgC/a6pDc6BFbtJGrL1C8bq6bQtPj0rT5Gik2vN8xw2RXmc1u1tFKxuBEI/u853Gulj8ZWEWjQyLIWkCAOhHOaAM6x0/S9T1a/gdMzF3laXdhgAc8duxrZ8NW+njQby9vIIpDcM75njydvbB/CuI0bSdU8QaxctphMW4ku5bACsehrsNW0LXJ5I9KmZJYY49yeWwOcYGKAOPu7bUb7SJp95jt7c5jg2kFlz94euKz9BSK61e1imCbN3zBs4b2rS1m61TQJTpjF44yOUfByDWbYXbrqUTpGhlLDaMdT6UAfUumwxW/wYuooI1jjXTrrCKcgf6yvm/NfR+midfgrci5gEEw0263Rhs44k7/SvmovXo4L4WdFFXTJt+KY0lQNJTN+TXZc6FAn31G7UmaYxzQUojC5pN9DCmYqTRD92acBTFFSdBTBjWNR5p7GmgZpAhKctLtpBxQMlHFODVHuoDUybE2eKaWxQp4pGFBIm7mnZ4pg608dKBsYTzT1YikIzQBigB5ekD0w80AUCshzNTN3NOPSmY5oGjvfhC2fiZpQ9pv8A0U9dJ8cf+Rtsef8AlxX/ANGPXM/CD/kpuk/Sb/0S9dH8dG2+LrD/AK8F/wDRj1zv/eF6HNUX7xHl7tjvQHzVeWQetMSTnrXTc1UNC4TkZqvIeKcH4qN24oCKsRvkgUwA5qQ80mKRqhV64p9NU804nigljXOKjD80SE1HzQWloTq+fSlJ+XrUS5HrS7qBWH496Y1ODU08mgEPjXp0qcKPWo4yOKm4poiTImOD1/WgNQ4pg6UBYm6imMKVTxSk5oERqeasJIQOKr4p4OFoHJXJ2mOKgaTLdaa7VCT83Wi4Rgibf70VDziikVyo9V+Omn/b/HkG2YRyRaRGyjH3v3steK3EsqzAPxIh617j8c5pdN8a2Wpx8j+zkhZexHmSH+teOan9kmjSSEnzGJLZ7e1eGeWZtzM08u9wM4xVzQ9SbSr9LlByDg/TvWaxI4NX7WNUgEgxu75oAueILm2urpZbeQuWzkeg7VZ8GWNnqOsG3vVLIUyAGxk1iyRB90hIAHfFFjObW5jnU/MpyMUAbPi2xgsdUP2eNY4z0QH0rK0+9kjLQNKwifGVzxXQ3lrNrUMVykDOG9OorKsdGF1qRtC3lt2PXvjH1oA2tc8Lvao1zaOxh2ByG6jNcuHYggsfcZrtPE1tqGlrDZyPJIViUEkdscCuSnktyo/dssh6n0NACI7CDyyeHPFdj4HdY9Ov1lK/NKu4uMjaAa5fRNIn1bUVhicAKC24nAFXJJ7jQLie2DAl1xnqD70AWda0n7NLNPYwtJ5pLbgPu8npVPwjq6aVromvDJ5BBVwpwarDWbpXRvtDsAeR7V2fgzS9Jv8AULi7vIBdQbeIh97ce+KAON1ORNQ125mgbCO5KDHaq6ySWMjJJbh9wOFcEcHvXQ669j4f8ZRT6XB+5ibd5c3IJ9Ks694gs9X1LS79Yo45CDHLGFGAOMfzNAGv8P47C20+4v3dZ7jZt27fu+1c9q13cXmoXtszBWMoYJ64qOOeGxuLhUmMMc+OEPANWIrQNA2qJAboQuNxGefrQBnWU39ka7ZXV0rokbh2C9cVc8R+KI9d8TWl3bRkpFtjBcfe59O3Wq/irXbXV4rNLayW3mjUiTac59KxLGQJDcRlV3HaVYjkHNAHtXiTwzY6h4a3wRx2dxhSWcY4NeL3Vs9hcSQsFk8tsFl6GvV9ISfWfDSz6ldCXccbg3CY4xXH+J9OhsleNCBt5LZzuoA6n4c6baXFo08hMch/ecH5SOgBH510niW8sNOv7a4LrAsaE5iH3j6GvP8AwL4pj02OfTptvkMpk80dQemPpVDX7+XXtdnW3mdrcHai9ulAGN4m1Z9a1eS6diecKD2UdKg0+3uTi+htmkSBgWPapLjQriKT98jwL13Op5rThZdN0cxJcMS7fMUP8xQB9FaJqD6p8Cp72SPy3fS7sFfQgSL/AEr5rJ4r6K8KsG/Z8lZeh0y9P6y185HpXoYP4WdeGWjGs1IppGoUV1nWSZpM04DimN1piHHpTO9KOadtoAFFIxp2KY9AIjPNPWmgc1IBgUhsCeKZ1NK1CimAoXNLtp4xQSKBXG5xThzTO9PWgTAim5p7Hioj1oBEgNNJoWgjNAxA1O3UwrRzQFhxakHNBFAOKAO7+EP/ACU7SfpN/wCiXrd+PTbfGFh/2D1/9GPWD8IDn4naT9Jv/RL1t/Hz/kcdP/7B6/8Aox65pf7wvQwa/fL0PKJGJNNXNLjNKAAa6ToJAeKTk03NOWgQoFBFO7UEigQzpT88U3Ip4FAMiYZpm01YK0m2gEyEjApoPNSuPlqEDmgpEg5zTwvWmqKkHFBLFUAf/rqXPFRjFOyMUyGB5qMjAqQnFMY0DQwNg9aXdmm4NJ0pFWJRQTgUxWoY0CsRu1M70N1pKRokWFGRRUSPg0UyWmeqfHuS4l8cWljHtMcumRNhuzCWXmvNrrR2g06O68vdE4/1gOQD3B9K9M+OkZbx/ayL96PSoz+cstecXAu9JtJLefBtbpVcAn7pPcV4Z5RzLxq0gA5OelekWfg7TLjwjBeNNJFeOxUoT94+mK83ZSk5KE8Hg17N4A18a3o8trdBPPtMNuC8kf3qAPIL0PaSSW45Uk9R2qrGhcjnGK6Hxhai18SP5iBonG9QvGVJNZ1hdWUGtQyNGwtgwyM8j3oA1vDmstYR3FpcLmFhuVicFT/hVaC/Ya/HqEIjZUcSGNm25CnOM/hW74r0g3jw3Fgu4sM7jxuGK5aBHsxNFMrpIxA2lMg0AeieLPEMWtWVre2kG0SqY2zztYdvyxXmtxE0shLZ61vDVJbewlt9yTpOAGV0wyMOjD3xxWIPPgY5xlj/ABHNAF7QZltb3ZhnEilQA2OT0qPWYma4CvlXyc7ifXtXR2XhdDoL315MqzPGWjVexFchf373UUEeSfKJOT15oAkhTYQAPl969D8EaDqES3F08KJFLH8pdtrexFc54F0mTXNY8goHt1wZs9hXpPxGv9O0nw6unS+csjx7IvKOOnqaAPINeQjV2jk5k3ndhs96evhzU59NGow2crWobb5gHANHg/SJ9a8TW1qtu1wrMDJ1wF7kmvpODTLPSdNhsrdQsaJjyieDnuaAPnDTdOutSd4IoDJNEpYgnnAq+msGy0m40eJT5s0gy2cYrqoZdM0zxVqOqyPFBaw5VCh5c98CsHRNOt/GnjG8vGlNtp8A86RzwdooA5i7s7mzvnNxGYy/3CfoCDVa4jljgy6Eb25bH9a9G17xb4XutYsBb2T5tH2PcuARIhGDkVd8Warorarp9rDDbTwPEu9VUbSGPH6UAM8GacsvgK8lmuiEALBPauGvboXEZiJPDcZGciug1+2l0S6m0a0uGNkSHWNTyARnBrq/DngDS7/ww9ze7lumBKHJ49KAPKPI+w2DyrEW887BkZ6c8V2nww0kPevdXtoWRVwjP03Z9PpXOak0mkzmOQeYkcjKFPT6j8qsReL76ysJrXS5PK88De38S49KAO0+L9+iW1nZxg+YTuY4xgdhXmui6ZNrd9HbJIAGIBLcAfjTGkv9SZnu55ptgyXkJbFWNEaVSFibazvwenPagD6bsNIXQvgpd6YsplEGmXY3nvkSN/WvmQ4r6dtI7qH4K3qXsvm3C6Zd73z14k/pivl3fXoYP4WdmGWjFYUL1phalDV1nVYmJ4qM8mkL0gNMEiRRSk4pAeKaxoFYdupjGmE0ZpDsSKKeelMU0rGmIaeacoqPPNPDUDHE4pAc00tQrUBYlApegpu/iml80E2YpOaMUgOaUnFAxCcUoOajJpy9aB2HnpTM805jxTKBIfnimU4Dim4oGdz8Hv8AkqGk/Sb/ANEvW/8AHz/kctP/AOwev/ox6wvg+P8Ai52k/Sb/ANEvW98e/wDkcdP/AOwev/ox65n/ALwvQ53/ABl6Hku6k3UrcGmV0HTYUnmnBqZRQFiQtTdxptFAWJFJPFWFFVk61ZV8U0RIeRxSYFNMtNMnHamTZiP3qIYp7NxUQ+8aRaRIDgUF8UwE4pCDQOxIJDkU9XqEDkc0KxFArE5ekBJNRbyamjBNAmrCgZprripfurULyc9aBLcjHFKzcU0scGmkk0i0gJyaSiigoKKnjANFOxLker/HC3u2+IVjJAFKNpaIQWxnEsmf5iuD1kJd2dnFPLH50IClc9QO1dP+0NM8XxD08KxA/sqPof8AprLXkjlpeWZifc14Z5J0vjHTbOyvbe408Mtrcwq4RuqtjkVmaLqOo6TfibT9wlZSpXGdwPYirNhqttcW0NlrPnSWkAbyTEfmUn19RXpHh+70+88OW2sW9pG91Yt9nm2p8xXPDfX/AOvQB5VrF9e6lqMl1f589sDGMBRjgAelQaZFFLq1ss5xGZBmvWPHOkabrPhxdXsgouEwS443LwAMetY2ifD601LwPJrazTfbI937rGACKAOyttMkuImcwqIkTjNcfrlhbXimNoyjDOyReoP+FXPD/jy0eSCw1CGSNyBEXVsjPTJFJ41u/s+lTOvJjfyQyjBXPTI/CgDzS8MslycS+dt4HGDVd5DxuQqR1pQSV3A/MDnNJNcPcEebyVHXFAG9D4uu4dIOnbVeMjAY/eWucJxk+tT29pPeS7LeF5XxnagyabPHPbqYZ4mQ5zhlwaANTwx4nvPC+p/a7XDKw2yRt0YV2VxqN18RriKa6gWCztuNqnJc/WuG0KzimuHluR+5iGcHua9Y0u1trOyRLRAsbDd9TQBZ0WOPw3cxX1hCq+UpEiAf6xe4+ta+teMIdRtENvCVLjO4HoPSqkODHn1rnL+E2t7MltFuE+MKDkq/qB6H+lAFbVNIsNStJZY12yqMkCuFW5l0157KylZY7jCSH1Ga7I6P4o09pLloHNuwyxZeMVlaz4aWy0GHUNzy3V1ICCBhVB7D1NAHd6X8HrOa1hudQumkdlD7Y+BjGa4fQfCEuv8AjaTSLSbCwuxEx5CorYH9K9D/AOEgv7X4dW8ZdhqDx/ZkRR87N0Fed2Vr4i8Oaji2n8m9ZcEI3JHXGaAPaLX4Q6TDJJeXd1c3l43JZnwCfpW9aWJV0gWEBVG2uH+H3xDubyZ9O1WXMwyVZzg5HUV6daalDInnkIIf+euRjP1oA4Dxh8HLTXA9zY3ckF0cttflCf6V4XcaVdeFvE0un6nEBPAwIzyp9D9DX17PPgK+75SRXzp8d0tx4qsriKVDcSWw81FPK4Jxn8KAM/VPE5j0wpFFax74isipGPmJ71xNtqE0DRSR4HlHIHqaptLJIuGYkAUqOWwiqSTwMUAfWWj6hJqvwHnvZVCySaVd5A9hIP6V8xV9J+FYJLb9nh4ZfvrpV5n/AMimvmyu/B/CztwuzCiiiuw6wooooAkU05hUanFOLcUEjCMUlKTmkoKFBpSc0gGadtoEMopSMUlAwozRQKAHZNJTwtIRigQ5aVjUYNOpisMJ5pQ2KQikpDHlqQHmm0UBYmDcU0mmZpKAsd78Hmz8UNJHtN/6Jetz4/HHjPT/APsHr/6MkrA+Dv8AyVHSPpP/AOiXre+P/wDyOenf9g9f/Rklc0v469DB/wAZeh5PRRRXSdAUUU9RxQA0j2pKkxxUZ60CQoOKXeabRQOw8HPenbeOtRVPHgjv0oJeg0qcUzBBqcjio3wKYkxM8Um4HFNJpKRViTOSKQdaRTzTximIEHNWUUCoVxxUiOp70ESuxZQdvFVChFWJZRyARVcux70MqF7DcUU4KTk5pCMGkWJRRRQA+NsHFFMoouS43PrrxH8PPCvi3UY7/XNL+1XUcQhV/tEseEBLAYRgOrH86yR8F/h+vTQP/Jyf/wCLrvaK8Q8k4MfBnwAOmgD/AMDJ/wD4utjRvAPhjw/HNHpmliBJseYDNI+7H+8xrpKKAOZf4f8Ahd4WhOmYib7yLcSqp/ANVy08JaHY2UlnbWAjt5PvoJHOfzNbVFAHDn4P+AzN539hfvA27P2ufr/33WrqfgPwzrFu8F/pSSxyBQ+JHUtt6ZKsDxXR0UAcEPgv8Px00D/ycn/+LpP+FK/D4nP/AAj/AD/1+XH/AMcrvqKAOW0n4c+EtDmabTdHSCRl2FhNI3H4saj1H4ZeD9WkMl9o4mcnOTcSjn8GrraKAOIf4Q+BZCpbQySvT/TJ/wD4utRPAnhqNAq6bhR0Hnyf/FV0dFAGAvgrw+q7Rp+B/wBd5P8A4qkh8EeHYLoXMenDzl6M00jY/Nq6CigDPl0TT5oPJkt90eMbd7f41l3fgHwxf2UFnc6WJILdi0SedINpPuGzXSUUAc3beAfDNpLFLFpx3xf6svcSvt+m5jVq58I6BeSxyz6ZE0kZyr5IIP1BraooA5SH4a+Ebe/a+i0dVuGJJfz5Tz9C2K1rzw3pN/p4sLi1JtgQwRJXTke6kGtWigDnH8DaBJMkz2920iY2k6hcHGP+B1lXfwf8C31w9xdaI8sznLO97cEn/wAiV3FFAHA/8KV+HwGP+Ef4/wCv24/+OUsfwY+H8Thk0DDDkH7ZP/8AF13tFAGdFoenQaE2iR2+NOaJ4TDvY5Rs7huznnJ5zmuY/wCFP+BP+gF/5Nz/APxddxRVKco7MpSktmcP/wAKf8Cf9AL/AMm5/wD4uj/hT/gT/oBf+Tc//wAXXcUU/az7sftJ92cP/wAKf8Cf9AL/AMm5/wD4uj/hT/gT/oBf+Tc//wAXXcUUe1n3Ye0n3Zw//Cn/AAJ/0Av/ACbn/wDi6P8AhT/gT/oBf+Tc/wD8XXcUUe1n3Ye0n3Zw/wDwp/wJ/wBAL/ybn/8Ai6P+FP8AgT/oBf8Ak3P/APF13FFHtZ92HtJ92cP/AMKg8CD/AJgX/k3P/wDF0v8AwqLwL/0A/wDybn/+Lrt6KPaz/mYe0n3OHPwg8CH/AJgX/k3P/wDF0f8ACn/An/QC/wDJuf8A+LruKKPaz7sPaT7s4f8A4U/4E/6AX/k3P/8AF0f8Kf8AAn/QC/8AJuf/AOLruKKPaz7sPaT7s4j/AIVF4F/6Af8A5Nz/APxdB+EPgU/8wP8A8m5//i67eij2s/5mHtJ9zh/+FP8AgT/oBf8Ak3P/APF0v/CofAv/AEA//Juf/wCLrt6KPaz/AJmHtJ92cR/wqDwIf+YF/wCTc/8A8XSf8Kf8Cf8AQC/8m5//AIuu4oo9rPuw9pPuzh/+FP8AgT/oBf8Ak3P/APF0f8Kf8Cf9AL/ybn/+LruKKPaz7sPaT7s4f/hT/gT/AKAX/k3P/wDF0f8ACn/An/QC/wDJuf8A+LruKKPaz7sPaT7s5XRvhx4T0DVIdT0zSvIvId2yT7RK2MgqeGYjoT2qx4g8CeG/FN7Heazpv2qeOPykfz5EwuScYVgOpNdFRS55XvfUXPK97nD/APCn/An/AEAv/Juf/wCLo/4U/wCBP+gF/wCTc/8A8XXcUU/az7sftJ92cP8A8Kf8Cf8AQC/8m5//AIugfCDwIOmhf+Tc/wD8XXcUUe1n3Ye0n3ZxH/CovAv/AEA//Juf/wCLpD8IPAh/5gX/AJNz/wDxddxRR7Wf8zD2k+7OH/4U/wCBP+gF/wCTc/8A8XR/wp/wJ/0Av/Juf/4uu4oo9rPuw9pPuzh/+FP+BP8AoBf+Tc//AMXSj4Q+BR00P/ybn/8Ai67eij2s/wCZh7SfdnE/8Kj8Df8AQD/8m5//AIukPwg8Cnrof/k3P/8AF129FHtZ/wAzD2k+5w//AAp/wJ/0Av8Aybn/APi6P+FP+BP+gF/5Nz//ABddxRR7Wfdh7SfdnD/8Kf8AAn/QC/8AJuf/AOLpR8IfAo6aH/5Nz/8AxddvRR7Wf8zD2k+7OJ/4VF4G/wCgH/5Nz/8AxdJ/wqHwL/0A/wDybn/+Lrt6KftZ/wAzD2k+5w//AAqDwJ/0A/8Aybn/APi6P+FQeBP+gF/5Nz//ABddxRS9rP8AmYe0n3ZxA+EPgUdND/8AJuf/AOLpP+FP+BD/AMwL/wAm5/8A4uu4oo9rPuw9pPuzh/8AhT/gT/oBf+Tc/wD8XR/wp/wJ/wBAL/ybn/8Ai67iij2s+7D2k+7OH/4U/wCBP+gF/wCTc/8A8XRXcUUe1n3Ye0n3Z//Z"
}
},
{
"id": "/page/2/Caption/1",
"block_type": "Caption",
"html": "<p>Figure 2. UCF sample results. Left: input counting image. Middle: Ground truth density map. Right: AMDCN prediction of density map on test image. The network never saw these images during training. All density maps are one channel only (i.e. grayscale), but are colored here for clarity.</p>",
"polygon": [
[
49.60546875,
163.388671875
],
[
286.3586730957031,
163.388671875
],
[
286.3586730957031,
216.38336181640625
],
[
49.60546875,
216.38336181640625
]
],
"bbox": [
49.60546875,
163.388671875,
286.3586730957031,
216.38336181640625
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": null
},
{
"id": "/page/2/Text/2",
"block_type": "Text",
"html": "<p block-type=\"Text\"><span id=\"page-2-2\"></span>of regression for production of density maps <a href=\"#page-8-15\">[24]</a>. In the same spirit, <a href=\"#page-8-16\">[4]</a> combines deep and shallow convolutions within the same network, providing accurate counting of dense objects (e.g. the UCF50 crowd dataset).</p>",
"polygon": [
[
49.82958984375,
239.4554443359375
],
[
286.3650817871094,
239.4554443359375
],
[
286.3650817871094,
285.2840881347656
],
[
49.82958984375,
285.2840881347656
]
],
"bbox": [
49.82958984375,
239.4554443359375,
286.3650817871094,
285.2840881347656
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
},
{
"id": "/page/2/Text/3",
"block_type": "Text",
"html": "<p block-type=\"Text\">In this paper, however, we aim to apply the dilated convolution method of <a href=\"#page-8-5\">[25]</a>, which has shown to be able to incorporate multiscale perspective information without using multiple inputs or a complicated network architecture, as well as the multicolumn approach of <a href=\"#page-8-13\">[8,</a> <a href=\"#page-9-0\">28]</a> to aggregate multiscale information for the counting problem.</p>",
"polygon": [
[
49.82958984375,
287.75848388671875
],
[
286.576171875,
287.75848388671875
],
[
286.576171875,
357.4970397949219
],
[
49.82958984375,
357.4970397949219
]
],
"bbox": [
49.82958984375,
287.75848388671875,
286.576171875,
357.4970397949219
],
"children": null,
"section_hierarchy": {
"1": "/page/0/SectionHeader/12"
},
"images": {}
},
{
"id": "/page/2/SectionHeader/4",
"block_type": "SectionHeader",
"html": "<h1>3. Method</h1>",
"polygon": [
[
49.418701171875,
371.27313232421875
],
[
101.91387939453125,
371.27313232421875
],
[
101.91387939453125,
383.22833251953125
],
[
49.418701171875,
383.22833251953125
]
],
"bbox": [
49.418701171875,
371.27313232421875,
101.91387939453125,
383.22833251953125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/2/SectionHeader/5",
"block_type": "SectionHeader",
"html": "<h2><span id=\"page-2-0\"></span>3.1. Dilated Convolutions for Multicolumn Networks</h2>",
"polygon": [
[
49.53076171875,
391.4488220214844
],
[
287.173828125,
391.4488220214844
],
[
287.173828125,
414.3627014160156
],
[
49.53076171875,
414.3627014160156
]
],
"bbox": [
49.53076171875,
391.4488220214844,
287.173828125,
414.3627014160156
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/2/SectionHeader/5"
},
"images": {}
},
{
"id": "/page/2/Text/6",
"block_type": "Text",
"html": "<p block-type=\"Text\">We propose the use of dilated convolutions as an attractive alternative to the architecture of the HydraCNN <a href=\"#page-8-4\">[18]</a>, which seems to saturate in performance at 3 or more columns. We refer to our proposed network as the aggregated multicolumn dilated convolution network<a href=\"#page-2-1\">1</a> , henceforth shortened as the AMDCN. The architecture of the AMDCN is inspired by the multicolumn counting network of <a href=\"#page-9-0\">[28]</a>. Extracting features from multiple scales is a good idea when attempting to perform perspective-free counting and increasing the convolution kernel size across columns is an efficient method of doing so. However, the number of parameters increases exponentially as larger kernels are used in these columns to extract features at larger scales. Therefore, we propose using dilated convolutions rather than larger kernels.</p>",
"polygon": [
[
49.306640625,
422.6754150390625
],
[
287.173828125,
422.6754150390625
],
[
287.173828125,
600.0099334716797
],
[
49.306640625,
600.0099334716797
]
],
"bbox": [
49.306640625,
422.6754150390625,
287.173828125,
600.0099334716797
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/2/SectionHeader/5"
},
"images": {}
},
{
"id": "/page/2/Text/7",
"block_type": "Text",
"html": "<p block-type=\"Text\">Dilated convolutions, as discussed in <a href=\"#page-8-5\">[25]</a>, allow for the exponential increase of the receptive field with a linear increase in the number of parameters with respect to each hidden layer.</p>",
"polygon": [
[
49.23193359375,
602.4853363037109
],
[
286.875,
602.4853363037109
],
[
286.875,
648.3139343261719
],
[
49.23193359375,
648.3139343261719
]
],
"bbox": [
49.23193359375,
602.4853363037109,
286.875,
648.3139343261719
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/2/SectionHeader/5"
},
"images": {}
},
{
"id": "/page/2/TextInlineMath/8",
"block_type": "TextInlineMath",
"html": "<p block-type=\"TextInlineMath\" class=\"has-continuation\">In a traditional 2D convolution, we define a real valued function F : Z 2 → R, an input Ωr = [r, r] 2 ∈ Z 2 , and a filter function k : Ωr → R. In this case, a convolution</p>",
"polygon": [
[
49.38134765625,
650.788330078125
],
[
286.365478515625,
650.788330078125
],
[
286.365478515625,
685.65234375
],
[
49.38134765625,
685.65234375
]
],
"bbox": [
49.38134765625,
650.788330078125,
286.365478515625,
685.65234375
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/2/SectionHeader/5"
},
"images": {}
},
{
"id": "/page/2/Text/10",
"block_type": "Text",
"html": "<p block-type=\"Text\">operation as defined in <a href=\"#page-8-5\">[25]</a> is given by</p>",
"polygon": [
[
308.86199951171875,
74.40740966796875
],
[
464.2486267089844,
74.40740966796875
],
[
464.2486267089844,
84.3699951171875
],
[
308.86199951171875,
84.3699951171875
]
],
"bbox": [
308.86199951171875,
74.40740966796875,
464.2486267089844,
84.3699951171875
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/2/SectionHeader/5"
},
"images": {}
},
{
"id": "/page/2/Equation/11",
"block_type": "Equation",
"html": "<p block-type=\"Equation\"><math display=\"block\">(F*k)(\\mathbf{p}) = \\sum_{\\mathbf{s}+\\mathbf{t}=\\mathbf{p}} F(\\mathbf{s})k(\\mathbf{t}). \\quad (1)</math></p>",
"polygon": [
[
364.8009948730469,
94.8427734375
],
[
545.66015625,
94.8427734375
],
[
545.66015625,
120.3662109375
],
[
364.8009948730469,
120.3662109375
]
],
"bbox": [
364.8009948730469,
94.8427734375,
545.66015625,
120.3662109375
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/2/SectionHeader/5"
},
"images": {}
},
{
"id": "/page/2/Text/12",
"block_type": "Text",
"html": "<p block-type=\"Text\">A dilated convolution is essentially a generalization of the traditional 2D convolution that allows the operation to skip some inputs. This enables an increase in the size of the filter (i.e. the size of the receptive field) without losing resolution. Formally, we define from <a href=\"#page-8-5\">[25]</a> the dilated convolution as</p>",
"polygon": [
[
308.8620300292969,
131.5810546875
],
[
545.66015625,
131.5810546875
],
[
545.66015625,
201.72210693359375
],
[
308.8620300292969,
201.72210693359375
]
],
"bbox": [
308.8620300292969,
131.5810546875,
545.66015625,
201.72210693359375
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/2/SectionHeader/5"
},
"images": {}
},
{
"id": "/page/2/Equation/13",
"block_type": "Equation",
"html": "<p block-type=\"Equation\"><math display=\"block\">(F*_{l}k)(\\mathbf{p})=\\sum_{\\mathbf{s}+l\\mathbf{t}=\\mathbf{p}}F(\\mathbf{s})k(\\mathbf{t})\\tag{2}</math></p>",
"polygon": [
[
363.375,
211.341796875
],
[
545.1124267578125,
211.341796875
],
[
545.1124267578125,
236.865234375
],
[
363.375,
236.865234375
]
],
"bbox": [
363.375,
211.341796875,
545.1124267578125,
236.865234375
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/2/SectionHeader/5"
},
"images": {}
},
{
"id": "/page/2/Text/14",
"block_type": "Text",
"html": "<p block-type=\"Text\">where l is the index of the current layer of the convolution.</p>",
"polygon": [
[
308.390625,
247.52099609375
],
[
543.1434936523438,
247.52099609375
],
[
543.1434936523438,
257.714111328125
],
[
308.390625,
257.714111328125
]
],
"bbox": [
308.390625,
247.52099609375,
543.1434936523438,
257.714111328125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/2/SectionHeader/5"
},
"images": {}
},
{
"id": "/page/2/Text/15",
"block_type": "Text",
"html": "<p block-type=\"Text\">Using dilations to construct the aggregator in combination with the multicolumn idea will allow for the construction of a network with more than just 3 or 4 columns as in <a href=\"#page-9-0\">[28]</a> and <a href=\"#page-8-13\">[8]</a>, because the aggregator should prevent the saturation of performance with increasing numbers of columns. Therefore the network will be able to extract useful features from more scales. We take advantage of dilations within the columns as well to provide large receptive fields with fewer parameters.</p>",
"polygon": [
[
308.390625,
260.17254638671875
],
[
545.1151733398438,
260.17254638671875
],
[
545.1151733398438,
365.7760925292969
],
[
308.390625,
365.7760925292969
]
],
"bbox": [
308.390625,
260.17254638671875,
545.1151733398438,
365.7760925292969
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/2/SectionHeader/5"
},
"images": {}
},
{
"id": "/page/2/Text/16",
"block_type": "Text",
"html": "<p block-type=\"Text\">Looking at more scales should allow for more accurate regression of the density map. However, because not all scales will be relevant, we extend the network beyond a simple 1 × 1 convolution after the merged columns. Instead, we construct a second part of the network, the aggregator, which sets our method apart from <a href=\"#page-9-0\">[28]</a>, <a href=\"#page-8-13\">[8]</a>, and other multicolumn networks. This aggregator is another series of dilated convolutions that should appropriately consolidate the multiscale information collected by the columns. This is a capability of dilated convolutions observed by <a href=\"#page-8-5\">[25]</a>. While papers such as <a href=\"#page-9-0\">[28]</a> and <a href=\"#page-8-13\">[8]</a> have shown that multiple columns and dilated columns are useful in extracting multiscale information, we argue in this paper that the simple aggregator module built using dilated convolutions is able to effectively make use multiscale information from multiple columns. We show compelling evidence for these claims in Section <a href=\"#page-5-0\">4.5.</a></p>",
"polygon": [
[
308.091796875,
368.2344665527344
],
[
545.115234375,
368.2344665527344
],
[
545.115234375,
569.4799194335938
],
[
308.091796875,
569.4799194335938
]
],
"bbox": [
308.091796875,
368.2344665527344,
545.115234375,
569.4799194335938
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/2/SectionHeader/5"
},
"images": {}
},
{
"id": "/page/2/Text/17",
"block_type": "Text",
"html": "<p block-type=\"Text\">The network as shown in Figure <a href=\"#page-1-0\">1</a> contains 5 columns. Note that dilations allow us to use more columns for counting than <a href=\"#page-9-0\">[28]</a> or <a href=\"#page-8-13\">[8]</a>. Each column looks at a larger scale than the previous (the exact dilations can also be seen in Figure <a href=\"#page-1-0\">1)</a>. There are 32 feature maps for each convolution, and all inputs are zero padded prior to each convolution in order to maintain the same data shape from input to output. That is, an image input to this network will result in a density map of the same dimensions. All activations in the specified network are ReLUs. Our input pixel values are floating point 32 bit values from 0 to 1. We center our inputs at 0 by subtracting the per channel mean from each channel. When</p>",
"polygon": [
[
308.689453125,
571.9373168945312
],
[
545.115234375,
571.9373168945312
],
[
545.115234375,
713.4069290161133
],
[
308.689453125,
713.4069290161133
]
],
"bbox": [
308.689453125,
571.9373168945312,
545.115234375,
713.4069290161133
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/2/SectionHeader/5"
},
"images": {}
},
{
"id": "/page/2/Footnote/9",
"block_type": "Footnote",
"html": "<p><span id=\"page-2-1\"></span><sup>1</sup> Implementation available on <a href=\"https://github.com/diptodip/counting\">https://github.com/</a> <a href=\"https://github.com/diptodip/counting\">diptodip/counting</a>.</p>",
"polygon": [
[
49.68017578125,
694.1896514892578
],
[
286.3621520996094,
694.1896514892578
],
[
286.3621520996094,
712.9256591796875
],
[
49.68017578125,
712.9256591796875
]
],
"bbox": [
49.68017578125,
694.1896514892578,
286.3621520996094,
712.9256591796875
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/2/SectionHeader/5"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/2/SectionHeader/5"
},
"images": null
},
{
"id": "/page/3/Page/454",
"block_type": "Page",
"html": "<content-ref src='/page/3/Text/0'></content-ref><content-ref src='/page/3/Equation/1'></content-ref><content-ref src='/page/3/TextInlineMath/2'></content-ref><content-ref src='/page/3/SectionHeader/3'></content-ref><content-ref src='/page/3/Text/4'></content-ref><content-ref src='/page/3/Text/5'></content-ref><content-ref src='/page/3/Text/6'></content-ref><content-ref src='/page/3/Text/7'></content-ref><content-ref src='/page/3/SectionHeader/8'></content-ref><content-ref src='/page/3/Text/9'></content-ref><content-ref src='/page/3/Text/10'></content-ref><content-ref src='/page/3/SectionHeader/11'></content-ref><content-ref src='/page/3/Text/12'></content-ref>",
"polygon": [
[
0.0,
0.0
],
[
612.0,
0.0
],
[
612.0,
792.0
],
[
0.0,
792.0
]
],
"bbox": [
0.0,
0.0,
612.0,
792.0
],
"children": [
{
"id": "/page/3/Text/0",
"block_type": "Text",
"html": "<p block-type=\"Text\">training, we use a scaled mean absolute error for our loss function:</p>",
"polygon": [
[
49.53076171875,
73.91162109375
],
[
286.576171875,
73.91162109375
],
[
286.576171875,
96.32501220703125
],
[
49.53076171875,
96.32501220703125
]
],
"bbox": [
49.53076171875,
73.91162109375,
286.576171875,
96.32501220703125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/2/SectionHeader/5"
},
"images": {}
},
{
"id": "/page/3/Equation/1",
"block_type": "Equation",
"html": "<p block-type=\"Equation\"><math display=\"block\">L = \\frac{1}{n} \\sum_{i=1}^{n} |\\hat{y}_i - \\gamma y_i| \\qquad (3)</math></p>",
"polygon": [
[
125.28369140625,
95.82470703125
],
[
288.0703125,
95.82470703125
],
[
288.0703125,
127.037109375
],
[
125.28369140625,
127.037109375
]
],
"bbox": [
125.28369140625,
95.82470703125,
288.0703125,
127.037109375
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/2/SectionHeader/5"
},
"images": {}
},
{
"id": "/page/3/TextInlineMath/2",
"block_type": "TextInlineMath",
"html": "<p block-type=\"TextInlineMath\">where γ is the scale factor, <math display=\"inline\">\\hat{y}_i </math>is the prediction, <math display=\"inline\">y_i </math>is the true value, and <math display=\"inline\">n</math> is the number of pixels. We use a scaled mean absolute error because the target values are so small that it is numerically unstable to regress to these values. At testing time, when retrieving the output density map from the network, we scale the pixel values by <math display=\"inline\">γ^{-1} </math>to obtain the correct value. This approach is more numerically stable and avoids having the network learn to output only zeros by weighting the nonzero values highly. For all our datasets, we set <math display=\"inline\">γ = 255. </math></p>",
"polygon": [
[
49.38134765625,
134.8328857421875
],
[
286.576171875,
134.8328857421875
],
[
286.576171875,
253.107421875
],
[
49.38134765625,
253.107421875
]
],
"bbox": [
49.38134765625,
134.8328857421875,
286.576171875,
253.107421875
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/2/SectionHeader/5"
},
"images": {}
},
{
"id": "/page/3/SectionHeader/3",
"block_type": "SectionHeader",
"html": "<h2>3.2. Experiments</h2>",
"polygon": [
[
49.119873046875,
263.97784423828125
],
[
128.95028686523438,
263.97784423828125
],
[
128.95028686523438,
274.936767578125
],
[
49.119873046875,
274.936767578125
]
],
"bbox": [
49.119873046875,
263.97784423828125,
128.95028686523438,
274.936767578125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3"
},
"images": {}
},
{
"id": "/page/3/Text/4",
"block_type": "Text",
"html": "<p block-type=\"Text\">We evaluated the performance of dilated convolutions against various counting methods on a variety of common counting datasets: UCF50 crowd data, TRANCOS traffic data <a href=\"#page-8-4\">[18]</a>, UCSD crowd data <a href=\"#page-8-17\">[5]</a>, and WorldExpo crowd data <a href=\"#page-8-7\">[27]</a>. For each of these data sets, we used labels given by the corresponding density map for each image. An example of this is shown in Figure <a href=\"#page-2-2\">2.</a> We have performed experiments on the four different splits of the UCSD data as used in <a href=\"#page-8-4\">[18]</a> and the split of the UCSD data as used in <a href=\"#page-9-0\">[28]</a> (which we call the original split). We also evaluated the performance of our network on the TRANCOS traffic dataset <a href=\"#page-8-1\">[14]</a>. We have also experimented with higher density datasets for crowd counting, namely WorldExpo and UCF.</p>",
"polygon": [
[
49.306640625,
283.5155029296875
],
[
287.771484375,
283.5155029296875
],
[
287.771484375,
448.89495849609375
],
[
49.306640625,
448.89495849609375
]
],
"bbox": [
49.306640625,
283.5155029296875,
287.771484375,
448.89495849609375
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3"
},
"images": {}
},
{
"id": "/page/3/Text/5",
"block_type": "Text",
"html": "<p block-type=\"Text\">We have observed that multicolumn dilations produce density maps (and therefore counts) that often have lower loss than those of HydraCNN <a href=\"#page-8-4\">[18]</a> and <a href=\"#page-9-0\">[28]</a>. We measure density map regression loss via a scaled mean absolute error loss during training. We compare accuracy of the counts via mean absolute error for the crowd datasets and the GAME metric in the TRANCOS dataset as explained in Section <a href=\"#page-3-0\">3.2.2.</a> Beyond the comparison to HydraCNN, we will also compare to other recent convolutional counting methods, especially those of <a href=\"#page-8-14\">[21]</a>, <a href=\"#page-8-15\">[24]</a>, and <a href=\"#page-8-16\">[4]</a> where possible.</p>",
"polygon": [
[
49.53076171875,
451.6363525390625
],
[
287.173828125,
451.6363525390625
],
[
287.173828125,
569.25
],
[
49.53076171875,
569.25
]
],
"bbox": [
49.53076171875,
451.6363525390625,
287.173828125,
569.25
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3"
},
"images": {}
},
{
"id": "/page/3/Text/6",
"block_type": "Text",
"html": "<p block-type=\"Text\">For all datasets, we generally use patched input images and ground truth density maps produced by summing a Gaussian of a fixed size (σ) for each object for training. This size varies from dataset to dataset, but remains constant within a dataset with the exception of cases in which a perspective map is used. This is explained per dataset. All experiments were performed using Keras with the Adam optimizer <a href=\"#page-8-18\">[10]</a>. The learning rates used are detailed per dataset. For testing, we also use patches that can either be directly pieced together or overlapped and averaged except in the case of UCF, for which we run our network on the full image.</p>",
"polygon": [
[
49.60546875,
571.9372863769531
],
[
286.875,
571.9372863769531
],
[
286.875,
713.49609375
],
[
49.60546875,
713.49609375
]
],
"bbox": [
49.60546875,
571.9372863769531,
286.875,
713.49609375
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3"
},
"images": {}
},
{
"id": "/page/3/Text/7",
"block_type": "Text",
"html": "<p block-type=\"Text\">Furthermore, we performed a set of experiments in which we varied the number of columns from 1 to 5 (simply by including or not including the columns as specified in Figure <a href=\"#page-1-0\">1,</a> starting with the smallest filter column and adding larger filter columns one by one). Essentially, the network is allowed to extract information at larger and larger scales in addition to the smaller scales as we include each column. We then performed the same set of experiments, varying the number of columns, but with the aggregator module removed. We perform these experiments on the original split of UCSD as specified in Section <a href=\"#page-4-0\">3.2.3</a> and <a href=\"#page-8-17\">[5]</a>, the TRAN-COS dataset, and the WorldExpo dataset because these are relatively large and well defined datasets. We limit the number of epochs to 10 for all of these sets of experiments in order to control for the effect of learning time, and also compare all results using MAE for consistency. These experiments are key to determining the efficacy of the aggregator in effectively combining multiscale information and in providing evidence to support the use of multiple columns to extract multiscale information from images. We report the results of these ablation studies in Section <a href=\"#page-5-0\">4.5.</a></p>",
"polygon": [
[
308.8619689941406,
74.056640625
],
[
545.66015625,
74.056640625
],
[
545.66015625,
323.4729919433594
],
[
308.8619689941406,
323.4729919433594
]
],
"bbox": [
308.8619689941406,
74.056640625,
545.66015625,
323.4729919433594
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3"
},
"images": {}
},
{
"id": "/page/3/SectionHeader/8",
"block_type": "SectionHeader",
"html": "<h4>3.2.1 UCF50 Crowd Counting</h4>",
"polygon": [
[
307.79296875,
339.92578125
],
[
443.4609375,
339.92578125
],
[
443.4609375,
350.13201904296875
],
[
307.79296875,
350.13201904296875
]
],
"bbox": [
307.79296875,
339.92578125,
443.4609375,
350.13201904296875
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/3/SectionHeader/8"
},
"images": {}
},
{
"id": "/page/3/Text/9",
"block_type": "Text",
"html": "<p block-type=\"Text\">UCF is a particularly challenging crowd counting dataset. There are only 50 images in the whole dataset and they are all of varying sizes and from different scenes. The number of people also varies between images from less than 100 to the thousands. The average image has on the order of 1000 people. The difficulty is due to the combination of the very low number of images in the dataset and the fact that the images are all of varying scenes, making high quality generalization crucial. Furthermore, perspective effects are particularly noticeable for many images in this dataset. Despite this, there is no perspective information available for this dataset.</p>",
"polygon": [
[
308.390625,
359.0173645019531
],
[
545.66015625,
359.0173645019531
],
[
545.66015625,
500.4868469238281
],
[
308.390625,
500.4868469238281
]
],
"bbox": [
308.390625,
359.0173645019531,
545.66015625,
500.4868469238281
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/3/SectionHeader/8"
},
"images": {}
},
{
"id": "/page/3/Text/10",
"block_type": "Text",
"html": "<p block-type=\"Text\">We take 1600 random patches of size 150 × 150 for the training. For testing, we do not densely scan the image as in <a href=\"#page-8-4\">[18]</a> but instead test on the whole image. In order to standardize the image sizes, we pad each image out with zeros until all images are 1024 × 1024. We then suppress output in the regions where we added padding when testing. This provides a cleaner resulting density map for these large crowds. The ground truth density maps are produced by annotating each object with a Gaussian of σ = 15.</p>",
"polygon": [
[
308.390625,
502.16058349609375
],
[
545.66015625,
502.16058349609375
],
[
545.66015625,
608.1248321533203
],
[
308.390625,
608.1248321533203
]
],
"bbox": [
308.390625,
502.16058349609375,
545.66015625,
608.1248321533203
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/3/SectionHeader/8"
},
"images": {}
},
{
"id": "/page/3/SectionHeader/11",
"block_type": "SectionHeader",
"html": "<h4><span id=\"page-3-0\"></span>3.2.2 TRANCOS Traffic Counting</h4>",
"polygon": [
[
308.390625,
624.55078125
],
[
461.390625,
624.55078125
],
[
461.390625,
634.7828826904297
],
[
308.390625,
634.7828826904297
]
],
"bbox": [
308.390625,
624.55078125,
461.390625,
634.7828826904297
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/3/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/3/Text/12",
"block_type": "Text",
"html": "<p block-type=\"Text\" class=\"has-continuation\">TRANCOS is a traffic counting dataset that comes with its own metric <a href=\"#page-8-1\">[14]</a>. This metric is known as GAME, which stands for Grid Average Mean absolute Error. GAME splits a given density map into 4 L grids, or subarrays, and obtains a mean absolute error within each grid separately. The value of L is a parameter chosen by the user. These</p>",
"polygon": [
[
307.79296875,
643.6692352294922
],
[
546.85546875,
643.6692352294922
],
[
546.85546875,
713.49609375
],
[
307.79296875,
713.49609375
]
],
"bbox": [
307.79296875,
643.6692352294922,
546.85546875,
713.49609375
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/3/SectionHeader/11"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/3/SectionHeader/11"
},
"images": null
},
{
"id": "/page/4/Page/639",
"block_type": "Page",
"html": "<content-ref src='/page/4/Text/0'></content-ref><content-ref src='/page/4/Equation/1'></content-ref><content-ref src='/page/4/TextInlineMath/2'></content-ref><content-ref src='/page/4/TextInlineMath/3'></content-ref><content-ref src='/page/4/SectionHeader/4'></content-ref><content-ref src='/page/4/Text/5'></content-ref><content-ref src='/page/4/TextInlineMath/6'></content-ref><content-ref src='/page/4/Text/7'></content-ref><content-ref src='/page/4/Text/8'></content-ref><content-ref src='/page/4/TextInlineMath/9'></content-ref><content-ref src='/page/4/SectionHeader/10'></content-ref><content-ref src='/page/4/Text/11'></content-ref><content-ref src='/page/4/TextInlineMath/12'></content-ref><content-ref src='/page/4/Text/13'></content-ref><content-ref src='/page/4/Equation/14'></content-ref><content-ref src='/page/4/TextInlineMath/15'></content-ref>",
"polygon": [
[
0.0,
0.0
],
[
612.0,
0.0
],
[
612.0,
792.0
],
[
0.0,
792.0
]
],
"bbox": [
0.0,
0.0,
612.0,
792.0
],
"children": [
{
"id": "/page/4/Text/0",
"block_type": "Text",
"html": "<p block-type=\"Text\">individual errors are summed to obtain the final error for a particular image. The intuition behind this metric is that it is desirable to penalize a density map whose overall count might match the ground truth, but whose shape does not match the ground truth <a href=\"#page-8-1\">[14]</a>. More formally, we define</p>",
"polygon": [
[
49.60546875,
74.1533203125
],
[
287.173828125,
74.1533203125
],
[
287.173828125,
132.1900634765625
],
[
49.60546875,
132.1900634765625
]
],
"bbox": [
49.60546875,
74.1533203125,
287.173828125,
132.1900634765625
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/3/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/4/Equation/1",
"block_type": "Equation",
"html": "<p block-type=\"Equation\"><math display=\"block\">GAME(L) = \\frac{1}{N} \\cdot \\sum_{n=1}^{N} \\left( \\sum_{l=1}^{4^L} |e_n^l - t_n^l| \\right) \\tag{4}</math></p>",
"polygon": [
[
84.49365234375,
138.572265625
],
[
286.3623962402344,
138.572265625
],
[
286.3623962402344,
176.150390625
],
[
84.49365234375,
176.150390625
]
],
"bbox": [
84.49365234375,
138.572265625,
286.3623962402344,
176.150390625
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/3/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/4/TextInlineMath/2",
"block_type": "TextInlineMath",
"html": "<p block-type=\"TextInlineMath\">where N refers to the number of images, L is the level parameter for GAME, e l n is the predicted or estimated count in region l of image n and t l n is the ground truth count in region l of image n <a href=\"#page-8-1\">[14]</a>.</p>",
"polygon": [
[
49.23193359375,
180.53985595703125
],
[
287.173828125,
180.53985595703125
],
[
287.173828125,
226.59893798828125
],
[
49.23193359375,
226.59893798828125
]
],
"bbox": [
49.23193359375,
180.53985595703125,
287.173828125,
226.59893798828125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/3/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/4/TextInlineMath/3",
"block_type": "TextInlineMath",
"html": "<p block-type=\"TextInlineMath\">For training this dataset, we take 1600 randomly sampled patches of size 80 × 80. For testing this dataset, we take 80 × 80 non-overlapping patches which we can stitch back together into the full-sized 640 × 480 images. We trained the AMDCN network with density maps produced with a Gaussian of σ = 15 as specified in [18].</p>",
"polygon": [
[
49.306640625,
228.59136962890625
],
[
286.576171875,
228.59136962890625
],
[
286.576171875,
298.353515625
],
[
49.306640625,
298.353515625
]
],
"bbox": [
49.306640625,
228.59136962890625,
286.576171875,
298.353515625
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/3/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/4/SectionHeader/4",
"block_type": "SectionHeader",
"html": "<h4><span id=\"page-4-0\"></span>3.2.3 UCSD Crowd Counting</h4>",
"polygon": [
[
49.306640625,
314.06341552734375
],
[
182.4345703125,
314.06341552734375
],
[
182.4345703125,
324.0260009765625
],
[
49.306640625,
324.0260009765625
]
],
"bbox": [
49.306640625,
314.06341552734375,
182.4345703125,
324.0260009765625
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/4/Text/5",
"block_type": "Text",
"html": "<p block-type=\"Text\">The UCSD crowd counting dataset consists of frames of video of a sidewalk. There are relatively few people in view at any given time (approximately 25 on average). Furthermore, because the dataset comes from a video, there are many nearly identical images in the dataset. For this dataset, there have been two different ways to split the data into train and test sets. Therefore, we report results using both methods of splitting the data. The first method consists of four different splits: maximal, downscale, upscale, and minimal. Minimal is particularly challenging as the train set contains only 10 images. Moreover, upscale appears to be the easiest for the majority of methods <a href=\"#page-8-4\">[18]</a>. The second method of splitting this data is much more succinct, leaving 1200 images in the testing set and 800 images in the training set <a href=\"#page-9-0\">[28]</a>. This split comes from the original paper, so we call it the original split <a href=\"#page-8-17\">[5]</a>.</p>",
"polygon": [
[
49.38134765625,
332.8343505859375
],
[
287.173828125,
332.8343505859375
],
[
287.173828125,
522.45703125
],
[
49.38134765625,
522.45703125
]
],
"bbox": [
49.38134765625,
332.8343505859375,
287.173828125,
522.45703125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/4/TextInlineMath/6",
"block_type": "TextInlineMath",
"html": "<p block-type=\"TextInlineMath\">For this dataset, each object is annotated with a 2D Gaussian of covariance Σ = 8 \n· 12x2. The ground truth map is produced by summing these. When we make use of the perspective maps provided, we divide Σ by the perspective map value at that pixel x, represented by M(x). The provided perspective map for UCSD contains both a horizontal and vertical direction so we take the square root of the provided combined value. For training, we take 1600 random 79 × 119 pixel patches and for testing, we split each test image up into quadrants (which have dimension 79 × 119). There are two different ways to split the dataset into training and testing sets. We have experimented on the split that gave [18] the best results as well as the split used in [28].</p>",
"polygon": [
[
49.53076171875,
524.1171569824219
],
[
286.3650817871094,
524.1171569824219
],
[
286.3650817871094,
677.91796875
],
[
49.53076171875,
677.91796875
]
],
"bbox": [
49.53076171875,
524.1171569824219,
286.3650817871094,
677.91796875
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/4/Text/7",
"block_type": "Text",
"html": "<p block-type=\"Text\" class=\"has-continuation\">First, we split the dataset into four separate groups of training and testing sets as used in <a href=\"#page-8-4\">[18]</a> and originally defined by <a href=\"#page-8-0\">[20]</a>. These groups are \"upscale,\" \"maximal,\"</p>",
"polygon": [
[
49.68017578125,
679.078125
],
[
286.875,
679.078125
],
[
286.875,
713.4067840576172
],
[
49.68017578125,
713.4067840576172
]
],
"bbox": [
49.68017578125,
679.078125,
286.875,
713.4067840576172
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/4/Text/8",
"block_type": "Text",
"html": "<p block-type=\"Text\">\"minimal,\" and \"downscale.\" We see in Table <a href=\"#page-6-0\">3</a> that the \"upscale\" split and \"downscale\" split give us state of the art results on counting for this dataset. For this experiment, we sampled 1600 random patches of size 119 × 79 pixels (width and height respectively) for the training set and split the test set images into 119 × 79 quadrants that could be reconstructed by piecing them together without overlap. We also added left-right flips of each image to our training data.</p>",
"polygon": [
[
307.79296875,
74.1533203125
],
[
545.1151123046875,
74.1533203125
],
[
545.1151123046875,
168.0557861328125
],
[
307.79296875,
168.0557861328125
]
],
"bbox": [
307.79296875,
74.1533203125,
545.1151123046875,
168.0557861328125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/4/TextInlineMath/9",
"block_type": "TextInlineMath",
"html": "<p block-type=\"TextInlineMath\">We then evaluate the original split. For this experiment, we similarly sampled 1600 random patches of size 119 × 79 pixels (width and height respectively) for the training set and split the test set images into 119 × 79 quadrants that could be reconstructed by piecing them together without overlap.</p>",
"polygon": [
[
308.390625,
169.6728515625
],
[
545.1162719726562,
169.6728515625
],
[
545.1162719726562,
240.5390625
],
[
308.390625,
240.5390625
]
],
"bbox": [
308.390625,
169.6728515625,
545.1162719726562,
240.5390625
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/4/SectionHeader/10",
"block_type": "SectionHeader",
"html": "<h4>3.2.4 WorldExpo '10 Crowd Counting</h4>",
"polygon": [
[
308.86199951171875,
259.17828369140625
],
[
477.4889221191406,
259.17828369140625
],
[
477.4889221191406,
269.140869140625
],
[
308.86199951171875,
269.140869140625
]
],
"bbox": [
308.86199951171875,
259.17828369140625,
477.4889221191406,
269.140869140625
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
},
{
"id": "/page/4/Text/11",
"block_type": "Text",
"html": "<p block-type=\"Text\">The WorldExpo dataset <a href=\"#page-8-7\">[27]</a> contains a larger number of people (approximately 50 on average, which is double that of UCSD) and contains images from multiple locations. Perspective effects are also much more noticeable in this dataset as compared to UCSD. These qualities of the dataset serve to increase the difficulty of counting. Like UCSD, the WorldExpo dataset was constructed from frames of video recordings of crowds. This means that, unlike UCF, this dataset contains a relatively large number of training and testing images. We experiment on this dataset with and without perspective information.</p>",
"polygon": [
[
308.390625,
278.80322265625
],
[
545.1151123046875,
278.80322265625
],
[
545.1151123046875,
408.31671142578125
],
[
308.390625,
408.31671142578125
]
],
"bbox": [
308.390625,
278.80322265625,
545.1151123046875,
408.31671142578125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
},
{
"id": "/page/4/TextInlineMath/12",
"block_type": "TextInlineMath",
"html": "<p block-type=\"TextInlineMath\">Without perspective maps, we generate label density maps for this dataset in the same manner as previously described: a 2D Gaussian with σ = 15. We take 16000 150 × 150 randomly sampled patches for training. For testing, we densely scan the image, producing 150 × 150 patches at a stride of 100.</p>",
"polygon": [
[
308.390625,
410.75909423828125
],
[
545.66015625,
410.75909423828125
],
[
545.66015625,
480.4976501464844
],
[
308.390625,
480.4976501464844
]
],
"bbox": [
308.390625,
410.75909423828125,
545.66015625,
480.4976501464844
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
},
{
"id": "/page/4/Text/13",
"block_type": "Text",
"html": "<p block-type=\"Text\">When perspective maps are used, however, we follow the procedure as described in <a href=\"#page-8-7\">[27]</a>, which involves estimating a \"crowd density distribution kernel\" as the sum of two 2D Gaussians: a symmetric Gaussian for the head and an ellipsoid Gaussian for the body. These are scaled by the perspective map M provided, where M(x) gives the number of pixels that represents a meter at pixel x <a href=\"#page-8-7\">[27]</a>. Note that the meaning of this perspective map is distinct from the meaning of the perspective map provided for the UCSD dataset. Using this information, the density contribution from a person with head pixel x is given by the following sum of normalized Gaussians:</p>",
"polygon": [
[
308.689453125,
482.93902587890625
],
[
545.1155395507812,
482.93902587890625
],
[
545.1155395507812,
624.4086151123047
],
[
308.689453125,
624.4086151123047
]
],
"bbox": [
308.689453125,
482.93902587890625,
545.1155395507812,
624.4086151123047
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
},
{
"id": "/page/4/Equation/14",
"block_type": "Equation",
"html": "<p block-type=\"Equation\"><math display=\"block\">D_{\\bf x}=\\frac{1}{||Z||}\\left(\\mathcal{N}_{h}(\\bf x,\\sigma_{h})+\\mathcal{N}_{b}(\\bf x_{b},\\Sigma_{b})\\right)\\tag{5}</math></p>",
"polygon": [
[
349.03125,
632.6324462890625
],
[
545.1123657226562,
632.6324462890625
],
[
545.1123657226562,
657.80859375
],
[
349.03125,
657.80859375
]
],
"bbox": [
349.03125,
632.6324462890625,
545.1123657226562,
657.80859375
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
},
{
"id": "/page/4/TextInlineMath/15",
"block_type": "TextInlineMath",
"html": "<p block-type=\"TextInlineMath\">where $x_b$ is the center of the body, which is 0.875 meters down from the head on average, and can be determined from the perspective map $M$ and the head center x [27]. We sum these Gaussians for each person to produce</p>",
"polygon": [
[
307.494140625,
667.3479156494141
],
[
545.1151123046875,
667.3479156494141
],
[
545.1151123046875,
713.4070816040039
],
[
307.494140625,
713.4070816040039
]
],
"bbox": [
307.494140625,
667.3479156494141,
545.1151123046875,
713.4070816040039
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": null
},
{
"id": "/page/5/Page/564",
"block_type": "Page",
"html": "<content-ref src='/page/5/TableGroup/435'></content-ref><content-ref src='/page/5/TextInlineMath/2'></content-ref><content-ref src='/page/5/SectionHeader/3'></content-ref><content-ref src='/page/5/SectionHeader/4'></content-ref><content-ref src='/page/5/Text/5'></content-ref><content-ref src='/page/5/Text/6'></content-ref><content-ref src='/page/5/SectionHeader/7'></content-ref><content-ref src='/page/5/Text/8'></content-ref><content-ref src='/page/5/SectionHeader/9'></content-ref><content-ref src='/page/5/Text/10'></content-ref><content-ref src='/page/5/TableGroup/436'></content-ref><content-ref src='/page/5/Text/13'></content-ref><content-ref src='/page/5/SectionHeader/14'></content-ref><content-ref src='/page/5/Text/15'></content-ref><content-ref src='/page/5/SectionHeader/16'></content-ref><content-ref src='/page/5/Text/17'></content-ref>",
"polygon": [
[
0.0,
0.0
],
[
612.0,
0.0
],
[
612.0,
792.0
],
[
0.0,
792.0
]
],
"bbox": [
0.0,
0.0,
612.0,
792.0
],
"children": [
{
"id": "/page/5/TableGroup/435",
"block_type": "TableGroup",
"html": "<content-ref src='/page/5/Table/0'></content-ref><content-ref src='/page/5/Caption/1'></content-ref>",
"polygon": [
[
49.23193359375,
70.2861328125
],
[
283.587890625,
70.2861328125
],
[
283.587890625,
178.6640625
],
[
49.23193359375,
178.6640625
]
],
"bbox": [
49.23193359375,
70.2861328125,
283.587890625,
178.6640625
],
"children": [
{
"id": "/page/5/Table/0",
"block_type": "Table",
"html": "<table><tbody><tr><th>Method</th><th>MAE</th></tr><tr><td>AMDCN</td><td>290.82</td></tr><tr><td>Hydra2s [18]</td><td>333.73</td></tr><tr><td>MCNN [28]</td><td>377.60</td></tr><tr><td>[27]</td><td>467.00</td></tr><tr><td>[23]</td><td>295.80</td></tr><tr><td>[3]</td><td>318.10</td></tr></tbody></table>",
"polygon": [
[
69.10400390625,
70.2861328125
],
[
265.060546875,
70.2861328125
],
[
265.060546875,
160.1982421875
],
[
69.10400390625,
160.1982421875
]
],
"bbox": [
69.10400390625,
70.2861328125,
265.060546875,
160.1982421875
],
"children": [
{
"id": "/page/5/TableCell/506",
"block_type": "TableCell",
"html": "<th>Method</th>",
"polygon": [
[
69.10400390625,
70.2861328125
],
[
70.10400390625,
70.2861328125
],
[
70.10400390625,
71.2861328125
],
[
69.10400390625,
71.2861328125
]
],
"bbox": [
69.10400390625,
70.2861328125,
70.10400390625,
71.2861328125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
},
{
"id": "/page/5/TableCell/507",
"block_type": "TableCell",
"html": "<th>MAE</th>",
"polygon": [
[
70.10400390625,
70.2861328125
],
[
71.10400390625,
70.2861328125
],
[
71.10400390625,
71.2861328125
],
[
70.10400390625,
71.2861328125
]
],
"bbox": [
70.10400390625,
70.2861328125,
71.10400390625,
71.2861328125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
},
{
"id": "/page/5/TableCell/508",
"block_type": "TableCell",
"html": "<td>AMDCN</td>",
"polygon": [
[
69.10400390625,
71.2861328125
],
[
70.10400390625,
71.2861328125
],
[
70.10400390625,
72.2861328125
],
[
69.10400390625,
72.2861328125
]
],
"bbox": [
69.10400390625,
71.2861328125,
70.10400390625,
72.2861328125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
},
{
"id": "/page/5/TableCell/509",
"block_type": "TableCell",
"html": "<td>290.82</td>",
"polygon": [
[
70.10400390625,
71.2861328125
],
[
71.10400390625,
71.2861328125
],
[
71.10400390625,
72.2861328125
],
[
70.10400390625,
72.2861328125
]
],
"bbox": [
70.10400390625,
71.2861328125,
71.10400390625,
72.2861328125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
},
{
"id": "/page/5/TableCell/510",
"block_type": "TableCell",
"html": "<td>Hydra2s [18]</td>",
"polygon": [
[
69.10400390625,
72.2861328125
],
[
70.10400390625,
72.2861328125
],
[
70.10400390625,
73.2861328125
],
[
69.10400390625,
73.2861328125
]
],
"bbox": [
69.10400390625,
72.2861328125,
70.10400390625,
73.2861328125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
},
{
"id": "/page/5/TableCell/511",
"block_type": "TableCell",
"html": "<td>333.73</td>",
"polygon": [
[
70.10400390625,
72.2861328125
],
[
71.10400390625,
72.2861328125
],
[
71.10400390625,
73.2861328125
],
[
70.10400390625,
73.2861328125
]
],
"bbox": [
70.10400390625,
72.2861328125,
71.10400390625,
73.2861328125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
},
{
"id": "/page/5/TableCell/512",
"block_type": "TableCell",
"html": "<td>MCNN [28]</td>",
"polygon": [
[
69.10400390625,
73.2861328125
],
[
70.10400390625,
73.2861328125
],
[
70.10400390625,
74.2861328125
],
[
69.10400390625,
74.2861328125
]
],
"bbox": [
69.10400390625,
73.2861328125,
70.10400390625,
74.2861328125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
},
{
"id": "/page/5/TableCell/513",
"block_type": "TableCell",
"html": "<td>377.60</td>",
"polygon": [
[
70.10400390625,
73.2861328125
],
[
71.10400390625,
73.2861328125
],
[
71.10400390625,
74.2861328125
],
[
70.10400390625,
74.2861328125
]
],
"bbox": [
70.10400390625,
73.2861328125,
71.10400390625,
74.2861328125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
},
{
"id": "/page/5/TableCell/514",
"block_type": "TableCell",
"html": "<td>[27]</td>",
"polygon": [
[
69.10400390625,
74.2861328125
],
[
70.10400390625,
74.2861328125
],
[
70.10400390625,
75.2861328125
],
[
69.10400390625,
75.2861328125
]
],
"bbox": [
69.10400390625,
74.2861328125,
70.10400390625,
75.2861328125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
},
{
"id": "/page/5/TableCell/515",
"block_type": "TableCell",
"html": "<td>467.00</td>",
"polygon": [
[
70.10400390625,
74.2861328125
],
[
71.10400390625,
74.2861328125
],
[
71.10400390625,
75.2861328125
],
[
70.10400390625,
75.2861328125
]
],
"bbox": [
70.10400390625,
74.2861328125,
71.10400390625,
75.2861328125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
},
{
"id": "/page/5/TableCell/516",
"block_type": "TableCell",
"html": "<td>[23]</td>",
"polygon": [
[
69.10400390625,
75.2861328125
],
[
70.10400390625,
75.2861328125
],
[
70.10400390625,
76.2861328125
],
[
69.10400390625,
76.2861328125
]
],
"bbox": [
69.10400390625,
75.2861328125,
70.10400390625,
76.2861328125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
},
{
"id": "/page/5/TableCell/517",
"block_type": "TableCell",
"html": "<td>295.80</td>",
"polygon": [
[
70.10400390625,
75.2861328125
],
[
71.10400390625,
75.2861328125
],
[
71.10400390625,
76.2861328125
],
[
70.10400390625,
76.2861328125
]
],
"bbox": [
70.10400390625,
75.2861328125,
71.10400390625,
76.2861328125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
},
{
"id": "/page/5/TableCell/518",
"block_type": "TableCell",
"html": "<td>[3]</td>",
"polygon": [
[
69.10400390625,
76.2861328125
],
[
70.10400390625,
76.2861328125
],
[
70.10400390625,
77.2861328125
],
[
69.10400390625,
77.2861328125
]
],
"bbox": [
69.10400390625,
76.2861328125,
70.10400390625,
77.2861328125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
},
{
"id": "/page/5/TableCell/519",
"block_type": "TableCell",
"html": "<td>318.10</td>",
"polygon": [
[
70.10400390625,
76.2861328125
],
[
71.10400390625,
76.2861328125
],
[
71.10400390625,
77.2861328125
],
[
70.10400390625,
77.2861328125
]
],
"bbox": [
70.10400390625,
76.2861328125,
71.10400390625,
77.2861328125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": null
},
{
"id": "/page/5/Caption/1",
"block_type": "Caption",
"html": "<p><span id=\"page-5-1\"></span>Table 1. Mean absolute error of various methods on UCF crowds</p>",
"polygon": [
[
49.23193359375,
169.14794921875
],
[
283.587890625,
169.14794921875
],
[
283.587890625,
178.6640625
],
[
49.23193359375,
178.6640625
]
],
"bbox": [
49.23193359375,
169.14794921875,
283.587890625,
178.6640625
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": null
},
{
"id": "/page/5/TextInlineMath/2",
"block_type": "TextInlineMath",
"html": "<p block-type=\"TextInlineMath\">duce the final density map. We set σ = 0.2<i>M</i>(x) for <i>Nh </i>and σx = 0.2<i>M</i>(x), σy = 0.5<i>M</i>(x) for Σb in <i>Nb</i>.</p>",
"polygon": [
[
49.1572265625,
197.2218017578125
],
[
286.1279296875,
197.2218017578125
],
[
286.1279296875,
220.110595703125
],
[
49.1572265625,
220.110595703125
]
],
"bbox": [
49.1572265625,
197.2218017578125,
286.1279296875,
220.110595703125
],
"children": null,
"section_hierarchy": {
"1": "/page/2/SectionHeader/4",
"2": "/page/3/SectionHeader/3",
"4": "/page/4/SectionHeader/10"
},
"images": {}
},
{
"id": "/page/5/SectionHeader/3",
"block_type": "SectionHeader",
"html": "<h1>4. Results</h1>",
"polygon": [
[
49.343994140625,
231.4151611328125
],
[
100.5556640625,
231.4151611328125
],
[
100.5556640625,
243.370361328125
],
[
49.343994140625,
243.370361328125
]
],
"bbox": [
49.343994140625,
231.4151611328125,
100.5556640625,
243.370361328125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3"
},
"images": {}
},
{
"id": "/page/5/SectionHeader/4",
"block_type": "SectionHeader",
"html": "<h2>4.1. UCF Crowd Counting</h2>",
"polygon": [
[
49.38134765625,
251.10882568359375
],
[
173.619140625,
251.10882568359375
],
[
173.619140625,
262.0677490234375
],
[
49.38134765625,
262.0677490234375
]
],
"bbox": [
49.38134765625,
251.10882568359375,
173.619140625,
262.0677490234375
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/5/Text/5",
"block_type": "Text",
"html": "<p block-type=\"Text\">The UCF dataset is particularly challenging due to the large number of people in the images, the variety of the scenes, as well as the low number of training images. We see in Figure <a href=\"#page-2-2\">2</a> that because the UCF dataset has over 1000 people on average in each image, the shapes output by the network in the density map are not as well defined or separated as in the UCSD dataset.</p>",
"polygon": [
[
49.4560546875,
269.8974609375
],
[
286.4267578125,
269.8974609375
],
[
286.4267578125,
352.30078125
],
[
49.4560546875,
352.30078125
]
],
"bbox": [
49.4560546875,
269.8974609375,
286.4267578125,
352.30078125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/5/Text/6",
"block_type": "Text",
"html": "<p block-type=\"Text\">We report a state of the art result on this dataset in Table <a href=\"#page-5-1\">1,</a> following the standard protocol of 5-fold cross validation. Our MAE on the dataset is 290.82, which is approximately 5 lower than the previous state of the art, HydraCNN <a href=\"#page-8-4\">[18]</a>. This is particularly indicative of the power of an aggregated multicolumn dilation network. Despite not making use of perspective information, the AMDCN is still able to produce highly accurate density maps for UCF.</p>",
"polygon": [
[
49.68017578125,
353.5833740234375
],
[
286.36505126953125,
353.5833740234375
],
[
286.36505126953125,
447.2319030761719
],
[
49.68017578125,
447.2319030761719
]
],
"bbox": [
49.68017578125,
353.5833740234375,
286.36505126953125,
447.2319030761719
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/4"
},
"images": {}
},
{
"id": "/page/5/SectionHeader/7",
"block_type": "SectionHeader",
"html": "<h2>4.2. TRANCOS Traffic Counting</h2>",
"polygon": [
[
49.68017578125,
455.92767333984375
],
[
203.80078125,
455.92767333984375
],
[
203.80078125,
466.8865661621094
],
[
49.68017578125,
466.8865661621094
]
],
"bbox": [
49.68017578125,
455.92767333984375,
203.80078125,
466.8865661621094
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/7"
},
"images": {}
},
{
"id": "/page/5/Text/8",
"block_type": "Text",
"html": "<p block-type=\"Text\">Our network performs very well on the TRANCOS dataset. Indeed, as confirmed by the GAME score, AMDCN produces the most accurate count and shape combined as compared to other methods. Table <a href=\"#page-5-2\">2</a> shows that we achieve state of the art results as measured by the GAME metric <a href=\"#page-8-1\">[14]</a> across all levels.</p>",
"polygon": [
[
49.82958984375,
474.7153015136719
],
[
286.36505126953125,
474.7153015136719
],
[
286.36505126953125,
544.4538726806641
],
[
49.82958984375,
544.4538726806641
]
],
"bbox": [
49.82958984375,
474.7153015136719,
286.36505126953125,
544.4538726806641
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/7"
},
"images": {}
},
{
"id": "/page/5/SectionHeader/9",
"block_type": "SectionHeader",
"html": "<h2>4.3. UCSD Crowd Counting</h2>",
"polygon": [
[
50.1119384765625,
553.1486358642578
],
[
181.388671875,
553.1486358642578
],
[
181.388671875,
564.1075286865234
],
[
50.1119384765625,
564.1075286865234
]
],
"bbox": [
50.1119384765625,
553.1486358642578,
181.388671875,
564.1075286865234
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/Text/10",
"block_type": "Text",
"html": "<p block-type=\"Text\">Results are shown in Table <a href=\"#page-6-0\">3</a> and Figure <a href=\"#page-6-1\">3.</a> We see that the \"original\" split as defined by the creators of the dataset in <a href=\"#page-8-17\">[5]</a> and used in <a href=\"#page-9-0\">[28]</a> gives us somewhat worse results for counting on this dataset. Results were consistent over multiple trainings. Again, including the perspective map does not seem to increase performance on this dataset. Despite this, we see in Table <a href=\"#page-6-0\">3</a> and Figure <a href=\"#page-6-1\">3</a> that the results are comparable to the state of the art. In fact, for two of the splits, our proposed network beats the state of the art. For the upscale split, the AMDCN is the state of the art by a large relative margin. This is compelling because it shows that accurate perspective-free counting can be achieved without</p>",
"polygon": [
[
49.68017578125,
571.9372711181641
],
[
287.173828125,
571.9372711181641
],
[
287.173828125,
713.4068832397461
],
[
49.68017578125,
713.4068832397461
]
],
"bbox": [
49.68017578125,
571.9372711181641,
287.173828125,
713.4068832397461
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableGroup/436",
"block_type": "TableGroup",
"html": "<content-ref src='/page/5/Table/11'></content-ref><content-ref src='/page/5/Caption/12'></content-ref>",
"polygon": [
[
308.86199951171875,
73.283203125
],
[
547.154296875,
73.283203125
],
[
547.154296875,
237.4913330078125
],
[
308.86199951171875,
237.4913330078125
]
],
"bbox": [
308.86199951171875,
73.283203125,
547.154296875,
237.4913330078125
],
"children": [
{
"id": "/page/5/Table/11",
"block_type": "Table",
"html": "<table><tbody><tr><th>Method</th><th>GAME<br/>(L=0)</th><th>GAME<br/>(L=1)</th><th>GAME<br/>(L=2)</th><th>GAME<br/>(L=3)</th></tr><tr><td>AMDCN<br/>[18]</td><td>9.77<br/>10.99</td><td>13.16<br/>13.75</td><td>15.00<br/>16.69</td><td>15.87<br/>19.32</td></tr><tr><td>[15] + SIFT<br/>from [14]</td><td>13.76</td><td>16.72</td><td>20.72</td><td>24.36</td></tr><tr><td>[13] + RGB<br/>Norm + Filters<br/>from [14]</td><td>17.68</td><td>19.97</td><td>23.54</td><td>25.84</td></tr><tr><td>HOG-2<br/>from [14]</td><td>13.29</td><td>18.05</td><td>23.65</td><td>28.41</td></tr></tbody></table>",
"polygon": [
[
309.287109375,
73.283203125
],
[
547.154296875,
73.283203125
],
[
547.154296875,
207.28125
],
[
309.287109375,
207.28125
]
],
"bbox": [
309.287109375,
73.283203125,
547.154296875,
207.28125
],
"children": [
{
"id": "/page/5/TableCell/520",
"block_type": "TableCell",
"html": "<th>Method</th>",
"polygon": [
[
309.287109375,
73.283203125
],
[
310.287109375,
73.283203125
],
[
310.287109375,
74.283203125
],
[
309.287109375,
74.283203125
]
],
"bbox": [
309.287109375,
73.283203125,
310.287109375,
74.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/521",
"block_type": "TableCell",
"html": "<th>GAME<br/>(L=0)</th>",
"polygon": [
[
310.287109375,
73.283203125
],
[
311.287109375,
73.283203125
],
[
311.287109375,
74.283203125
],
[
310.287109375,
74.283203125
]
],
"bbox": [
310.287109375,
73.283203125,
311.287109375,
74.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/522",
"block_type": "TableCell",
"html": "<th>GAME<br/>(L=1)</th>",
"polygon": [
[
311.287109375,
73.283203125
],
[
312.287109375,
73.283203125
],
[
312.287109375,
74.283203125
],
[
311.287109375,
74.283203125
]
],
"bbox": [
311.287109375,
73.283203125,
312.287109375,
74.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/523",
"block_type": "TableCell",
"html": "<th>GAME<br/>(L=2)</th>",
"polygon": [
[
312.287109375,
73.283203125
],
[
313.287109375,
73.283203125
],
[
313.287109375,
74.283203125
],
[
312.287109375,
74.283203125
]
],
"bbox": [
312.287109375,
73.283203125,
313.287109375,
74.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/524",
"block_type": "TableCell",
"html": "<th>GAME<br/>(L=3)</th>",
"polygon": [
[
313.287109375,
73.283203125
],
[
314.287109375,
73.283203125
],
[
314.287109375,
74.283203125
],
[
313.287109375,
74.283203125
]
],
"bbox": [
313.287109375,
73.283203125,
314.287109375,
74.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/525",
"block_type": "TableCell",
"html": "<td>AMDCN<br/>[18]</td>",
"polygon": [
[
309.287109375,
74.283203125
],
[
310.287109375,
74.283203125
],
[
310.287109375,
75.283203125
],
[
309.287109375,
75.283203125
]
],
"bbox": [
309.287109375,
74.283203125,
310.287109375,
75.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/526",
"block_type": "TableCell",
"html": "<td>9.77<br/>10.99</td>",
"polygon": [
[
310.287109375,
74.283203125
],
[
311.287109375,
74.283203125
],
[
311.287109375,
75.283203125
],
[
310.287109375,
75.283203125
]
],
"bbox": [
310.287109375,
74.283203125,
311.287109375,
75.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/527",
"block_type": "TableCell",
"html": "<td>13.16<br/>13.75</td>",
"polygon": [
[
311.287109375,
74.283203125
],
[
312.287109375,
74.283203125
],
[
312.287109375,
75.283203125
],
[
311.287109375,
75.283203125
]
],
"bbox": [
311.287109375,
74.283203125,
312.287109375,
75.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/528",
"block_type": "TableCell",
"html": "<td>15.00<br/>16.69</td>",
"polygon": [
[
312.287109375,
74.283203125
],
[
313.287109375,
74.283203125
],
[
313.287109375,
75.283203125
],
[
312.287109375,
75.283203125
]
],
"bbox": [
312.287109375,
74.283203125,
313.287109375,
75.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/529",
"block_type": "TableCell",
"html": "<td>15.87<br/>19.32</td>",
"polygon": [
[
313.287109375,
74.283203125
],
[
314.287109375,
74.283203125
],
[
314.287109375,
75.283203125
],
[
313.287109375,
75.283203125
]
],
"bbox": [
313.287109375,
74.283203125,
314.287109375,
75.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/530",
"block_type": "TableCell",
"html": "<td>[15] + SIFT<br/>from [14]</td>",
"polygon": [
[
309.287109375,
75.283203125
],
[
310.287109375,
75.283203125
],
[
310.287109375,
76.283203125
],
[
309.287109375,
76.283203125
]
],
"bbox": [
309.287109375,
75.283203125,
310.287109375,
76.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/531",
"block_type": "TableCell",
"html": "<td>13.76</td>",
"polygon": [
[
310.287109375,
75.283203125
],
[
311.287109375,
75.283203125
],
[
311.287109375,
76.283203125
],
[
310.287109375,
76.283203125
]
],
"bbox": [
310.287109375,
75.283203125,
311.287109375,
76.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/532",
"block_type": "TableCell",
"html": "<td>16.72</td>",
"polygon": [
[
311.287109375,
75.283203125
],
[
312.287109375,
75.283203125
],
[
312.287109375,
76.283203125
],
[
311.287109375,
76.283203125
]
],
"bbox": [
311.287109375,
75.283203125,
312.287109375,
76.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/533",
"block_type": "TableCell",
"html": "<td>20.72</td>",
"polygon": [
[
312.287109375,
75.283203125
],
[
313.287109375,
75.283203125
],
[
313.287109375,
76.283203125
],
[
312.287109375,
76.283203125
]
],
"bbox": [
312.287109375,
75.283203125,
313.287109375,
76.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/534",
"block_type": "TableCell",
"html": "<td>24.36</td>",
"polygon": [
[
313.287109375,
75.283203125
],
[
314.287109375,
75.283203125
],
[
314.287109375,
76.283203125
],
[
313.287109375,
76.283203125
]
],
"bbox": [
313.287109375,
75.283203125,
314.287109375,
76.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/535",
"block_type": "TableCell",
"html": "<td>[13] + RGB<br/>Norm + Filters<br/>from [14]</td>",
"polygon": [
[
309.287109375,
76.283203125
],
[
310.287109375,
76.283203125
],
[
310.287109375,
77.283203125
],
[
309.287109375,
77.283203125
]
],
"bbox": [
309.287109375,
76.283203125,
310.287109375,
77.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/536",
"block_type": "TableCell",
"html": "<td>17.68</td>",
"polygon": [
[
310.287109375,
76.283203125
],
[
311.287109375,
76.283203125
],
[
311.287109375,
77.283203125
],
[
310.287109375,
77.283203125
]
],
"bbox": [
310.287109375,
76.283203125,
311.287109375,
77.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/537",
"block_type": "TableCell",
"html": "<td>19.97</td>",
"polygon": [
[
311.287109375,
76.283203125
],
[
312.287109375,
76.283203125
],
[
312.287109375,
77.283203125
],
[
311.287109375,
77.283203125
]
],
"bbox": [
311.287109375,
76.283203125,
312.287109375,
77.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/538",
"block_type": "TableCell",
"html": "<td>23.54</td>",
"polygon": [
[
312.287109375,
76.283203125
],
[
313.287109375,
76.283203125
],
[
313.287109375,
77.283203125
],
[
312.287109375,
77.283203125
]
],
"bbox": [
312.287109375,
76.283203125,
313.287109375,
77.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/539",
"block_type": "TableCell",
"html": "<td>25.84</td>",
"polygon": [
[
313.287109375,
76.283203125
],
[
314.287109375,
76.283203125
],
[
314.287109375,
77.283203125
],
[
313.287109375,
77.283203125
]
],
"bbox": [
313.287109375,
76.283203125,
314.287109375,
77.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/540",
"block_type": "TableCell",
"html": "<td>HOG-2<br/>from [14]</td>",
"polygon": [
[
309.287109375,
77.283203125
],
[
310.287109375,
77.283203125
],
[
310.287109375,
78.283203125
],
[
309.287109375,
78.283203125
]
],
"bbox": [
309.287109375,
77.283203125,
310.287109375,
78.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/541",
"block_type": "TableCell",
"html": "<td>13.29</td>",
"polygon": [
[
310.287109375,
77.283203125
],
[
311.287109375,
77.283203125
],
[
311.287109375,
78.283203125
],
[
310.287109375,
78.283203125
]
],
"bbox": [
310.287109375,
77.283203125,
311.287109375,
78.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/542",
"block_type": "TableCell",
"html": "<td>18.05</td>",
"polygon": [
[
311.287109375,
77.283203125
],
[
312.287109375,
77.283203125
],
[
312.287109375,
78.283203125
],
[
311.287109375,
78.283203125
]
],
"bbox": [
311.287109375,
77.283203125,
312.287109375,
78.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/543",
"block_type": "TableCell",
"html": "<td>23.65</td>",
"polygon": [
[
312.287109375,
77.283203125
],
[
313.287109375,
77.283203125
],
[
313.287109375,
78.283203125
],
[
312.287109375,
78.283203125
]
],
"bbox": [
312.287109375,
77.283203125,
313.287109375,
78.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/TableCell/544",
"block_type": "TableCell",
"html": "<td>28.41</td>",
"polygon": [
[
313.287109375,
77.283203125
],
[
314.287109375,
77.283203125
],
[
314.287109375,
78.283203125
],
[
313.287109375,
78.283203125
]
],
"bbox": [
313.287109375,
77.283203125,
314.287109375,
78.283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": null
},
{
"id": "/page/5/Caption/12",
"block_type": "Caption",
"html": "<p><span id=\"page-5-2\"></span>Table 2. Mean absolute error of various methods on TRANCOS traffic</p>",
"polygon": [
[
308.86199951171875,
217.529296875
],
[
545.108642578125,
217.529296875
],
[
545.108642578125,
237.4913330078125
],
[
308.86199951171875,
237.4913330078125
]
],
"bbox": [
308.86199951171875,
217.529296875,
545.108642578125,
237.4913330078125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": null
},
{
"id": "/page/5/Text/13",
"block_type": "Text",
"html": "<p block-type=\"Text\">creating image pyramids or requiring perspective maps as labels using the techniques presented by the AMDCN.</p>",
"polygon": [
[
308.86199951171875,
269.58740234375
],
[
546.2578125,
269.58740234375
],
[
546.2578125,
291.5050048828125
],
[
308.86199951171875,
291.5050048828125
]
],
"bbox": [
308.86199951171875,
269.58740234375,
546.2578125,
291.5050048828125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/5/SectionHeader/14",
"block_type": "SectionHeader",
"html": "<h2>4.4. WorldExpo '10 Crowd Counting</h2>",
"polygon": [
[
308.689453125,
318.3517761230469
],
[
480.814453125,
318.3517761230469
],
[
480.814453125,
329.3106689453125
],
[
308.689453125,
329.3106689453125
]
],
"bbox": [
308.689453125,
318.3517761230469,
480.814453125,
329.3106689453125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/14"
},
"images": {}
},
{
"id": "/page/5/Text/15",
"block_type": "Text",
"html": "<p block-type=\"Text\">Our network performs reasonably well on the more challenging WorldExpo dataset. While it does not beat the state of the art, our results are comparable. What is more, we do not need to use the perspective maps to obtain these results. As seen in Table <a href=\"#page-7-1\">4,</a> the AMDCN is capable of incorporating the perspective effects without scaling the Gaussians with perspective information. This shows that it is possible to achieve counting results that approach the state of the art with much simpler labels for the counting training data.</p>",
"polygon": [
[
308.86199951171875,
343.01953125
],
[
545.1151733398438,
343.01953125
],
[
545.1151733398438,
448.6579284667969
],
[
308.86199951171875,
448.6579284667969
]
],
"bbox": [
308.86199951171875,
343.01953125,
545.1151733398438,
448.6579284667969
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/14"
},
"images": {}
},
{
"id": "/page/5/SectionHeader/16",
"block_type": "SectionHeader",
"html": "<h2><span id=\"page-5-0\"></span>4.5. Ablation Studies</h2>",
"polygon": [
[
308.689453125,
475.50469970703125
],
[
405.6838684082031,
475.50469970703125
],
[
405.6838684082031,
486.4635925292969
],
[
308.689453125,
486.4635925292969
]
],
"bbox": [
308.689453125,
475.50469970703125,
405.6838684082031,
486.4635925292969
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/5/Text/17",
"block_type": "Text",
"html": "<p block-type=\"Text\">We report the results of the ablation studies in Figure <a href=\"#page-7-2\">4.</a> We note from these plots that while there is variation in performance, a few trends stand out. Most importantly, the lowest errors are consistently with a combination of a larger number of columns and including the aggregator module. Notably for the TRANCOS dataset, including the aggregator consistently improves performance. Generally, the aggregator tends to decrease the variance in performance of the network. Some of the variance that we see in the plots can be explained by: (1) for lower numbers of columns, including an aggregator is not as likely to help as there is not much separation of multiscale information across columns and (2) for the UCSD dataset, there is less of a perspective effect than TRANCOS and WorldExpo so a simpler network is more likely to perform comparably to a larger network. These results verify the notion that using more columns increases accuracy, and also support our justification for the use of the aggregator module.</p>",
"polygon": [
[
308.390625,
500.2063293457031
],
[
545.1151733398438,
500.2063293457031
],
[
545.1151733398438,
713.4069442749023
],
[
308.390625,
713.4069442749023
]
],
"bbox": [
308.390625,
500.2063293457031,
545.1151733398438,
713.4069442749023
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": null
},
{
"id": "/page/6/Page/460",
"block_type": "Page",
"html": "<content-ref src='/page/6/FigureGroup/277'></content-ref><content-ref src='/page/6/Caption/2'></content-ref><content-ref src='/page/6/TableGroup/278'></content-ref><content-ref src='/page/6/SectionHeader/6'></content-ref><content-ref src='/page/6/SectionHeader/7'></content-ref><content-ref src='/page/6/Text/8'></content-ref><content-ref src='/page/6/Text/9'></content-ref>",
"polygon": [
[
0.0,
0.0
],
[
612.0,
0.0
],
[
612.0,
792.0
],
[
0.0,
792.0
]
],
"bbox": [
0.0,
0.0,
612.0,
792.0
],
"children": [
{
"id": "/page/6/FigureGroup/277",
"block_type": "FigureGroup",
"html": "<content-ref src='/page/6/Figure/0'></content-ref><content-ref src='/page/6/Caption/1'></content-ref>",
"polygon": [
[
70.3740234375,
95.1328125
],
[
509.203125,
95.1328125
],
[
509.203125,
317.689453125
],
[
70.3740234375,
317.689453125
]
],
"bbox": [
70.3740234375,
95.1328125,
509.203125,
317.689453125
],
"children": [
{
"id": "/page/6/Figure/0",
"block_type": "Figure",
"html": "",
"polygon": [
[
70.3740234375,
95.1328125
],
[
509.203125,
95.1328125
],
[
509.203125,
310.921875
],
[
70.3740234375,
310.921875
]
],
"bbox": [
70.3740234375,
95.1328125,
509.203125,
310.921875
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {
"/page/6/Figure/0": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAI/BJIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorM1jQbHXEiW+WYiIkr5czx9eudpGelZX/AAr/AED/AJ53n/gbL/8AFVrGNNr3m7+n/BNoRpNe9Jp+l/1R1FFcv/wr/QP+ed5/4Gy//FUf8K/0D/nnef8AgbL/APFU+Wj/ADP7v+CVyUP53/4D/wDbHUUVkaR4a03RJ5JrJZw8i7W8y4eQYznoxIrXrOSin7rujGain7ruvu/zMi78U6FYXj2l3q1pDPGPnR5ACvGcH0OOcdalbxDo6ap/Zjajbi+yQYC43jChzkdvlOa87155dP8ABfiTSptLnuXlvpphdoFaFg824MzZ4ZeF29cqMcVvXmgX19b+O4YITFPqLKttIw2iUC3RcZ9M7h+JqSTpLHxJoupySx2Wp2s7xIXYJID8o6sPUe44qyuqWLxWUi3URS9x9mYNxLlSw2+vygn8K5GaO58Q6pov2XR7vT0sIp/Oe5i8sJviMYiX+8MkHI4wo56VT0tdRli8Fae+j38LaU4S8kli2ohW3ePg5+YE9xx09aAOutvFOg3d7HZ2+rWklxIcJGsgJY9cD3xzjrVHXvGem6THLDBd2s+oRzRRG2MnOXkVSOO4DE468ViWWi3sXgvw3bfYZFuLfVop5Y9nzIvnMWY+nBzn3qncWd/D4Yfw62iXk98upif7SsQMTqbnzPN3+u04I69eMUAdr4l8QW3hnR21G5AZfMSJVLbdxZgOvsMn6A0knirQYrhbd9WtVmZN4jL/ADbdgfOPTaQar+Nra4u/Cd1HawSTyiSGQRRjLMElRjgdzhTxWbBplxfXPjCdLOSI6nBEtu0ybC3+jAYOemGJB9DmgDppdW0+COCSW7iVLhGkiJP31VdxI+i81zFp8RdOuYdHumaGC0v/ADxK8kv+paMAhenJO4ce/equmtfXuqeEUOkX9umnQyR3UlxFsVH8jaAPUZB5HHTnmq/hvTb3zfCSXGm3MTaZ9sinM0RARio2sD3BzwR15oA7yw1Cz1S0S7sbmO4t3yBJG2RkcEfWrNc/4Xs57N9c86F4hLqs0se4Y3IQvzD2JzXQUAFFFFABRWXeeH7C/umuJ1mMjYztndRwMdAcVB/wielf3bj/AMCX/wAatKHV/h/wTnlPEJu0Fb/E/wD5E26KxP8AhE9K/u3H/gS/+NH/AAielf3bj/wJf/Gi0O/4f8EnnxP8i/8AAn/8ibdFVrGxg0638i3DiPJPzuWOT7mo9Xup7HR7y5tbd7m4ihZooUXJd8fKMfXFS/I6IttLm3MWw8XC98XXOjm2CWymSK2ut3+uliCGVcdsb/8Ax1vSjSPFj6j4x1bQZrVYVtD+4mD587aELjHYjzE/Ouen8Ha1pHhrT7q21Ke9v9LlF6toIYx5shJMyhgNx3B3HXnIourDVrSbVNfsNNnlvbfV/Pt4CmGnhkt442AB7ZwfqlIo0Lnx/JFN4oEVgjw6NAJYnMhHnkFlYdOAHRh+FW5vEWvaOILrXdKsV06SRI5Liyu2cwbyFVmVkXK5IBweM1zuo+F9QtNM16yt7aa4Z9AggWRVz58++Vnx6kls/wDAq1dZu77xZpSaFaaHqdstxJELi5vIREkUasGYjJyzHbgADvQBrz67ql9q15p+g2NrMLEqlzc3czIgkIDbFCqSSAQSeAM96z9W8b3uj6HaX11oU6Ttf/Y7m2ySQoVmaSM4+cYXI6Z6U62muPCut6ys+m391Y6hc/bYJ7OAzEMyKroyryOVyDjGD14plz/bWs/2Hd3mmm3VNaEyQhcvFbiKQBpeSAxJ5x0yB1oA2pvEEf8AaehwWoSe21VZXWdW6KqbwR65rarz+Dw/qWkePtKgtoGk0CNrm4gcdLVnQhoj6Lu5X/eI7V6BQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRWFqXhHSdWvnvLtLkzOADsuZEHAx0BwKqf8K/0D/nnef+Bsv/xVaqNK2sn93/BN4xo21k7+n/BOoorl/wDhX+gf887z/wADZf8A4qj/AIV/oH/PO8/8DZf/AIqny0f5n93/AAR8lD+d/wDgP/2x1FISFBJIAHJJqnpelWujWf2WzEgi3Fv3krOcn3Yk1B4ltJb/AML6raQzLDJNaSxrI7bQpKkZJ7D3rJ2voYStf3dhln4o0LULpbaz1a0nnYkKiSAlsAkkeowDyOOKZF4u8PT209xFrNm0NuEMriUYXf8Ad59T2Fcr9tN74l8IQf2Lc2TQR3CEzIqhf3BGxCCdy9ORx0pbLSL3T/CfgyZtNmk/stllu7NE/eAmJ13Be7KzZx164pCOxt9f0m6s1u4NQt5IGmWAOr/8tCQAh9GJI4PrUtzq+n2bzrc3kMTW6JJKHbGxWJCk+gJBH4VwuoafqOoXOqa5baXdJA15p80ds6bZphBJukcIeQcEAA4J2/Sma3a3+uv4lni0i9SG5srOGBZoSrS7ZnLfL1GAeh5xz3oA7iw8QaPqfn/YtStp/IXdLskHyr/ePtweelZ0HjDT9Q8Q6fpumXNtdx3EU8kkkb5KbNm3j0O48+3FZPi7Qb/VdVv0sYCBNoUtur/dVn81SIye2Rkfiamt5ZtV8ZaLexaHe2cFpaXEUslxD5e1m2YQeoG08jjng9aANnUfE1lpviPTNFmZRPfK7KS2NuMBRjvuJIH0NOtfFWg3switdWtZpCyJtSTPzPnaPqcGqetxzx+L/Dt6trPNboLiCR4ULeWZBHtLY6L8p57VgWuk31j4A8NAadOZtPvYrm4t40/ebQzbiF7n5s460AdN4h8V6f4f0+6uJZUklt2iR4Q+CDIflz6cZP0BqonjnSI9Wv7W9vbW2hhELQSvJjzVdA27HYDI56c1z+p22papD4svItJvUS4+wtbxyRbZJVjbLYXrng8Hnp61qxWM91c+MLv7DMq6haQiASxFWkHkEbcHuCcEetAHZKwZQykFSMgjoaWs7w/FLb+G9LhnRkmjs4kdWHKsEAIPvmtGgAooooAKKxD4U0okkrcc/wDTy/8AjR/wielf3bj/AMCX/wAau0O/4f8ABOXnxP8AIv8AwJ//ACJt0Vif8InpX924/wDAl/8AGj/hE9K/u3H/AIEv/jRaHf8AD/ghz4n+Rf8AgT/+RNuorq5isrSa6uHCQwxtJIx7KBkn8hT40WONY1ztUADJzwPeud8aWd5q+l2+i2iyKmoXCxXM6LkQwD5nJ7c7Qoz13VB1DfDfimXW9IvLi5svsd5agO9sXz8jRiSM5x3U/mDUfhfxlHrfhGbW72AWbWys9xEG3bFCCQEH3RlP41n3Gi6vpHiSO+W5uNTh1C1eyusQInlbVLRNhAOM7lyem4VlWHh7VYbfQ9PFlKtnqdhaR6nkY8lrcAkN6b1xH+FAGnZ+N9X1HSdHkttKtY9Q1C8ntTBcTsqRGMOTlgpP8B7VsWXiK/g1hdK8QWNvZzSwvPbz29wZYpQmN4yVUqwBB5HSuYW01DTP7IvH0u+mW21y/nkjghLuI380K2PQ7h+da0lvd+LvEFrcy6beadp1lbXEYe7UJJLJKoThQSQoXJycZJFAE8PiTxBf6b/bWm6Hby6YVMkMUlyy3M8f95VCFQSOQpPPtTrjxtHaeLrHR7izkhtby0jmW5kBUxyyMwWN1P3c7CPrxVPS9a1PQ/Ddvosnh/UZtWsoFtYvKgLW8xUbUfzfuqpABOSCOeKlk0G41jxDeR61bK0N1okEE0kIIj84SSM2wnkEEgjuOKAN6x1ZrvxBq2mmIKtiISHB5fzFJ6dsYrVri/BNlrdprWvHW4yZf9HhjusfLcqisA49yMZHY5rtKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAxpPCmiS6g169iDM0omZfMfy2kHRzHnYW4ByRmtmiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmSxRzwvFKivG6lXRhkMDwQR6U+igDJ03wzpGk3IuLO0KzKnlozyvIY0/uruJ2jgcDA4rWoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqO4kaK2kkXG5VJGakqC8/48p/9w/yoANl1/z3i/79H/4qjZdf894v+/R/+KqeigCqTdCdY/Ni5Utnyz2I9/en7Lr/AJ7xf9+j/wDFUN/x/J/1zb+YqegCDZdf894v+/R/+Ko2XX/PeL/v0f8A4qp6KAINl1/z3i/79H/4qjZdf894v+/R/wDiqnooAg2XX/PeL/v0f/iqNl1/z3i/79H/AOKqeigCDZdf894v+/R/+Ko2XX/PeL/v0f8A4qp6KAINl1/z3i/79H/4qmZuvP8AL82L7u7Pln1+tWqg/wCX4f8AXM/zoANl1/z3i/79H/4qjZdf894v+/R/+KqeigCDZdf894v+/R/+Ko2XX/PeL/v0f/iqnooAg2XX/PeL/v0f/iqNl1/z3i/79H/4qp6KAINl1/z3i/79H/4qjZdf894v+/R/+KqeigCDZdf894v+/R/+Ko2XX/PeL/v0f/iqnooAqg3RnMXmxcKGz5Z7k+/tT9l1/wA94v8Av0f/AIqgf8fz/wDXJf5mp6AINl1/z3i/79H/AOKo2XX/AD3i/wC/R/8AiqnooAg2XX/PeL/v0f8A4qjZdf8APeL/AL9H/wCKqeigCDZdf894v+/R/wDiqNl1/wA94v8Av0f/AIqp6KAINl1/z3i/79H/AOKo2XX/AD3i/wC/R/8AiqnooAg2XX/PeL/v0f8A4qmA3RnePzYvlVWz5Z7k+/tVqoE/4/pf+uafzagA2XX/AD3i/wC/R/8AiqNl1/z3i/79H/4qp6KAINl1/wA94v8Av0f/AIqjZdf894v+/R/+KqeigCDZdf8APeL/AL9H/wCKo2XX/PeL/v0f/iqnooAg2XX/AD3i/wC/R/8AiqNl1/z3i/79H/4qp6KAINl1/wA94v8Av0f/AIqjZdf894v+/R/+KqeigCqpummdPNi+UDnyzzn8afsuv+e8X/fo/wDxVEf/AB9z/Rf61PQBBsuv+e8X/fo//FUbLr/nvF/36P8A8VU9FAEGy6/57xf9+j/8VRsuv+e8X/fo/wDxVT0UAQbLr/nvF/36P/xVGy6/57xf9+j/APFVPRQBBsuv+e8X/fo//FUbLr/nvF/36P8A8VU9FAEGy6/57xf9+j/8VUcU0321oJGRlCk5Vcenv71bqkn/ACF3/wBw/wDstAF2iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqGd5FaJIyql2IJYZ7E/0qaoJv8AX23++f8A0E0AGy6/57xf9+j/APFUbLr/AJ7xf9+j/wDFVPRQBVjN07SDzYhsbb/qzzwD6+9P2XX/AD3i/wC/R/8AiqLf/WXH/XT/ANlFT0AQbLr/AJ7xf9+j/wDFUbLr/nvF/wB+j/8AFVPRQBBsuv8AnvF/36P/AMVRsuv+e8X/AH6P/wAVU9FAEGy6/wCe8X/fo/8AxVGy6/57xf8Afo//ABVT0UAV2W6VSfOi4Gf9Uf8A4qki+1SRI/nRDcoOPLP+NTv/AKtvoaZbf8esP+4v8qAG7Lr/AJ7xf9+j/wDFUbLr/nvF/wB+j/8AFVPRQBBsuv8AnvF/36P/AMVRsuv+e8X/AH6P/wAVU9FAEGy6/wCe8X/fo/8AxVGy6/57xf8Afo//ABVT0UAQbLr/AJ7xf9+j/wDFUyU3UYU+bEdzBf8AVnv+NWqgufux/wDXRf50AGy6/wCe8X/fo/8AxVGy6/57xf8Afo//ABVT0UAQbLr/AJ7xf9+j/wDFUbLr/nvF/wB+j/8AFVPRQBBsuv8AnvF/36P/AMVRsuv+e8X/AH6P/wAVU9FAEGy6/wCe8X/fo/8AxVGy6/57xf8Afo//ABVT0UAVc3Xn+V5sX3d2fLPr9afsuv8AnvF/36P/AMVR/wAvw/65f1qegCDZdf8APeL/AL9H/wCKo2XX/PeL/v0f/iqnooAg2XX/AD3i/wC/R/8AiqNl1/z3i/79H/4qp6KAINl1/wA94v8Av0f/AIqjZdf894v+/R/+KqeigCDZdf8APeL/AL9H/wCKpkZupC/72IbWK/6s8/rVqoLbrN/11P8AIUAGy6/57xf9+j/8VRsuv+e8X/fo/wDxVT0UAQbLr/nvF/36P/xVGy6/57xf9+j/APFVPRQBBsuv+e8X/fo//FUbLr/nvF/36P8A8VU9FAEGy6/57xf9+j/8VTXF0iM3nRHAJ/1Z/wAas0yb/USf7p/lQBCgunjVvOiGQD/qz/jTtl1/z3i/79H/AOKqSH/UR/7o/lT6AINl1/z3i/79H/4qjZdf894v+/R/+KqeigCDZdf894v+/R/+Ko2XX/PeL/v0f/iqnooAg2XX/PeL/v0f/iqNl1/z3i/79H/4qp6KAKshuo9n72I7mC/6s/40/Zdf894v+/R/+KouesP/AF1H9anoAg2XX/PeL/v0f/iqWB5GMqyFSUfblRjPAP8AWpqgg/11z/10H/oK0AT0UUUAFFFFABVDUtb0rRxH/aWo2tp5mdnnyhN2OuM1frnNburLTdVE1rY/bfEF5B5EEIY8xgk5bPCRgty3fgcnAoA1LzW9J0+3huL3VLK2gn5ikmnVFk4z8pJwePSrFne2uo2qXVlcw3Nu+dssMgdGwcHBHB5BFcPD4UvLafQtOt9asIrjTrGYsjweaxMjrlkjJGEBG0E9AcfTovCepz6no8huo4VuLa5mtZGgXEcjRuVLKOwOOnrmgC8muaTJqjaYmpWjX69bYTL5g4yflznOOasXn/HlP/uH+VecwKo+GGj3CgfbzqkMgb+Iztd4f8eXB9s16Nef8eU/+4f5UAT0VBm6/uw/99H/AAozdf3Yf++j/hQAN/x/J/1zb+YqeqRNz9sT5Ys+W38R9R7VNm6/uw/99H/CgCeioM3X92H/AL6P+FGbr+7D/wB9H/CgCeioM3X92H/vo/4UZuv7sP8A30f8KAJ6Kgzdf3Yf++j/AIUZuv7sP/fR/wAKAJ6Kgzdf3Yf++j/hRm6/uw/99H/CgCeoP+X4f9cz/OjN1/dh/wC+j/hUObn7YPliz5f94+v0oAu0VBm6/uw/99H/AAozdf3Yf++j/hQBPRUGbr+7D/30f8KM3X92H/vo/wCFAE9FQZuv7sP/AH0f8KM3X92H/vo/4UAT0VBm6/uw/wDfR/wozdf3Yf8Avo/4UAT0VBm6/uw/99H/AAozdf3Yf++j/hQAD/j+f/rkv8zU9Ugbn7Y3yxbvLH8R9T7VNm6/uw/99H/CgCeioM3X92H/AL6P+FGbr+7D/wB9H/CgCeioM3X92H/vo/4UZuv7sP8A30f8KAJ6Kgzdf3Yf++j/AIUZuv7sP/fR/wAKAJ6Kgzdf3Yf++j/hRm6/uw/99H/CgCeoE/4/pf8Armn82ozdf3Yf++j/AIVCpuftkvyxZ8tM/MfVvagC7RUGbr+7D/30f8KM3X92H/vo/wCFAE9FQZuv7sP/AH0f8KM3X92H/vo/4UAT0VBm6/uw/wDfR/wozdf3Yf8Avo/4UAT0VBm6/uw/99H/AAozdf3Yf++j/hQBPRUGbr+7D/30f8KM3X92H/vo/wCFABH/AMfc/wBF/rU9Uozc/aZsLFnC5+Y+/tU2br+7D/30f8KAJ6Kgzdf3Yf8Avo/4UZuv7sP/AH0f8KAJ6Kgzdf3Yf++j/hRm6/uw/wDfR/woAnoqDN1/dh/76P8AhRm6/uw/99H/AAoAkeWOMqJJFUu21dxxuPoPen1wmr6X/wAJH46On32TDa6cJY1jmZfLlaQjeCP4sAV2aC6RFXERwMZLkk/pWtSCilrqzapTjCMddWr/AORYqkn/ACF3/wBw/wDstTZuv7sP/fR/wqtD5n9rP5gUHYfun/drIxNCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM7W9Xh0TTHu5VLtkRwxAgGWRuFQfU/kMntXAR6lqen6N4wMmqedqP2u3QTRtkRGVIVPljsqlyB9BnmvR77TrHVIBBqFlb3cIbcI7iJZFB9cEEZ5Nc+ngHRI01qOK1hgTUwF/0eFYzAoVRhCBx8yh/TNAEdpar4f8AGtlp1lLcGzvrGZ5Ipp3lxJG0eHBYkgkOQfXArpLltktu21m+c8KMn7prM0zQbi21U6nqWptqF2sH2aJvJESxoSC3AJyxIXJ9hgCtWb/X23++f/QTQAfaf+mM3/fFH2n/AKYzf98VPRQBSguMPP8AuZTmTPC+wqb7T/0xm/74ot/9Zcf9dP8A2UVPQBB9p/6Yzf8AfFH2n/pjN/3xU9FAEH2n/pjN/wB8Ufaf+mM3/fFT0UAQfaf+mM3/AHxR9p/6Yzf98VPRQBXe5+Rv3M3Q/wANMt7jFtEPJlOEHIX2qy/+rb6GmW3/AB6w/wC4v8qAG/af+mM3/fFH2n/pjN/3xU9FAEH2n/pjN/3xR9p/6Yzf98VPRQBB9p/6Yzf98Ufaf+mM3/fFT0UAQfaf+mM3/fFQ3FxkR/uZR+8U8r71dqC5+7H/ANdF/nQAfaf+mM3/AHxR9p/6Yzf98VPRQBB9p/6Yzf8AfFH2n/pjN/3xU9FAEH2n/pjN/wB8Ufaf+mM3/fFT0UAQfaf+mM3/AHxR9p/6Yzf98VPRQBQ+1p/aATZJv8rOzHzYz1x6VY+0/wDTGb/viuL1abyvjFoQ3YEljIh56/6w/wAwK7utalPkUX3VzatS9mou/wASv+LX6EH2n/pjN/3xR9p/6Yzf98VPRWRiQfaf+mM3/fFH2n/pjN/3xU9FAEH2n/pjN/3xR9p/6Yzf98VPRQBB9p/6Yzf98VDBcYMv7mU5kJ4X6VdqC26zf9dT/IUAH2n/AKYzf98Ufaf+mM3/AHxU9FAEH2n/AKYzf98Ufaf+mM3/AHxU9FAEH2n/AKYzf98Ufaf+mM3/AHxU9FAEH2n/AKYzf98UyW4zC48mb7p/hq1TJv8AUSf7p/lQBBFcYhQeTN90fw0/7T/0xm/74qSH/UR/7o/lT6AIPtP/AExm/wC+KPtP/TGb/vip6KAIPtP/AExm/wC+KPtP/TGb/vip6KAIPtP/AExm/wC+KPtP/TGb/vip6KAKU9xkxfuZRiQHlfrU32n/AKYzf98UXPWH/rqP61PQBB9p/wCmM3/fFNtW3vcNtK5kHDDB+6tWagg/11z/ANdB/wCgrQBPRRRQAUUUUAFYmp+EdD1jUDfX1kZbooI/ME8iHaOQPlYeprbooAxJfCWiy2trbm1kVbUMIHjuJEkQMcsN6sGwfTOKtw6JpttFYxQWqRR2JLW6oSAhIIJ685yeueuetaFFAGPH4W0aLVP7RSzxceaZgPNcxiQ9XEedgY5PzAZrRvP+PKf/AHD/ACqeoLz/AI8p/wDcP8qAJ6KKKAIG/wCP5P8Arm38xU9QN/x/J/1zb+YqegAooooAKKKKACiiigAooooAKg/5fh/1zP8AOp6g/wCX4f8AXM/zoAnooooAKKKKACiiigAooooAKKKKAIB/x/P/ANcl/manqAf8fz/9cl/manoAKKKKACiiigAooooAKKKKACoE/wCP6X/rmn82qeoE/wCP6X/rmn82oAnooooAKKKKACiiigAooooAKKKKAII/+Puf6L/Wp6gj/wCPuf6L/Wp6ACiiigAooooAKKKKAPOdavWTxfq0NuxM13BBaIyn7hyD+uW/KvRUUIiqCSAMc1xfhm0t7/xBr11PEJDFeqYif4WUvg/+PV2tdGIeqj2S/JHJh1VnJ1qsr8yVvJLZfiFUk/5C7/7h/wDZau1ST/kLv/uH/wBlrnOsu0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQTf6+2/3z/wCgmp6gm/19t/vn/wBBNAE9FFFAEFv/AKy4/wCun/soqeoLf/WXH/XT/wBlFT0AFFFFABRRRQAUUUUANf8A1bfQ0y2/49Yf9xf5U9/9W30NMtv+PWH/AHF/lQBLRRRQAUUUUAFFFFABUFz92P8A66L/ADqeoLn7sf8A10X+dAE9FFFABRRRQAUUUUAFFFFAHmPjeVrX4laJfYPlWsMUkpHZDMUJ/wDHhXp1eXfFElL1mXAL2IRjjqA5YfqAfwr0u0kMtnBITkvGrZ+orsxGtGm/VGssXDE01GK1ptxf3J/qyaiiiuMyCiiigAooooAKgtus3/XU/wAhU9QW3Wb/AK6n+QoAnooooAKKKKACiiigApk3+ok/3T/Kn0yb/USf7p/lQAQ/6iP/AHR/Kn0yH/UR/wC6P5U+gAooooAKKKKACiiigCC56w/9dR/Wp6guesP/AF1H9anoAKgg/wBdc/8AXQf+grU9QQf665/66D/0FaAJ6KKKACiiigAooooAKKKKACoLz/jyn/3D/Kp6gvP+PKf/AHD/ACoAnooooAgb/j+T/rm38xU9QN/x/J/1zb+YqegAooooAKKKKACiiigAooooAKg/5fh/1zP86nqD/l+H/XM/zoAnooooAKKKKACiiigAooooAKKKKAIB/wAfz/8AXJf5mp6gH/H8/wD1yX+ZqegAooooAKKKKACiiigAooooAKgT/j+l/wCuafzap6gT/j+l/wCuafzagCeiiigAooooAKKKKACiiigAooooAgj/AOPuf6L/AFqeoI/+Puf6L/Wp6ACiiigAooooAKKKhu5RBZTzE4EcbN+QzQhN2V2cr8Pj5tnq1x/z0v2/LYh/qa7CuR+HK48MO/8Az0upT+RC/wDstddW2I/isijFxowi+kY/kgqkn/IXf/cP/stXapJ/yF3/ANw/+y1iaF2iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqCb/AF9t/vn/ANBNT1BN/r7b/fP/AKCaAJ6KKKAILf8A1lx/10/9lFT1Bb/6y4/66f8AsoqegAooooAKKKKACiiigBr/AOrb6GmW3/HrD/uL/Knv/q2+hplt/wAesP8AuL/KgCWiiigAooooAKKKKACoLn7sf/XRf51PUFz92P8A66L/ADoAnooooAKKKKACiiigAooooA81+I1o99rEFrHjzJbUIuemSzAV2PhO8bUPCel3L43vboGx6gYP8qwPE/8AyO2kk9hD/wCjau+CLy1h8Ny2qsVj06SRGLdlyXB+mD+lds9cOl2/4P8AwDz8DWj7WvQtq5XXolZ/mjq6Kr2V7bajZRXlpKJbeZdyOM8j8asVxtNOzPRaadmFFFFIQUUUUAFQW3Wb/rqf5Cp6gtus3/XU/wAhQBPRRRQAUUUUAFFFFABTJv8AUSf7p/lT6ZN/qJP90/yoAIf9RH/uj+VPpkP+oj/3R/Kn0AFFFFABRRRQAUUUUAQXPWH/AK6j+tT1Bc9Yf+uo/rU9ABUEH+uuf+ug/wDQVqeoIP8AXXP/AF0H/oK0AT0UUUAFFFFABRRRQAUUUUAFQXn/AB5T/wC4f5VPUF5/x5T/AO4f5UAT0UUUAQN/x/J/1zb+YqeoG/4/k/65t/MVPQAUUUUAFFFFABRRRQAUUUUAFQf8vw/65n+dT1B/y/D/AK5n+dAE9FFFABRRRQAUUUUAFFFFABRRRQBAP+P5/wDrkv8AM1PUA/4/n/65L/M1PQAUUUUAFFFFABRRRQAUUUUAFQJ/x/S/9c0/m1T1An/H9L/1zT+bUAT0UUUAFFFFABRRRQAUUUUAFFFFAEEf/H3P9F/rU9QR/wDH3P8ARf61PQAUUUUAFFFFABWT4nm+z+GdQfOMwlP++vl/rWtXAeP4JNS8Q6BpscrRiUS7iOQMlFBI745NbUIKdRJ+v3amVePNRmr20f5afia/w7XHgbT2PWQyufxkY11FZ2haUNE0Oz00S+b9nj2eZt27j3OO1aNTWkpVJSWzbOms4upJw2u7egVST/kLv/uH/wBlq7VJP+Qu/wDuH/2WszMu0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQTf6+2/wB8/wDoJqeoJv8AX23++f8A0E0AT0UUUAQW/wDrLj/rp/7KKnqC3/1lx/10/wDZRU9ABRRRQAUUUUAFFFFADX/1bfQ0y2/49Yf9xf5U9/8AVt9DTLb/AI9Yf9xf5UAS0UUUAFFFFABRRRQAVBc/dj/66L/Op6gufux/9dF/nQBPRRRQAUUUUAFFFFABRRRQBwfjQlNYeZQC0VijrnsfPFcVDrd7puna3aWsgS4vY4mjzj5huKuAD7H8K9L1Cxg1Lxe1pcqWhfTfmAOOkwP9K888VWMSatDOi7SuoXcWBwAoCEY/76NerhJRdoSXn92v6HkYVvDY6pinZpRnZPvFc2vlokdX8Kr9m8PyaXcSD7TavvSMsMiJ1DA464yx/Ou+ry/wqq2PizTdQVSseqWr2bDOQskQXH5qg/HNeoVy41L2vMuuv+f4nvV60MRy4mntUSl9+/43CiiiuQwCiiigAqC26zf9dT/IVPUFt1m/66n+QoAnooooAKKKKACiiigApk3+ok/3T/Kn0yb/AFEn+6f5UAEP+oj/AN0fyp9Mh/1Ef+6P5U+gAooooAKKKKACiiigCC56w/8AXUf1qeoLnrD/ANdR/Wp6ACoIP9dc/wDXQf8AoK1PUEH+uuf+ug/9BWgCeiiigAooooAKzNT8Q6Xo80cN7clZnUusccTyvtHViqAkL7nitOua13VYNO1UW+nW0E3iC7gCq0h2rFECcPK3ZAScAck5A7kAF658T6Na21rcPeq6Xa77fyEaVpFHUhUBJAyMnHFX7G+tdTsoryynSe3lGUkQ8Ht/PjFckh0/whp+mWFikWo628DxW7khNyltzu7dEj3nP5AZNbnhvT49G0eK1e8juJ5ZZJpZVIAkldi77R2GScD0FACf8JZoh1I6cL3ddCbyCixOQHzjbkDHX3rTvP8Ajyn/ANw/yrz6I3Og6PDrGl+I3v4rjVCGtDbokc5luCHUDG8OCx53fw9MV6Def8eU/wDuH+VAE9FQbbr/AJ6Q/wDfB/xo23X/AD0h/wC+D/jQAN/x/J/1zb+YqeqZFz9sT54s+W38B9R71Ltuv+ekP/fB/wAaAJ6Kg23X/PSH/vg/40bbr/npD/3wf8aAJ6Kg23X/AD0h/wC+D/jRtuv+ekP/AHwf8aAJ6Kg23X/PSH/vg/40bbr/AJ6Q/wDfB/xoAnoqDbdf89If++D/AI0bbr/npD/3wf8AGgCeoP8Al+H/AFzP86Nt1/z0h/74P+NRYuftg+eLPl/3D6/WgC5RUG26/wCekP8A3wf8aNt1/wA9If8Avg/40AT0VBtuv+ekP/fB/wAaNt1/z0h/74P+NAE9FQbbr/npD/3wf8aNt1/z0h/74P8AjQBPRUG26/56Q/8AfB/xo23X/PSH/vg/40AT0VBtuv8AnpD/AN8H/Gjbdf8APSH/AL4P+NAAP+P5/wDrkv8AM1PVIC5+2N88WfLH8B9T71Ntuv8AnpD/AN8H/GgCeioNt1/z0h/74P8AjRtuv+ekP/fB/wAaAJ6Kg23X/PSH/vg/40bbr/npD/3wf8aAJ6Kg23X/AD0h/wC+D/jRtuv+ekP/AHwf8aAJ6Kg23X/PSH/vg/40bbr/AJ6Q/wDfB/xoAnqBP+P6X/rmn82o23X/AD0h/wC+D/jUKi5+2S/PFny0z8h9W96ALtFQbbr/AJ6Q/wDfB/xo23X/AD0h/wC+D/jQBPRUG26/56Q/98H/ABo23X/PSH/vg/40AT0VBtuv+ekP/fB/xo23X/PSH/vg/wCNAE9FQbbr/npD/wB8H/Gjbdf89If++D/jQBPRUG26/wCekP8A3wf8aNt1/wA9If8Avg/40AEf/H3P9F/rU9U4xc/aZsPFnC5+Q+/vUu26/wCekP8A3wf8aAJ6Kg23X/PSH/vg/wCNG26/56Q/98H/ABoAnoqDbdf89If++D/jRtuv+ekP/fB/xoAnrlb23W8+I1gQyn7JZtIy+mSR/Mqa6Pbdf89If++D/jXK6b583xE1Zw8e6K2VCdpxzt9/9mtqP2n5GFa8nGn0b1+ScvzSR2NFQbbr/npD/wB8H/Gjbdf89If++D/jWJuT1ST/AJC7/wC4f/Zam23X/PSH/vg/41WhEg1Z/MKk7D90Y/u0AaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFUtVtbu906W3sr02c0mB56puZFyN2M98ZAPYnNcMmr39rB4rttNm1S4+y2StZxXiubnzmDgsisN5TOzk9wcUAejVBN/r7b/fP/oJrlPC9ysOsGxvJ9fS+a2LpFqjoUlUEbnTaSMg44JyA3SupuXEctuzZwHPQE/wn0oAs0VB9ri/6af8Afpv8KPtcX/TT/v03+FABb/6y4/66f+yip6pQXUYefPmcyZ/1beg9qm+1xf8ATT/v03+FAE9FQfa4v+mn/fpv8KPtcX/TT/v03+FAE9FQfa4v+mn/AH6b/Cj7XF/00/79N/hQBPRUH2uL/pp/36b/AAo+1xf9NP8Av03+FAEr/wCrb6GmW3/HrD/uL/KmPdRFG/1nQ/8ALJv8KZb3UQtogfMyEH/LNvT6UAW6Kg+1xf8ATT/v03+FH2uL/pp/36b/AAoAnoqD7XF/00/79N/hR9ri/wCmn/fpv8KAJ6Kg+1xf9NP+/Tf4Ufa4v+mn/fpv8KAJ6gufux/9dF/nR9ri/wCmn/fpv8KhuLmMiPHmcSKf9W3r9KALtFQfa4v+mn/fpv8ACj7XF/00/wC/Tf4UAT0VB9ri/wCmn/fpv8KPtcX/AE0/79N/hQBPRUH2uL/pp/36b/Cj7XF/00/79N/hQBPRUH2uL/pp/wB+m/wo+1xf9NP+/Tf4UAZJ/wCR8H/YMP8A6NrldZ8iSe4spIg00urkxucfLlVB/PNdKbiP/hOA/wA+P7Nx/q2z/rPTFcvqUEs3xARY1keIXEc5AQ/KPl3EjHtXZS+L5Hz2PclTfL1m4/erP8CnH9q0fUNJtL2HabLU0YsDxtlUpn6Zx+derV5r8QxdJN9ugRjAUjBJQg70cuByPavQYr+CWJJE8wq6hh+6bofwpYh80IT9f6/E9nBtRw6odaba17br8/wLNFQfa4v+mn/fpv8ACj7XF/00/wC/Tf4VyHQT0VB9ri/6af8Afpv8KPtcX/TT/v03+FAE9QW3Wb/rqf5Cj7XF/wBNP+/Tf4VDBcxgy58zmQn/AFbe3tQBdoqD7XF/00/79N/hR9ri/wCmn/fpv8KAJ6Kg+1xf9NP+/Tf4Ufa4v+mn/fpv8KAJ6Kg+1xf9NP8Av03+FH2uL/pp/wB+m/woAnpk3+ok/wB0/wAqj+1xf9NP+/Tf4UyW6iMLj9590/8ALNv8KAJ4f9RH/uj+VPqrFdRCFB+84Uf8s2/wp/2uL/pp/wB+m/woAnoqD7XF/wBNP+/Tf4Ufa4v+mn/fpv8ACgCeioPtcX/TT/v03+FH2uL/AKaf9+m/woAnoqD7XF/00/79N/hR9ri/6af9+m/woALnrD/11H9anqlPcxkxY8ziQH/Vt7+1Tfa4v+mn/fpv8KAJ6gg/11z/ANdB/wCgrR9ri/6af9+m/wAKbauHe4Zc4Mg6gj+FfWgCzRRRQAUUUUAFZd/4a0LVbn7TqGj2N3PtC+ZPbq7YHQZIrUooAxZfCHhueOGOXQdNdIU2RK1qhCLknA44GST+Jq3baJpVnHbx22nWsKWztJAscKqI2IIJXA4JBPT1q/RQBmx+HtGi1Q6nHpdot8WLGcRDduPU59T69at3n/HlP/uH+VT1Bef8eU/+4f5UAT0UUUAQN/x/J/1zb+YqeoG/4/k/65t/MVPQAUUUUAFFFFABRRRQAUUUUAFQf8vw/wCuZ/nU9Qf8vw/65n+dAE9FFFABRRRQAUUUUAFFFFABRRRQBAP+P5/+uS/zNT1AP+P5/wDrkv8AM1PQAUUUUAFFFFABRRRQAUUUUAFQJ/x/S/8AXNP5tU9QJ/x/S/8AXNP5tQBPRRRQAUUUUAFFFFABRRRQAUUUUAQR/wDH3P8ARf61PUEf/H3P9F/rU9ABRRRQAUUUUAFcj4GT7VHqOsSktc3VwULHpsXkcf8AAj+VdXK/lQvIf4VLflXPeBLZrfwna7vvOWc/nj+lbRdqcvl+phN/vYR9X+n6nSUUUVibhVJP+Qu/+4f/AGWrtUk/5C7/AO4f/ZaALtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAUdXsrm/054LO+ksrncrxzoM4ZSDgjIypxgjuCawz4Z1S9ubzUL7Vkg1GW0FpbyWMRRYFDb8/MSWJYDPQY475rqqKAOfsdF1GTXIdX1m7tppraB4LeO1hZEXeVLudzEknaox0A9a2Zv9fbf75/8AQTU9QTf6+2/3z/6CaAJ6KKKAILf/AFlx/wBdP/ZRU9QW/wDrLj/rp/7KKnoAKKKKACiiigAooooAa/8Aq2+hplt/x6w/7i/yp7/6tvoaZbf8esP+4v8AKgCWiiigAooooAKKKKACoLn7sf8A10X+dT1Bc/dj/wCui/zoAnooooAKKKKACiiigAooooAw/wDmex/2DP8A2rUMUOPiDPJjg6eD/wCPgf0qb/me/wDuGf8AtWtvAznAz0zWrlb7jz4UfaN+U7mD4xsZr/w9LHAm+RHWTbkDgdf0q74ecSeHdOYH/l3QfkMf0q7dLutJl9UYfpXL+AtYgvNHXTxu+0Wu7fkcYLnGPwxTScqT8n+ZThGGM9pfWUbfc/8AgnW0UUVidwUUiurjKsGAJGQc8iloAKgtus3/AF1P8hU9QW3Wb/rqf5CgCeiiigAooooAKKKKACmTf6iT/dP8qfTJv9RJ/un+VABD/qI/90fyp9Mh/wBRH/uj+VPoAKKKKACiiigAooooAguesP8A11H9anqC56w/9dR/Wp6ACoIP9dc/9dB/6CtT1BB/rrn/AK6D/wBBWgCeiiigAooooAKKKKACiiigAqC8/wCPKf8A3D/Kp6gvP+PKf/cP8qAJ6KKKAIG/4/k/65t/MVPUDf8AH8n/AFzb+YqegAooooAKKKKACiiigAooooAKg/5fh/1zP86nqD/l+H/XM/zoAnooooAKKKKACiiigAooooAKKKKAIB/x/P8A9cl/manqAf8AH8//AFyX+ZqegAooooAKKKKACiiigAooooAKgT/j+l/65p/NqnqBP+P6X/rmn82oAnooooAKKKKACiiigAooooAKKKKAII/+Puf6L/Wp6gj/AOPuf6L/AFqegAooooAKKKKAOR8WTXM889tBdNbxWdi97IU/jIJAU+2Aa2fDX/IsaW2Mb7WN8fVQf61ycHh2PxNq/iBru9voUE7Qr9nm25HIII5yMAcdOTXd2lslnZwWsWfLhjWNc9cAYH8q6avLGCgnqYUKNL3q125tteSSdtPuJqKKK5jcKpJ/yF3/ANw/+y1dqkn/ACF3/wBw/wDstAF2iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqCb/X23++f/AEE1PUE3+vtv98/+gmgCeiiigCC3/wBZcf8AXT/2UVPUFv8A6y4/66f+yip6ACiiigAooooAKKKKAGv/AKtvoaZbf8esP+4v8qe/+rb6GmW3/HrD/uL/ACoAlooooAKKKKACiiigAqC5+7H/ANdF/nU9QXP3Y/8Arov86AJ6KKKACiiigAooooAKKKKAMP8A5nv/ALhn/tWtysP/AJnv/uGf+1a3KufT0ObDfb/xMRxuRl9RivIfDOup4fubiUw+cZI9oQMBg5zk+3WvX68N1/w1qGmeMGtLIm4zai6lbhQIwxDHk9sV14KMZ80JP+kY4vAVsVNToy5XTjKV3tfTT7rnttrN9ptIZ9u3zEV8ZzjIzWN4t1iHTNDu4hdGC9mtJ2tduQxZEJJB7EdazNX8QzaR4X0r7KB51zbKFk/uYVecd+teY+J9av8AU763uL2bftgnjXAAxuU+n1p4XCupUTe2v4HVluMoV8dDByb5mr+V7Xsei/Ce5e68IzNI5eQXkm5ickkhWJ/Wu6rz34e6YNC1nUdOjnkkie0t7nD9mYHOB+n4V6FWWNt7eTjs9fvPSzDl+sycdnr94VBbdZv+up/kKnqC26zf9dT/ACFcpxE9FFFABRRRQAUUUUAFMm/1En+6f5U+mTf6iT/dP8qACH/UR/7o/lT6ZD/qI/8AdH8qfQAUUUUAFFFFABRRRQBBc9Yf+uo/rU9QXPWH/rqP61PQAVBB/rrn/roP/QVqeoIP9dc/9dB/6CtAE9FFFABRRRQAUUUUAFFFFABUF5/x5T/7h/lU9QXn/HlP/uH+VAE9FFFAEDf8fyf9c2/mKnqBv+P5P+ubfzFT0AFFFFABRRRQAUUUUAFFFFABUH/L8P8Armf51PUH/L8P+uZ/nQBPRRRQAUUUUAFFFFABRRRQAUUUUAQD/j+f/rkv8zU9QD/j+f8A65L/ADNT0AFFFFABRRRQAUUUUAFFFFABUCf8f0v/AFzT+bVPUCf8f0v/AFzT+bUAT0UUUAFFFFABRRRQAUUUUAFFFFAEEf8Ax9z/AEX+tT1BH/x9z/Rf61PQAUUUUAFU9R1Sz0q3E15MI0J2jjJJ9gKuVx0d5b+LPEHkeUwt7SCZW3c5LEJkfhzWlOHNq9kcmKxDpJRhbnlor/j925o+E9j22o3KEET38zgjuM8V0Fcx8Pzv8IW8o6SSykfQOV/pXT06ytUkuxtRozo01TqK0lv69fxCiiisjUKpJ/yF3/3D/wCy1dqkn/IXf/cP/stAF2iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqCb/X23++f/QTU9QTf6+2/wB8/wDoJoAnooooAgt/9Zcf9dP/AGUVPUFv/rLj/rp/7KKnoAKKKKACiiigAooooAa/+rb6GmW3/HrD/uL/ACp7/wCrb6GmW3/HrD/uL/KgCWiiigAooooAKKKKACoLn7sf/XRf51PUFz92P/rov86AJ6KKKACiiigAooooAKKKKAMP/me/+4Z/7VrcrD/5nv8A7hn/ALVrcq59PQ5sN9v/ABMKo6rbRSWF5L5SGb7NJGJNo3BSOmeuM9qvUyaMSwyRno6lfzFSnZ3N5puLS6nhX2u5uYYkuJmk8rdHEGPRQxwB+FHjHw1fab5gO2VbZBI7p0CMdoP50+XRr+48WWPh1o1t5mlaUSuCAyqG3duQdhx9a9Xlijk8amOVFeOXTsFWGQcSen417M63sJxnHzdv6+Z5eAwLwNWhmVTWc5Xt2Turf1sZmiKYvHVxGRgnR7ckH2JFdjXLwkD4oXOOjaQh/wDIrV1FeZiHeSfkj38U7yi/JfkFQW3Wb/rqf5Cp6gtus3/XU/yFYHMT0UUUAFFFFABRRRQAUyb/AFEn+6f5U+mTf6iT/dP8qACH/UR/7o/lT6ZD/qI/90fyp9ABRRRQAUUUUAFFFFAEFz1h/wCuo/rU9QXPWH/rqP61PQAVBB/rrn/roP8A0FanqCD/AF1z/wBdB/6CtAE9FFFABWZf+I9E0q5W21DV7G1nbkRzTqjY9cE1p157ZvJpN/rcV14N1DUDPeyyrdpBE/noxyAdzAgAfKPYDgdKAPQEdZEV0YMjDKspyCPUVlan4itNMvFsjDd3V00fnGG0gaVljzjccdBnIHc4OKw/At3e21jHpNz4f1OxCvNIrSqnkxKzsyxqQxJABAHHbtUvifxPaaXqaaXaXOn2ur3MIZ7q8kREt4gSAzEkFzknag9ycCgDSl8W6WtrZT2xnvTeo0lvFawtI7Iv3mK9gMgHOOTjrWlp2oWuq6fDfWcnmW8wyrYIPXBBB5BBBBB6EVxWjrpOg+J9MEOoQyabJo7w2920ylZZFm3SfN03HOTj0PpWn4KurePR2d54401DUruWyV2CmVGldhtB65GW47c0AX4/F2ly6gtqpuNjzm2S6MDCB5hkFA/QnII9CRgHNa15/wAeU/8AuH+VebW9xC3w90nRFmT+111OGAwBh5iypdBnJXqMKrNn05r0m8/48p/9w/yoAnoqDyp/+fj/AMcFHlT/APPx/wCOCgAb/j+T/rm38xU9UjHN9sQefz5bc7B6ipvKn/5+P/HBQBPRUHlT/wDPx/44KPKn/wCfj/xwUAT0VB5U/wDz8f8Ajgo8qf8A5+P/ABwUAT0VB5U//Px/44KPKn/5+P8AxwUAT0VB5U//AD8f+OCjyp/+fj/xwUAT1B/y/D/rmf50eVP/AM/H/jgqHy5vtgHn8+X12D1oAu0VB5U//Px/44KPKn/5+P8AxwUAT0VB5U//AD8f+OCjyp/+fj/xwUAT0VB5U/8Az8f+OCjyp/8An4/8cFAE9FQeVP8A8/H/AI4KPKn/AOfj/wAcFAE9FQeVP/z8f+OCjyp/+fj/AMcFAAP+P5/+uS/zNT1SEc32xh5/PljnYPU1N5U//Px/44KAJ6Kg8qf/AJ+P/HBR5U//AD8f+OCgCeioPKn/AOfj/wAcFHlT/wDPx/44KAJ6Kg8qf/n4/wDHBR5U/wDz8f8AjgoAnoqDyp/+fj/xwUeVP/z8f+OCgCeoE/4/pf8Armn82o8qf/n4/wDHBUKxzfbJR5/PlpzsHq1AF2ioPKn/AOfj/wAcFHlT/wDPx/44KAJ6Kg8qf/n4/wDHBR5U/wDz8f8AjgoAnoqDyp/+fj/xwUeVP/z8f+OCgCeioPKn/wCfj/xwUeVP/wA/H/jgoAnoqDyp/wDn4/8AHBR5U/8Az8f+OCgAj/4+5/ov9anqlHHN9pmHn84XJ2D3qbyp/wDn4/8AHBQBPRUHlT/8/H/jgqlq9+NF0m41G6uG8mBdzBYwSecAD3JIFNJydkOMXJqK3ZLrOpQ6TpVxdzSBNqkJnu2OBXBaHd65qWn22maVpzaVIU3yarJGGDQ5JQrkcliTx2H14sWmm6x4m1cwa/cAW6Bbp7IIMQ54WMkdSQAT+I713iwzKoVZwFAwAIxgV1XjQXLo3+C/z/Iik4RryqNKTj7q7La789dO2nW5Q8MaRJoXhuy0yaRJJIFIZkzgksTxn61r1B5U/wDz8f8Ajgo8qf8A5+P/ABwVzSk5ScnuzSc3OTlLdk9FQeVP/wA/H/jgo8qf/n4/8cFSST1ST/kLv/uH/wBlqbyp/wDn4/8AHBVaFXXVn3vuOw84x/doA0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCtfahZ6ZbNc393BawKcGSaQIufqaZp2radrEBm02+truNThmglDgH0OOlc54uimTXtDvxolxrFvbidZIIkVvLLBMSYYgFhggezHkY5yo9Surfxf/AGrbeC9Zt7f7G0EgihhDTsWUgsN+PlAODkn5j0oA9EopsbF41YqylgDtbqPY06gAqCb/AF9t/vn/ANBNT1BN/r7b/fP/AKCaAJ6KKKAILf8A1lx/10/9lFT1Bb/6y4/66f8AsoqegAooooAKKKKACiiigBr/AOrb6GmW3/HrD/uL/Knv/q2+hplt/wAesP8AuL/KgCWiiigAooooAKKKKACoLn7sf/XRf51PUFz92P8A66L/ADoAnooooAKKKKACiiigAooooAw/+Z7/AO4Z/wC1a3Kw/wDmez/2DP8A2rW5Vz6ehzYb7f8AiYUUUVB0mFqOgyXfi7RtZjeMJZJMkqtncwZcLj6EmqniGf7FrlvcEHbJY3Cbh2Kru/pXUVx3j5/KgspP+uyf99JiuilJzlGL6K35s4s2rS+q8z+za3/gV/1ZQ8KvnxZYkn72ggD/AIDORXoFeWeHLp4vFGjxO+BDFLDJ7D962PzxXa+GNbOtR3zNIGaK4YIAuMRn7v8AI/lV4qDvzeX6sjB5jTrUaMHo7cv/AICtTeqC26zf9dT/ACFT1BbdZv8Arqf5CuQ9AnooooAKKKKACiiigApk3+ok/wB0/wAqfTJv9RJ/un+VABD/AKiP/dH8qfTIf9RH/uj+VPoAKKKKACiiigAooooAguesP/XUf1qeoLnrD/11H9anoAKgg/11z/10H/oK1PUEH+uuf+ug/wDQVoAnooooAK8m1VIpdWubvV9X1SEQaw0F6iXckMdvauriBgAQAuQh3epOa9ZrgZbzUtR1LVIbrxbZ6OIbl4VsXtoWPlD7jEyHJ3A59OaANfwA6P4UjEMsk8CXE6RXMjszXCCVgsmTzyMe3pgVvzafZXMnmT2lvK+MbnjDH8yKr6GrJpEKtqUepEZH2mNERWGTgAJ8ox049K0KAK0mnWU1sttLZ2726nKxNEpUH6YxUxhiJjJiT939z5R8vGOPTin0UAQCytVuzdi2hFyw2mYRjeR6butF5/x5T/7h/lU9QXn/AB5T/wC4f5UAT0UUUAQN/wAfyf8AXNv5ip6gb/j+T/rm38xU9ABRRRQAUUUUAFFFFABRRRQAVB/y/D/rmf51PUH/AC/D/rmf50AT0UUUAFFFFABRRRQAUUUUAFFFFAEA/wCP5/8Arkv8zU9QD/j+f/rkv8zU9ABRRRQAUUUUAFFFFABRRRQAVAn/AB/S/wDXNP5tU9QJ/wAf0v8A1zT+bUAT0UUUAFFFFABRRRQAUVUTUbd9Tl08E+fHGJWGOME4/wA/WrSsrqGUhgehBzTaa3JjOMtmLRRVTUtQt9NsnuLiaOLghN7AbmwSFGep4PFCTbsht2VzI1bxDHYW0t1ZmK5dpFiChuOMls+mADWXqXxK0uCyk+wpLPfFR5UUkTKrPkZXd04Byawry106PwRNqFtKJb2SIW6hJchpZcqwI/vAMfyrZ/4R+6DReHWtzJp6TLcLdMPuJj5lB7HP4813RpUoq8lfV+Wxx06uIpU1iK0L82iiujsmm9L2bbT/ADLml+OVuJ3j1bTZtJDQefAZz/rVHDY46g9B3BzVfxrqVvqfhmzjspklW8u4lwDnpl8EduVHHvXMeL2e2srKz1K3lWWyhuYIrjHySZTKEH/gIq5o3h+CLWLC3ay3X6SRXL3XPMOwHB7fe4zitPZU42rLT/gGlXGT5FXhBwUlyre/P8+i7912PQdJ0v8As6OV5JmuLqdt88zDG49gB2A7CtCiivNbbd2bU6cacVGOwUUUUiwooooAKpJ/yF3/ANw/+y1dqkn/ACF3/wBw/wDstAF2iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4/xnE13qui2M99eWdhcmaNntpWj3XBC+UrMvODlzjoSBXP+AZbT/hILAW99eXV5JpbjUYLi5kl+xzq8YIwx43HdweflGOCc9R4sv7+2vdLtbfVIdJtblpPNvpYlcK6gFIxu+UFvmOT/dpfDsUqalM7+K7bVt8ZLQxQQo2cj5yU5OOnPrQBtarHqE2myx6XNFBdvtCyyruCDI3HHcgZwDxnGa4j/hKr2xtfES2mpNqkdkkCW9xdRqrpPK2zaQqruUEoc4HUjJ7dtq8GoXGnOml3aW14GV43kTcjYIJVh6EAgkcjORXMXvhTU9fm1G81R7SzuJrJbW3jtXaVUKyCQO7Mq7vmA4xwM880AXrGbUdJ8VW+kXupy6jBeWck8ck8aK8ckbIGA2KBtIcHBGRjrW9cusctuzsFUOcknH8JrG07TNWuPEMesa0tlE9vatbQQ2kjSAl2Uu5LKuM7FAGDjnk1tzf6+2/3z/6CaAD7Zbf8/Ef/AH0KPtlt/wA/Ef8A30KnooApQXduHnzPGMyZHzDngVN9stv+fiP/AL6FFv8A6y4/66f+yip6AIPtlt/z8R/99Cj7Zbf8/Ef/AH0KnooAg+2W3/PxH/30KPtlt/z8R/8AfQqeigCD7Zbf8/Ef/fQo+2W3/PxH/wB9Cp6KAK73lsUYefH0P8Qplvd2620QM8YIQAjcPSrL/wCrb6GmW3/HrD/uL/KgBv2y2/5+I/8AvoUfbLb/AJ+I/wDvoVPRQBB9stv+fiP/AL6FH2y2/wCfiP8A76FT0UAQfbLb/n4j/wC+hR9stv8An4j/AO+hU9FAEH2y2/5+I/8AvoVDcXduwjxPGcSKfvD1q7UFz92P/rov86AD7Zbf8/Ef/fQo+2W3/PxH/wB9Cp6KAIPtlt/z8R/99Cj7Zbf8/Ef/AH0KnooAg+2W3/PxH/30KPtlt/z8R/8AfQqeigCD7Zbf8/Ef/fQo+2W3/PxH/wB9Cp6KAOdF1B/wnBfzk2/2bjO7jPmVt/bLb/n4j/76FZI/5Hs/9gwf+ja3aufT0ObDfb/xMg+2W3/PxH/30KPtlt/z8R/99Cp6Kg6SD7Zbf8/Ef/fQrmfGBt7waVH5iOhvUV8N2PWutprxpJt3orbTuGRnB9aqEuWVzDE0Pb0nTfU8n8T6e9lr8strtENwxMRRwc7h8w68dSPxroPA6Lpl7qlrcSxq4EWfmGM4bOD361peKiYdZ8M3B/1f9oeSw9S6HH6is/WNb/4R7xbcSJAjC4jiMmfQEg9O+P5V2uUqlNR7r8meRiMvpZfVhjXL3W38r81/xt8jsftlt/z8R/8AfQqGC7t1M2Z4xmQkfMPajSL46npNtelAhlXJUHIBziprbrN/11P8hXC1Z2Z7kJqcVOOz1D7Zbf8APxH/AN9Cj7Zbf8/Ef/fQqeikUQfbLb/n4j/76FH2y2/5+I/++hU9FAEH2y2/5+I/++hR9stv+fiP/voVPRQBB9stv+fiP/voUyW7tjC4E8ZJU/xCrVMm/wBRJ/un+VAEEV3bCFAZ4wQo/iFP+2W3/PxH/wB9CpIf9RH/ALo/lT6AIPtlt/z8R/8AfQo+2W3/AD8R/wDfQqeigCD7Zbf8/Ef/AH0KPtlt/wA/Ef8A30KnooAg+2W3/PxH/wB9Cj7Zbf8APxH/AN9Cp6KAKU93bsYsTxnEgJ+Ye9TfbLb/AJ+I/wDvoUXPWH/rqP61PQBB9stv+fiP/voU21dZHuGRgymQYIP+ytWagg/11z/10H/oK0AT0UUUAFecDTJbPV9W+0+ARq4mvZJo71/szM6tyB87ZAHQe2OBXo9c7d+LI9KvJYdX02+srdXIjvfL82B17EsmSn/AgPrQBo6EqrpEIXSBpIy3+hgIPL5P9z5eevHrWjVeyv7PUrZbmxuobmBukkLh1P4irFABRRRQAVBef8eU/wDuH+VT1Bef8eU/+4f5UAT0UUUAQN/x/J/1zb+YqeoG/wCP5P8Arm38xU9ABRRRQAUUUUAFFFFABRRRQAVB/wAvw/65n+dT1B/y/D/rmf50AT0UUUAFFFFABRRRQAUUUUAFFFFAEA/4/n/65L/M1PUA/wCP5/8Arkv8zU9ABRRRQAUUUUAFFFFABRRRQAVAn/H9L/1zT+bVPUCf8f0v/XNP5tQBPRRRQAUUVna9etp+iXVyhIkCbY8ddx4H6mmld2RFSapwc5bJXNGiszw9dPe+H7K4lcvI0eGY9SRwf5VcvLuKws5bqdsRRKWb/D603Fp8pMKsZU1V2TV/1OIvrC+1Pxddtal1t3kW1ndP4UCqzc++DW9pkf8AY2uy6THn7HPH59spOfLIOGXn86seHbeeOzuLm5j8uS8uGuPLJyUVsYB98Cq+sXEMPijQ/wB6gmLSIY9w3FWXAOPTIFbuTk+Tol+R5dLDKnH6yr8zlf0TdmvSzv6+h0FcP8R4Wu49Fs16yXuR9QpA/VhXcVxurXJuviRotgwDRQo8pUjo21jn8wlThrqfMuib/A9StKXK4Q3kmvvTu/krstWPgjQrPV47qG1YSWoRlG87WfBG9l6Fvf1rqKgj/wCPuf6L/Wp6znUlPWTudE6k525nex598XbU3HhyxKj5hfKn/fSsP54rv0jWNVCgDChR9BVDWtGt9ctIra5Z1SOdJwUxnKnOOex6Vo1pOqpUow7X/GxrUqqVCFP+Vv8AGwUUUVgc4UUUUAFFFFABVJP+Qu/+4f8A2WrtUk/5C7/7h/8AZaALtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByHjPT57nU9GvE0D+3IbczLLas0YRdwXD4c4LDbgcdz04qfw3HGmoyFPBS6IfKP+khbcbuR8n7sk89fT5a1dY1W40oQyx6Td38DE+abTazxdMHYSCwPPTJ46UzSvE2j6y5isr6Nrhfv28gMcy/VGww/KgDWooooAKgm/19t/vn/wBBNT1BN/r7b/fP/oJoAnooooAgt/8AWXH/AF0/9lFT1Bb/AOsuP+un/soqegAooooAKKKKACiiigBr/wCrb6GmW3/HrD/uL/Knv/q2+hplt/x6w/7i/wAqAJaKKKACiiigAooooAKgufux/wDXRf51PUFz92P/AK6L/OgCeiiigAooooAKKKKACiiigDCH/I9t/wBg0f8Aoyt2sIf8j23/AGDR/wCjK3aufT0ObDfb/wATCiiioOkKKKKAOW8f7ofD0WoqAW068gu9vrtcDH/j1YfiVbLX/EVrFaSuJRO1ncMV4UrtOQO/Dmut8WWZv/CWq26jLNbOVHqQMj9RXIfDSaDWJNWvJY1eRbpJkJ6ozJg/yrvo6UHU/lv+NjTF4GONy6UZfZa/OP6XOj8GXkMmjCwD5ns2ZJFPuxwa3bbrN/11P8hXJaLp1xpHjOcS4CXizNGAc/KGBBrrbbrN/wBdT/IVy1kue66nmZbKbw6hNWcdPu2/CxPRRRWR3hRRRQAUUUUAFMm/1En+6f5U+mTf6iT/AHT/ACoAIf8AUR/7o/lT6ZD/AKiP/dH8qfQAUUUUAFFFFABRRRQBBc9Yf+uo/rU9QXPWH/rqP61PQAVBB/rrn/roP/QVqeoIP9dc/wDXQf8AoK0AT0UUUAQXt5b6fZy3d1J5cEK7pHwTtHrxXmh8TeG9eu7uXV/F959jWd0isYla3jKA4G4oNzg+7D6CvSb6G6ntSlndLazblIlaISAAEEjGR1GR7ZriNUv59Nn1Oa18XWlpbw3QWS2h0cSsssnITKtl3PfAz60AX/DGj6JdSWWv6DaNpluomgMUcfli6TdtVmHcZXcCeea7Gsrw3dtfaDbXLakmol9x+0rB5O75iMFMnaR0IPcVq0AFFFFABUF5/wAeU/8AuH+VT1Bef8eU/wDuH+VAE9FFFAEDf8fyf9c2/mKnqBv+P5P+ubfzFT0AFFFFABRRRQAUUUUAFFFFABUH/L8P+uZ/nU9Qf8vw/wCuZ/nQBPRRRQAUUUUAFFFFABRRRQAUUUmQCBkZPQUAQj/j+f8A65L/ADNT1k6xqLaWktxHGJZSscccZONzMxAFWNI1H+1NPS5MRifcyPGTnawOCM1XK+Xm6GXtoe19lf3rX+ReopGIVSxOABkmuVX4ieHvlaS5eNJJAsbMh+YED5z6KM9TThTnP4Vc1V3JQWre33X/ACR1dFIrK6hlIZSMgg5BpagAooooAKKKKACoE/4/pf8Armn82qeoE/4/pf8Armn82oAnooooA4zxB4sv9K8Z2GmQxQNYyCH7Q7qd6+ZIyZBzgYwO1aF7LLrHiCLTUtz9lsZ0muJSwwx27lXH1Nc14lsZ9U1rxQtpG0l1bWdoYlQZO4OZMAevBrpPCN4mqDU9TjVlS4uRtDjBACLwR+Nd1SEY01KK1S/Oz/VlZnSi4UYR0u/e8/d5vxf4IseFfk0ye2/59ruaLH/As/1qDxldRW2m2rTgmAXSvMoGcxoCzcd+lZniK9ufD15f/ZdyjUUWSJ1H3JFID/mvNV/HV39p0KzkzxLZTzH8YsD9WqKdPmqRl0Z49GpGcfqT3TjF+jlyr8LP5ktjq/jLX/KSGyttKglT7Qt6y+aDEwBRQueX65/kO+fc+GZU8eaWdV1W4vri9gmBmVRDs8sKVCgdOpNd5o8fk6JYRf3LaNfyUVieIf3fjHwpN2E1xH/31F/9arhW99xgklZ7ej67n0vPGrKdHlSi1JWtvo+r1/Efa67/AGZp17BqUwe7sG8tcnDTgjKHHqa5fQrufU/iq8l0qJcQW0nmxochCAi4/WvRJNOspbtLuS1ha4T7spQbh+Ncz4HsraVtW1nyEN1cajchZsfN5e8YXPplamnOChOVtbW+88zB4aUL1KsrqCtFeqau79bO349TqI/+Puf6L/Wp6gj/AOPuf6L/AFqeuM0CiiigAooooAKKKKACiiigAqkn/IXf/cP/ALLV2qSf8hd/9w/+y0AXaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDg/FXi/TF1e30ceJZtK2+Z9raC3y4xtwu5gducnBAOfUd6Njp3grxFcT6XpqzX97LavK+rSl5ZYGBAU+Y/IbLZAXA+U1v6zBfQz6ereI7S11Ca4ljtpH01ZHZWwRGo3ZGAoy3fjOKr+Edbl1LV7mB/FEeqLHG2IRpptt2GCmRHJO9QQV44yfpQB19vG0NtFE0jSsiBTI3ViB1PuakoooAKgm/19t/vn/0E1PUE3+vtv98/+gmgCeiiigCC3/1lx/10/wDZRU9QW/8ArLj/AK6f+yip6ACiiigAooooAKKKKAGv/q2+hplt/wAesP8AuL/Knv8A6tvoaZbf8esP+4v8qAJaKKKACiiigAooooAKgufux/8AXRf51PUFz92P/rov86AJ6KKKACiiigAooooAKKKKAMIf8j2//YNH/ow1u1hL/wAj2/8A2DR/6MNbtXPp6HNhvt/4mFFFFQdIUUUUAMlQSRPGejKR+deOfCLzYPEdzEXdVktpN8eeNyugBx6jcfzr2auNNrZ6X8TLIQQx24u7GckKMCSTeGJ+uBn8K7MNUtTqU7br8rnfhK1qVWlb4lf7rmtqHy+LdGP9+OdfyANX7K7tpp7qKK4ikljlYOiuCV6dR2qhq3y+JNBftvmX80/+tXlOj6sdH+IY1q4JW1v55FlC/wAAkORnPYHB+i0UsP7aOj1S+/VnlYH2U8RVoylabbcV3tGLaPcqKKK4zYKKKKACiiigApk3+ok/3T/Kn0yb/USf7p/lQAQ/6iP/AHR/Kn0yH/UR/wC6P5U+gAooooAKKKKACiiigCC56w/9dR/Wp6guesP/AF1H9anoAKgg/wBdc/8AXQf+grU9QQf665/66D/0FaAJ6KKKACvMr9bHSvE5jvvEmixWtreTalDazSbZTcSKdok54VSxIPXGOK9Nrg7ddY0TUtVij8IC+hub2S4iuvtcCNIG5wQxzxzj2xwKAN3wbHGvh5Zo7+2vmuZ5riWe1P7oyPIzME9gTj8Kn8ReJtM8MWH2rUZsFuI4UwZJT/sj+Z6CrelSzz6dHJc6cdPlJObYur7OT3Xjnr+NYnxBgjbwVqs3lIZlg2q+0bgCy5APpwKANLVtbl0qZETRdTvlZNxktFjKr7Hc680/QNbi8Q6PFqdvbXNvDKTsW4VQxAON3ykjB7HPNZ3jWSSXS7TSonZG1a8jsndTgrGctJj/AIArD8a2WuLLTms7EukJm/dW0QGAdq52j6AfpQBl23ilLzUJLa10jVJoo7lrZ7pY08oMrbWOS+cA5zx2rYvP+PKf/cP8q8zVtIto7Y+Hr7UU8QnUgDY3F0xk+abMwkhB2hNpdt2PQ5zXpl5/x5T/AO4f5UAT0VB9nf8A5+Zv/Hf8KPs7/wDPzN/47/hQAN/x/J/1zb+YqeqZgb7Yg+0S/wCrbn5fUe1S/Z3/AOfmb/x3/CgCeioPs7/8/M3/AI7/AIUfZ3/5+Zv/AB3/AAoAnoqD7O//AD8zf+O/4UfZ3/5+Zv8Ax3/CgCeioPs7/wDPzN/47/hR9nf/AJ+Zv/Hf8KAJ6Kg+zv8A8/M3/jv+FH2d/wDn5m/8d/woAnqD/l+H/XM/zo+zv/z8zf8Ajv8AhUXkN9sA+0S/6vr8vr9KALlFQfZ3/wCfmb/x3/Cj7O//AD8zf+O/4UAT0VB9nf8A5+Zv/Hf8KPs7/wDPzN/47/hQBPRUH2d/+fmb/wAd/wAKPs7/APPzN/47/hQBPRUH2d/+fmb/AMd/wpGiKKWa6lCgZJO3gflQBYrjvEF5Nb+KLe7jP7nT4kaf/dkbaf0waXStT1C41aKW6u5EsbyOV7ddqgqqMME8emTS6dFbaml095e+VNrG4QRMVDPEgwCBjkjOeK6IQcHd/wBf1qeTVqvGwUKN073/APAVdP0u4/Ivamhu/Fml23WONTcuP93IU/mak0b/AETWtXsDwDKLqP3DjnH0Io03QxYXrO17cz3HkKhlcj7uTwBjgcVneKo7zTri21CyllaaVWs2PGfm5Xt65pK0nyL+uo6nPRj9amtU7tb6W5bfqdBqtzHDpd8xkUNHAzEA8jg4rzlbKTSLezkhtxLZ3NnFNdbk3Boy3zLz2IK5H0rV8UeGxpXhy8v7S8lSRLdvtBc7vOPBH/j2K6a20rzvDUFi88u1rRYiDjA+QD0rSElTgpJ3TZdbC4nEQ9rL3HH4bO+u77dLL7zH0i1i8O+NG0m0aRNMvbL7RBC0hZUkVsMFyeMgg12NeeiWSW+8HXUksgljmntJOmVOwrjp/siu7+zv/wA/M3/jv+FRiL3jJ7tfk2j151fb06df+aN/zRPRUH2d/wDn5m/8d/wo+zv/AM/M3/jv+Fc5kT0VB9nf/n5m/wDHf8KPs7/8/M3/AI7/AIUAT1An/H9L/wBc0/m1H2d/+fmb/wAd/wAKhWBvtko+0S/6tOfl9W9qALtFQfZ3/wCfmb/x3/CuZ1Lxjp2ka1Ppl7Lfq8aqyOkYcSEjJAwOMAg8+9XCnKbtFXKjFydkUl0yXUfFniSeC4ngmiEYiaJ9uXEYAB9RkHj3rQ8ASCTQZv74unD/AFwp/qKl8MQz3K3+ov58C3dxvizty6ADBPH1qt4VgaLVvEtqJ5FEeoeZgY/jRT6e1dE25RlHtb/I4sLhfayeLb6N27ptKL+UTpruzgvYik0SOQDtLDO0kEZH515brFw914WuwwIaw09bZlPVZGmC4/75Fep/Z3/5+Zv/AB3/AArjfGenWkGi3Yt5WM95eWyTruByd6kZGOPWlhJ2qJPuvzN6eFdTG0ai2Ulfz1TX3NI7eJBHEiDoqgVzHjJlgu/DdyzBVTVY0LE4ADKwrovs7/8APzN/47/hVXUdEtNWthbX+64hDBwkgUjI79PesaU1Gakzpo1FCopS2M678c+HrO/hszqEUjy7svE4ZI8AnDsDgE4wBTPAETR+CNOaQEPKHmbPfc7N/Iip7jwfo1zpz2DWiJbOVLJEiR5KnjlQD/8ArNayWnloqJPKqKAFUBQAPTpWk50/Z8kE9+vlf/M1qVKXsuSmnq9b+V/8/wABY/8Aj7n+i/1qeqccDfaZh9ol4C8/Lz19ql+zv/z8zf8Ajv8AhXOcpPRUH2d/+fmb/wAd/wAKPs7/APPzN/47/hQBPRUH2d/+fmb/AMd/wo+zv/z8zf8Ajv8AhQBPRUH2d/8An5m/8d/wo+zv/wA/M3/jv+FAE9FQfZ3/AOfmb/x3/Cj7O/8Az8zf+O/4UAT1ST/kLv8A7h/9lqb7O/8Az8zf+O/4VWhQpqzguz/IeWx/s+lAGhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAch44ja3+x6pDrGnabPDHNbK9+2EIlC5KkHO8bAR+NUfCa6VLrljBp2uabeW+k6abe2htn3SvuMfmSSdgMqMAf3q0/Fdpf/2vo2p2OjDVvsnnJJC00cYRXC/MC5+8NvHsT0q3od9qF1dsLrwydMi8ssJ/tMMgY5Hy4Qk8jnPTigDfooooAKgm/wBfbf75/wDQTU9QTf6+2/3z/wCgmgCeiiigCC3/ANZcf9dP/ZRU9QW/+suP+un/ALKKnoAKKKKACiiigAooooAa/wDq2+hplt/x6w/7i/yp7/6tvoaZbf8AHrD/ALi/yoAlqrJfwR6jDYsT58qM6jHGB1q1XEzTy/8ACxY5nZjBHILZR2UtFn+ZrSnDmv5I5MXiHQULfakl9+521QpdwSXUtskgM0QUundQelTVx/h3UItS8ZatcQMTFJEm0kY+7gUow5k32HXxCpVKcOsnb5Wb/wAjsKKKKg6gqC5+7H/10X+dT1Bc/dj/AOui/wA6AJ6KKKACiiigAooooAKKKKAMNf8Aken/AOwaP/RhrcrDX/ken/7Bo/8ARhrcq59PQ5sN9v8AxMKKKKg6QooooAK5XxYWtda8Mahtykd/5DHPTzVKg11Vc942s3u/Cl48LbJ7QC7ibGfmjO7+hH41th2lUV+un36HRhWlVSez0+/Qx9X8U6bf3kTadOJpNOmJkbaduTG+AD3+6a5fQrBtYttR06IRlry2kijZ/urIpB9P85rjNGlne4uC4IinO88cFlPY+279a7HTQIY9PmRhtGr3GGB4wHjr1Z4dULqL7f5/meNm2FWDzCpiIN/uXTa/7esnf7mei+DdQl1HwtZyXJJuYgYJ89d6Eqc/ln8a3q5fwRxba0n9zWLof+PCuoryq6SqysexiUlWkl3CiiisTAKKKKACmTf6iT/dP8qfTJv9RJ/un+VABD/qI/8AdH8qfTIf9RH/ALo/lT6ACiiigAooooAKKKKAILnrD/11H9anqC56w/8AXUf1qegAqCD/AF1z/wBdB/6CtT1BB/rrn/roP/QVoAnooooAK8i1i50rT/GENx4gWZL/APtWbdLLHIytZNBIqCPAI28qCBzuzmvU9RtZr2wkt7e9mspXxieEKXTBB43AjnGOneuG0e01XUZtWWfxvfwmzupLdYtkAdAvR3ynRuo4HBHNAHQ+CIp4fDEKypcRw+bKbWO4z5iW5kbyg2ec7cdeQMV0Vc74JvLm98NpJdXr30i3E0QuyFAnVZGUOuABtIHH8z1roqACiiigBNq7t2Bu6ZxzUN5/x5T/AO4f5VPUF5/x5T/7h/lQBPRRRQBA3/H8n/XNv5ip6gb/AI/k/wCubfzFT0AFFFFABRRRQAUUUUAFFFFABUH/AC/D/rmf51PUH/L8P+uZ/nQBPRRRQAUUUUAFFFFABWL4pdxo3kIxU3M0cGR1wzYP6ZrarmPGeo2+mQaZPdsVgjvUlcgZOFz2/EVpSTc0kc+LTlRlGO70+92/Usa7oEmoRWENk626wExsf7sTLtYD8OKwNd0KLWPGVlpUUslt9i0ozW8sZ5ifzAqn36V2/wButPMjj+1Q+ZIAUXzBlgfQd65vS5Y734i6zPFIsi29lBBuU5HJZiP0rejOcby7J/jp+p24KgqFSpXgrO3+SKx8OeJZLoLJ4smzIg+0lLdUwuTxHj7p4xn3qWbQvFqYgtvEsMluh8xJLm1DS5HRSRwRnqetdQP+P5/+uS/zNT1n9Zn2X3L/ACNPrU+qX/gK/wAjidW0/wAY63p76PfRaQltclVlurZ3zGgIJ+VupOMV2oAVQB0AwKWionVc0layXYzqVnNKNkku3n/wx53qP+j3VqOhg8TRn6LID/jXoleceOGbS7i4nljYQ3F1a3EUgIwGjIDZ9ODmvQZ7hILOW5JBjSMyZB4IAzW1ZXhB+v6HPQklhIp/Zcl9zuvwaZKzBVLMQABkk9qpaXq9rrEU0toWZIpTEWIxuIwcj25rB0vw/Lf6VazXmo3jR3K+bPb+Z8r5OQPUDBGR3q9osSWmvazaRIqRKYZEVRgAFMcflWThFJ63aOKGJrTnTbjyxl83s2vTb+uu9RRTZJEhiaWV1REGWZjgAVkeg3bVjqgT/j+l/wCuafzauV1LxLqUlqZLOyKWl0Tb205JDlzwGx2HXH0rU0W4vI9SudO1F1kuIYkKTL/y1TLYJHY84NaOlJK7OKnj6VSpyRv6208vvS06GjqOqWmlQpLeS+WjuEU4zzgn+leY+H4dS13xDeearNaTTqblu23Akwfr0FdvrdpFrHiCw0ycFoUhlnlUHHX5VP51W8FwpHdeIvLGI01JoVHoERQBXRSahSk+tv1F9W+uSqup8MLJd7txb/C8fmzqwAqhVAAAwAO1cxdeHdYg1y/1TRtZht/tpjMttNah1JVdud2c/lXUUVzQqSg3br8z0qdWVO/L18r/AJnHT+Gte15Wi8QarFFbIhWOLTdyeYx6O5Pp129KpaT8O547uC+1bVpri4MomuokJ2TOh/dnJweB2xXfUVssXVS5Y6L0N1jayi4xdl5Jf1/SCiiiuY5AooooAgj/AOPuf6L/AFqeoI/+Puf6L/Wp6ACiiigAooooAKKKKACiiigAqkn/ACF3/wBw/wDstXapJ/yF3/3D/wCy0AXaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDi/Hq25fTW1aOeTQlE32pY1ZlEu0eUZAvJT7/tkrmsj4ezQXl5pE+licxRaLHBqchVliaZRGI1GeC6gSZI7EVe1y11a28TadaL4vvrSDUHmfLxw7U24IiTKdTu4yTwp61b0s32n+OU02TxFc6rBJYyTNDKsWYGV0ALbFH3txx06Hr2AOyoqjq76immyf2THE96zKqecfkQFgCx5GcDJx3xiuVvPEmp6C+vW93d29+bDTPtqTrD5flyHcFjcAkc4BHQ4z9aAO4qCb/X23++f/QTXN+FNZn1O7kjn8Q2V+6QhmtobFoHUkj5gWc7l6jIGDkc10dwwWa3LEAbzyf8AdNAFiimedF/z0T/voUedF/z0T/voUAR2/wDrLj/rp/7KKnqtBLGHnzIvMnr/ALIqbzov+eif99CgB9FM86L/AJ6J/wB9Cjzov+eif99CgB9FM86L/non/fQo86L/AJ6J/wB9CgB9FM86L/non/fQo86L/non/fQoAV/9W30NMtv+PWH/AHF/lQ80Xlt+8Tof4hTLeWMWsQMiZ2Dv7UAWK4dyHne/yMf28i57bVG3P611d3qtnZSW6TzKpnfy0OeM47+lcxbwx3Xw4kXKeYyyTckZ3By354Fb0tFd9bI8vHtVJckdXFSl81a35j9L1by9d8SRyy4RS0i7m6bcg4/T8qxNIn/4RfbeugkefTvNVAcZJkAH6YqjewyT2UesRuqm6uZo2XPzfPn9Mbq6LxdpJnn0oWg3xgC3cIOFUEYz6DrXTaKdn13+R4ilWqQdSK1hrH/t93v8jQ0nxhHqniBrBIwsDJmJ+dzMACQfb735V1FeeR2o8O2+gXkkS+esri4x2D8cn1A/lXRWGuvP4s1HTpJE8iNFaHoMEAbue/Jrnq01vDb/ACPXwOMmlyYl++2vldXX6o6GoLn7sf8A10X+dSedF/z0T/voVDcyxlY8SL/rF7+9c57BZopnnRf89E/76FHnRf8APRP++hQA+iuWi1118dz6c0m+3eNVT5/lQhdxOPfpXTedF/z0T/voVUoONr9TChiIVubl+y2n6ofRTPOi/wCeif8AfQo86L/non/fQqTcfRTPOi/56J/30KPOi/56J/30KAMVf+R7k/7Bo/8ARhrdrAWSP/hOXO9cf2cBnP8A00NbnnRf89E/76FXPp6HNhdp/wCJj6KZ50X/AD0T/voUedF/z0T/AL6FQdI+imedF/z0T/voUedF/wA9E/76FAD6bLGk0TxSKGR1Ksp6EHqKTzov+eif99Cjzov+eif99CgDzHxr4XfSfDmgW+nySSRWdw8BJGWIlOSePQjH4im+G9Nhl+ErzzRBpFkkliY9V+YD+lemytDLE8bSLtdSpww6GuYfTrbRvAl5pkExeOCNlVnIy3fPFd6xblTVN73v+f8AmaY+vGrl9SnNLmerff4nr6N6DfAVxFLFrCoWLPfvcnPTEnT/ANBNdfXAeAWFreXUUjqonhjlQFhyASD+pNd550X/AD0T/voVz4lfvGcGAxFTEYeNSr8T3H0Uzzov+eif99Cjzov+eif99CsDrH0Uzzov+eif99Cjzov+eif99CgB9Mm/1En+6f5UedF/z0T/AL6FMmlj8mT94n3T/EPSgB8P+oj/AN0fyp9QwyxiCP8AeJ90fxD0p/nRf89E/wC+hQA+imedF/z0T/voUedF/wA9E/76FAD6KZ50X/PRP++hR50X/PRP++hQA+imedF/z0T/AL6FHnRf89E/76FAEdz1h/66j+tT1WuJYyYcSL/rB3+tTedF/wA9E/76FAD6gg/11z/10H/oK1J50X/PRP8AvoVFbkNLckEEeYOR/urQBYooooAKx9T8LeH9YulutS0iyubgADzJYgWIHQE9x9a2K8l1jw/p7and6lrej3Ny9vq7NeSvE7h7ORXEZTHUJ8mQvI2mgD1aBIYoEit1jSKMbFSMAKoHGAB0xUlcx4AhS38JwxQWz29os8/2VZIyjtD5jbGYHnJXHXk9e9dPQAUUUUAFQXn/AB5T/wC4f5VPUF5/x5T/AO4f5UAT0UUUAQN/x/J/1zb+YqeoG/4/k/65t/MVPQAUUUUAFFFFABRRRQAUUUUAFQf8vw/65n+dT1B/y/D/AK5n+dAE9FFcnf6pex+Kl8q4ZbOGeC2ljwNrGQMSfw4q4QctjnxGIjQSclu7HWUUUVB0BRRRQAyWVIIXlkOERSzH0A5rzLXtNuNTtNG1C+uHkXU7+KJ7dj8qqz5G322g5+tdt4plZdDkt4ziW7dbdPcscH9M1neJokXUPCligwi6grKPaONq68M+WSa8/wAEZUaca+NipbQ9757r7uX8SRvh74Z+xNbRacIScETI7eahHQhySRWrpGgaXoMbpptoluJAocqSS+0YGc/U/nWlRWMq1SStKTa9TrniKs1yyk2vUgH/AB/P/wBcl/manqAf8fz/APXJf5mp6yMQooooA57xdbwzWVm88avCl0glVuhjbKsP1rn4tLa38St4XttWvRpzW/mNFK/mEKNoMak8gYI/Wu5vrKHUbGa0nGY5Vwfb0I9wea4a002+0v4i6XLfzrNJdxXESuP4lREwT78fpXZQleLjfZN/qcroVKtZ0tfZy1ev8sZb+un4o0PFfiPUfDupaVZaVp/2xZYpN0CqS3G1UwR0AJ59qw7fxu1prUd3fWeyV1W01JFJAtnVyC/f5eV79+tdLN+9+KFqn/PHSXk/76lA/pWZ8QbOFI3uUiRXuLK5jlcDBbbHuXPr0rWl7L3aco6tb/eejiFRjCjGUOsdfWVvyZ3YIIyORXJS21/4j1O523IXSI7gQSQn/loEwSR9W4//AFVpjVFs/CEGoHk/ZI2Qf3mKjA/MirOhWLadotrbP/rQm6T/AHjyf1Nca/d3fXY8zFU1VrKg9lq/ySfk9fuL+xAqrtXauMDHAx0rl9a1GLRfFdrfTh/JktGhcoMn72RXVVSuLaO8e7t5RlJYFQ/Q7hUwkk9djTE0pVKdoO0lZr5f1YzdPmin8T6ndNIgRFitYmLfeOCxA/E1W8D/ADWmsTf89tXuX/8AHgP6VieJfDwttE0DR1unSWfVkL3EYw24q/zD6cflXZ6Lo9voemJY27yOqku0kjZZ2JyWJ9Sa6KnLGlo9/wAkdeFp+ywSc/jm7tdtW9/w+RoUUUVyEBRRRQAUUUUAFFFFAEEf/H3P9F/rU9QR/wDH3P8ARf61PQAUUUUAFFFFABRRRQAUUUUAFUk/5C7/AO4f/Zau1ST/AJC7/wC4f/ZaALtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBU1HTbDVrQ2uo2kF1bk5McyBhn157+9QaVouj6GjQaXY2toJPmZYUCl8dz3PWsHxnpEWr6rosGoWk9zpbGaKRY1ZlSZwoidwOw+cZPAJFc78PrCxsvENothpMlreRaY0Grs8DIqTqyBdrMMZbDn5eCAD2oA73xG2sDRJ10GOJtRfCxmVgoQE8tzxkDp74rA0vTtbttEvbGDRbSyuHQyi5urz7UbmbIz5vygnIzz27DjFdpRQBzFnZapqXim11nULBNPSztZIEjE4keVpCpJJXjaNnHck9BW/cKGmtwwBG88Ef7JqxUE3+vtv98/+gmgB/kRf88k/75FHkRf88k/75FSUUAVYIYi8+Y04k/uj+6Km8iL/AJ5J/wB8imW/+suP+un/ALKKnoAj8iL/AJ5J/wB8ijyIv+eSf98ipKKAI/Ii/wCeSf8AfIo8iL/nkn/fIqSigCPyIv8Ankn/AHyKPIi/55J/3yKkooAieGLy2/dJ0P8ACKZbwxG2iJjQnYP4R6VM/wDq2+hplt/x6w/7i/yoA4/x1aNcPYQW4RHCTTHtwig/41paFaLN4JhjESl5LdwOBkk5qrJbzaj48ukbebeC18tj2Tev8zk/lXSafZrp+nwWiMWWFAgY98d66JytTjH5nj4ai6mLq17aO8fusv0Zj+HdHh/4Rmygv7NTIpMhWVOQ24kdfY1u+RF/zyT/AL5FLJLHEAZJFQEhQWOMk9B9afWMpOTuz06NGNGnGEeiS+4wvFcEf/CMXxWNQQgIIX0YVyXgwNLrNvPOTI03nKWfknCof613ur2hv9Hu7VRl5ImVRnHzY4/XFc7ZaaNI1Dw1Bs2SMk/nDOfnKAn+Vb0pr2bj11/I8jHYebxkK32Vy/fzJfqdX5EX/PJP++RVe5W3DxxgRCQup24GcZ649KtO6RxtJIwVFBLMxwAPU1wdnrR1Xx7vXZ5SKYIyv8Sh85/GsYQck32PSxGKjRlCD3k7HdeRF/zyT/vkUeRF/wA8k/75FSUVB1Hn0VvFF4m/thiPKOpvabSPlxsIz+efyrS1zXLVrLS7vT5UEMl4okYDb8o+8re3IqleQCfwLqEgUs4vnkXHr5mP5E1zpgMcP9mSqweJZLhkYYKnyA38x+ld6gpu76aHyNTEVMNF04LSdpX82/8AgM1fFuqXEGuXC2x8uNIlgUoccnDk/XtXoUMcMkEcnlJ8yg/dHcV562g3GqeFG1eW6BmJe4YFP4VUqAP++RXf6Y2/SrNv70CH/wAdFY1lFRSXTQ9PLJVpV6k6l7TSkvR3JvIi/wCeSf8AfIo8iL/nkn/fIqSiuY9swFij/wCE5kXy0x/ZwOMf9NDW35EX/PJP++RWOv8AyPUn/YNH/ow1uVc+noc2F2n/AImR+RF/zyT/AL5FHkRf88k/75FSUVB0kfkRf88k/wC+RR5EX/PJP++RUlFAEfkRf88k/wC+RR5EX/PJP++RUlFAEfkRf88k/wC+RVKTT4L6zvLWRQqylkLKBkAgdK0agtus3/XU/wAhQnbUUoqScXszi57a00fx5o0BZFt1smj3SkDOA5yT0zxXaolvKu6NYnU91AIrlvEug2PiDxDBZX6sY5bNwjIcMjKwII9+T+dZHw/v4tLvZ/D6StLb+YxgdiOoyT+YwfwrsnBVKaknql/nqcdPEYehBUm2pczSVtLb7/NL5noXkRf88k/75FHkRf8APJP++RUlFcZ2kfkRf88k/wC+RSeVBu27I92M4wM4qWuS1PUE0/xuLiUt5cemsWC9ThmOP0q4Q5nZHPicQqEVKWzaX3nU+RF/zyT/AL5FVbiaxjlNqzQLcPGWSM4BI9qh0TXINchmmt0dUjfZ83U8A/1riPEpvV8V3WoxK5gsmiVnzkJlV4/Ek/nV06TlJxehzYvMI0qMa1Ncybt8tbv5WPQ4I4GiQbIywUZGBkcVJ5EX/PJP++RXB+EdWk1DxZdTSgL58GFVeny7cfpmvQKmpTcHZm2CxccVTdSO12vuI/Ii/wCeSf8AfIo8iL/nkn/fIqSiszrI/Ii/55J/3yKPIi/55J/3yKkooAj8iL/nkn/fIo8iL/nkn/fIqSigCrcQxAw4jT/WD+Ee9TeRF/zyT/vkUy56w/8AXUf1qegCPyIv+eSf98io7ZQstyFAA8wcD/dWrFQQf665/wCug/8AQVoAnooooArX1ob21MC3VxbEsreZbsFcYIOMkHg4wfY1wmrSJbazdnVtX8V6RbtKTHPG6NaFc8YZUbYPZsYr0Sucu/DV3qt5M2p67eNYs58uytD9nQJ6Oy/O35ge1AGloaQJpEAttTl1OE5K3csqytICT/EoAOOn4Vo1V07TbPSbGOx0+2jt7aLOyOMYAycn9TVqgAooooAKgvP+PKf/AHD/ACqeoLz/AI8p/wDcP8qAJ6KKKAIG/wCP5P8Arm38xU9QN/x/J/1zb+YqegAooooAKKKKACiiigAooooAKg/5fh/1zP8AOp6gJAvck4AiP86AJ64iVTP4V1PVVGWlvftMZ/2UcAfoDWjceIH1HQYZrD9zLd3QtFLfMVySM/lzXO6vr0nhzU59HaCW50O300RzbEBZJHDFWJHTdjHoM110KU27Lf8AyOJUJZlJwoapRb+ctFbz3+9GvqvipJYdYsVUKVTy7dwf9YThWH1G78q1vC0sp0k2k5zNZStbMfXb0P5EVz/g22hvYLrS9SsVFxp80VwGJ5zIgcZ9xjBHTirT3mp6f4p1Kz021jn83F0yuSMrtAIHuTROCV6a6a/kcbWJw1WFfFfasrLVrmTl+GiN3TdYXUNT1KzCBTZyBAc/eBzn9Qa1K4nR7TVLEjW4bIzNdCQ3NsW2SDMhIIyOTjtXUWGq2+oWclyokhWJ2SVZhtZGHUEVjUhZ+7sdWCxMqkUquknd+q3X3Iz5B/afi1Yzzb6bGJCOxlfpn6LzWFp19qPi7X9G1VdKa20yykuGE7TKwlyCi4HB6g0kPijStP0LVr6XUbdby7knlii3jzDgEINvUdO/rXR+EbT7D4R0mAjBFqjMPQsNx/Umuhp0oOTWuy+53PRwCdPDSxEo6zejd9mmtPlY2aKKK4iSAf8AH8//AFyX+ZqeoB/x/P8A9cl/manoAKKKKACuX8R/u/FvhSf0uJ4/++oiP6V1Fcr47E1tptlrEMRl/su7S5kjB5aPBVsfmD+Fb4f+Il3uvvVjowutVLvdfemh1r+9+Jt+/wDzx0yKP83Zq0vEWmW2paPcLcIWMUbvGQSCG2n8/pWL4H0bVLb7TrOr3n2i51KGFwpXDRgBjtP/AH0PyrrpUEkTxnoykH8aqs1GolF3tYWNhTnL2T95JJfhr+Jx/h6G41vT9HeWIRaZZRIYgTkzuq4DeyiuyrlPh1ewXPgyxgSaN57ZTHNGrAtGdzYyO2QKt+M9Qu9O8OSNYS+VezSxQQPgHDM4Hf2zRVg5V3T87fiZU8C6VZ0eZuTdrvr0OgqBP+P6X/rmn82rmE1rxJokgXXdM/tCB1GyfSImcqw7Mh5565HH9NfSNb0/WT9qs7hWSVFUKxwwYFsqR1yPSs50ZRV913RpUoTgubdd1sZ3ir5ta8MR+uobvyRq6iuX8R/N4s8Kx+txM35RGuop1Pgh6P8ANlVv4dP0f5sKKKKxOcKKKKACiiigAooooAgj/wCPuf6L/Wp6gj/4+5/ov9anoAKKKKACiiigAooooAKKKKACqSf8hd/9w/8AstXapJ/yF3/3D/7LQBdooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOP8SWV1Z21vsuvE00HmyySy6dLG0kYYggFSuWUc42gke9P8JPpk93LLY+KtS1SRYyslpezLui5HzGPYrKeMZPqa2dZ0/UtREMVjq76dFk+e0UKvI44wFZshe/ODUWkeGNM0a5e8hSaa+kTZJeXUrSzOuc4LMeBkDgYHHSgDZooooAKgm/19t/vn/wBBNT1BN/r7b/fP/oJoAnooooAgt/8AWXH/AF0/9lFT1Bb/AOsuP+un/soqegAooooAKKKKACiiigBr/wCrb6GmW3/HrD/uL/KoZr+BL1bAsfPkiaRRjjaOKmtv+PWH/cX+VO1iVJSvZ7GRonz6xrk3rcqn/fKAVuVh+G/m/tZ/72ozfkMD+lbJmiDunmJvRdzLnkD1I/A/lV1PiMMHrRT73f3ts4nxbYTeJvFWn+G5Jmi04W7XtwYyA7YJRcEg9yPzNO8Pazf6Hq0PhXxATLM6k2V6uWEy9cMTzuHI/D6ErpOsWGvfEb7bptws8A0YpuAIw3n8gg8jpVzxvoH9p6euqW00sOo6YjzWzIwAzwTnjn7tdt0uWhUVlb7n3/z8j3rpcuGqqyt809df8/I6qud8S3cWn6jo19OSsMUzqzAZwGTFcl8NfEk+qeItXW5GPt3+kp83AZcBlGfZh+AruvEOkjWtIltRsEuQ0TN0Vh/9bI/GuedF0KvJP+rnkZthKtGEqcdZKzXqrP8ANWMfxbeS3w0/SLN49mo4JkP93IIIqpHosPh7V9ATcrSSPKskoGN542/zxVPwsZdV12zivAyPpluwVcYPBAAP5/pW34v1CwtnsBJMn2y3nS5WMfe8sMAx/UVdnFqkvM+fppYmE8c1qrW8lGzf43OppkriKF5D0VS35VE19apNbwtMokuQTCv98AZOPwqr4gvV0/Qby4ZSwEe0AerfKP51yqLbS7nu1KsYwlO/w7/dcg8KR7PDNmTyzq0hPqWYn+tYyaeLvxrr0RAzJZ7FJHTcqjP86z9U8YTeHNF0mz0+0F1dLaR3FyMEiGHAySAepzXWm+0a3EOrSXFvD9uVEjmd8eYCMqBXS4Thedvivb7zF5bUnhsO2tNH90bfqQrYPYeDJbGQqZEs5Fbb0yVP+NXNDbfoGnN620f/AKCKyvC+vP4q8N3FzLEkcoklgdU+7x0xn2Iq74XfzPDOnt6RbfyJH9KzqRlG6lumVKg8PilRfSLX3Nf5mvRRRWB0mGv/ACPUn/YOX/0Ya3Kwk/5HqX/sHL/6MNbtXPp6HNhdp/4mFFFFQdIUUUUAFFFFABUFt1m/66n+QqeoLbrN/wBdT/IUAc740sbu5jsZLHzPtBkNv8n91xzn0HHX3riNA0+fS7ubUppUD2eqi2mj/ujA+bPp2r2CvMfHVq1h4hMtvIwj1O33XEX8JeIqAw98Gu7C1HJOl/X9WOCvgKbhXr/a5eZesNfxt+B6Vb3EV1bpPBIJInGVZehFSVyXgKa6/s64s7ncv2dxsRlwVDDP/wBf8a62uSpHkk4m2Er/AFihGra1/wA+ojMFUsegGTXkN++o3d1cao0LCO5O1dxyAr5CgH6CvVtQfy9Nun/uwuf0NcVr8cjfDjSrSKTymupLaHeBkrvI5FdGFdpW7uxzYzAvMK0MOpcu7+eiX6lnwak2l6zqejTbfkxIDnr0x+YINF2sd7pXiyVZU8sOH35yMRqGPT6VwMN9c6V4uhOoTPdPp195BkAw0iKjAE++MV2VjFJB8MddnkUg3EU7rnuCmP55roq0eSalfe35kQwUYV6eXyd1ee3SL0X3qRnyaUJNK0CbSXKyXqtukDEDdhePb7pr0HQ71tQ0OzupDmR4xvPqw4J/MVzfw0llTw9Lpc4BewmKK3qjjeD/AOPGqlxdRw/Dg23nKs29lVN2GwJuwrKtFym6fZ7+TuGIwsMpxNRwd48rdv8ADy2+bu/vO/oqK2cyWsTk5LIDn8KlrhPUTurhRRRQMKKKKAILnrD/ANdR/Wp6guesP/XUf1qegAqCD/XXP/XQf+grU9QQf665/wCug/8AQVoAnooooAgvRdmzlFi0K3W390Z1JTP+0AQcfSuEi1bxbp0lxBqes+FIJjO7Kl3KwYIT8uAGGFx0zz616FXnUUKadq2sLeeB7vVDNfSTJei3hkMityB87AgDoPYDpQB1/ho3DaJHJd6nb6lNJJI7XFscx8uTtXk8L938Kr+KPFdl4WsfOnSSe4ZS0VvECWYAgEk/wqMjJP8AOr2iPG+lRNFpcmmIS2LSSNEZOT2Ukc9eves3x3BJceCdVigieWVogFRFLMfmHQCgCxrWuzaZfWVjaac99dXayOsayrHtVNu4ktx/EB+NaNhPc3FnHLd2htJ2zuhMgcrzxyODkc/jXNeKYNCfW7OTxBpEtxb/AGeRI7oo8sSMWUlGRQcE4BBI7etP8Hyy6dotra3UV4kdzdzixjljdnig3M0ayH+H5Rxu9h1oAfF4x82SG4OmyrpE919kivvNXl9xQMU6hCwwDnuOADXQ3n/HlP8A7h/lXnVusr+FNO8IfZrkapBfxJKDA4VI45xIZd+Nu0qoxzyTjrXot5/x5T/7h/lQBPRUH2Vf+ek3/f1v8aPsq/8APSb/AL+t/jQAN/x/J/1zb+YqeqRtl+2IN8v+rY/6w+o96m+yr/z0m/7+t/jQBPRUH2Vf+ek3/f1v8aPsq/8APSb/AL+t/jQBPRUH2Vf+ek3/AH9b/Gj7Kv8Az0m/7+t/jQBPRUH2Vf8AnpN/39b/ABo+yr/z0m/7+t/jQBPRUH2Vf+ek3/f1v8aPsq/89Jv+/rf40AT1yl1c6vquo6jFpht0hhVrYibOWbHzEEdCMjFdJ9lX/npN/wB/W/xrz7SPFFhYtrRuDMZIrolI4nO+dpD8qqO54Nb0YSldxV2jnq0Z4ipGjC+t27b9F+bRd0bTLi28QRaV5bNb2UxuXk/hy0QC/rmtLw+PP8Y+Krjqvm28A/4DHz+rVRlh8ZaxBKbZbbSLeQ7FS4mkedV6F8qdoPoP/wBda/hzwsugW11E1/c3bzzmUyuxDYwAAcHk8da2m0oS5mrtWsteqb8jqwmCp4GjUhzpuXTsrrTtokV9L/dfETxAn/Pa2tZPyDLXSCCITtOI0ErKFL45IHQZrlo4Fj+J00e+XEukLJnzDnIlI6/jXTfZV/56Tf8Af1v8axr7p+S/I1xKTlF+S/KxyuvXuvN4xhstEuYlMOntdPbzLlJv3m3aT1B9D7VneXLrmiX+rxyrBp8qNcXNrz5izxoQyH23DPvxWraW6zfEnUTvlxBp0MefMOfmdm61jKq2vhjxxCXkBhuroqN5xh0BH8zXVG1lFLVcv4/0jWthKOJjCE4/Dyv1vun3Wp0PhDR9Pj8NabdGxtvtVxaxvLMYl3uSoPJxmul6Vl6NYrFoWnx75Rsto1wJCOij3q79lX/npN/39b/GuKrJym2znqu83bYnoqD7Kv8Az0m/7+t/jR9lX/npN/39b/GszMB/x/P/ANcl/manqkLZftjDfL/qwf8AWH1PvU32Vf8AnpN/39b/ABoAnoqD7Kv/AD0m/wC/rf40fZV/56Tf9/W/xoAnoIBGDyKg+yr/AM9Jv+/rf40fZV/56Tf9/W/xoAnoqD7Kv/PSb/v63+NH2Vf+ek3/AH9b/GgDC1Hwda3up/bba9utNMkfl3C2TCPzhnIycdevPWsq58GanHrGkeTq95eaXBcrNLDeShjGUyUKnHPXH5fh2X2Vf+ek3/f1v8aPsq/89Jv+/rf41vHE1I6XOmGMqxVr3J64PWdJsrD4iaJqVvAI57icrKVPDExuM46ZOK7X7Kv/AD0m/wC/rf41yfiyFY9Y0B90n/ISgTJc5+YSDr+FPDSanZdU/wAh4STVSye6a/BlvXefHXhRfT7W3/kID+tdRXJarbqfiB4eTfL8sF03+sORworpvsq/89Jv+/rf41NX4Yen6smt8FP0/wDbpE9FQfZV/wCek3/f1v8AGj7Kv/PSb/v63+NYnOT0VB9lX/npN/39b/Gj7Kv/AD0m/wC/rf40AT0VB9lX/npN/wB/W/xo+yr/AM9Jv+/rf40AT0VB9lX/AJ6Tf9/W/wAaPsq/89Jv+/rf40AEf/H3P9F/rU9Uo7ZTczDfLwF/5aH396m+yr/z0m/7+t/jQBPRUH2Vf+ek3/f1v8aPsq/89Jv+/rf40AT0VB9lX/npN/39b/Gj7Kv/AD0m/wC/rf40AT0VB9lX/npN/wB/W/xo+yr/AM9Jv+/rf40AT0VB9lX/AJ6Tf9/W/wAaPsq/89Jv+/rf40AT1ST/AJC7/wC4f/Zam+yr/wA9Jv8Av63+NVoYxHqzgFj8h+8xP92gDQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOM1248XWWtRXMN/oNtpKiRQ12WQc7dof5uW4bG3jrntU3h++1PUdcMl5r+h3MUduwFnpchbcSy/O2WJ4xjj+9TfGVq7atol6dCm1q3t/OWS2REYLuC4fDEAkYwP948jHNnw9Payag6weELnR28ok3EttDGGGR8uUYn39OKAOmooooAKgm/19t/vn/wBBNT1BN/r7b/fP/oJoAnooooAgt/8AWXH/AF0/9lFT1Bb/AOsuP+un/soqegAooooAKKKKACiimyOI4nkPRVJP4UA3Y46W+M3xKEOABFbmEY7/ACF/6/pXXW3/AB6w/wC4v8q4OzSS2Okazeybpr26cswHQOm1RW14ru5bPwtDLDIySb4sFTg+v9K6akLyjFeh4uExLp0a1afdyt5NJot+Ffm0mWb/AJ63Uz/+Pkf0riPFF1qOm+ONT1eyYmC0tYI7uIDJeJ8jP4HBrqbe4bSvh080Muy5SwluIycZ3YLZx9SK574bRaheX2unWw1y8kVujNMNwkUhmAOevysPwNdFFcntKz1S0t31R9Hk0HSwft5WaUUrd72ubXw68P2WleHLa/hiYXV9CkkrucnpkAeg5zXXSxJNC8UgyjqVYeoPBpURY0VEUKijCqowAPQU6uKrVlUm5vqZ1q0qtR1Huzza+8MR+CdKsNRtpmlFhqfnvIRtZYJMIyn1/h5+vFbieNB/wnsvh2WCNLcKBFcb/vuUVgvp3P6V0t/ZRajp9xZTruinjaNh7EYryT+wtQ0jw1r1xqKM1/p11bPbXIUjIj2qCpwMjYcV3UXHEJ+1d5bfe1Z/J3+89KhKGKi/bO8tl/281Z/J3v6noGn6ZJaeNtRuQjeTPAGD7eMkjIz6/LmuBlsU1X4uapbTO4SbMe5TyMLHXQ/E2W+msNKj0u4lWSWSSVfJY/OEjLDp16cVy/g2XULrxrZX+pRSJcXTSsWePZvwsfzAe/txWlCElSlWvvFr7v8AhjDAZdClg6sm7qalp6v/AIDNjSpbu18WafYXsrSPaTtGCWJABUAAZ7cfrW58Qmnks44IpSiLb3Fw4zw3lpuGfXmtLX7O3guNOuo4lWWXU4DI4HLcEVkeMp0uTf8AlSK6waPcNuU5GWOzH6GueElOpCVj5TCYX2beFm7qU4/c2tPuWpW+HekalMl7qmvRh2uII7aHzFGWhC5/FSCv5GuK8T/adM07/hFpWHmadeNcWzAH5oCjODk9cHI/TtXtOjLs0LT19LaMf+OisfXPCUWr+JtL1YiIiBXiuUfJ8yMqwAA6dWP4GtaWLSrylPb9Vt/l8z7KhjoxxEpTVl0S2TS0/wAvmct8IbuWO3vdNni2+bi9iYn76n5CfzUV0nhzVI7LS9FsHTJumnQNnG3ax/nkCqZ0m38NeJPCcFozmHy7izd3I3MCN6g4x/FmsWa/isb/AErzGO2zu5mcDkhfM/8ArGlWUa03OO0tfuujwOIcWqeIhioaKSf/AKVFP8Ez1GiobW5jvLSG5iz5cqB1yMHBGamrzdjdNSV0YSf8j1L/ANg5f/RhrdrCT/kepf8AsHL/AOjDW7Vz6ehz4XaX+JhRRRUHSFFFFABRRRQAVBbdZv8Arqf5Cp6gtus3/XU/yFAE9cZ4z0+G98Q+GROX2PPNAwU4yGTP/sors65Xx2s1tpVprMCB5NKukuTGTjen3WH5Gt8M2qqt1uvvVjfDRUqnI/tJr701+pa0z/R/F+rWwTCPDDIv0C7f8/Sty4nW2tpbh87IkLtjrgDNYH222TxfHctPGsFxpqlHZgA37zjB980vivW4dOs2spEJa7t5lVweFO3j8ycUnByklY8aNaOHo1HJ25ZP8Xp+LOGW/vpI77VjczlHkNvhzkFXVzjn0wOPeryprev67YaVbNENK0oWM1wHwCGCb8jucjjH06da19e0prLwBb26IxaFkkkwOQTnOfpmpfCC7fEniIei2S/lAK7FUXLKcVtt96X6iyGlPC1qrnrJQT17ylr9xy/jnRUs/EzXkb5F2wnKY+6wXYfrnrUunafrXi7TrWzuo0tvDdsWBMb4knZQRz7bs9h/Wum8R2q3Xi/Qo3ztJZj77Tu/pXR29jbabpn2SzhWGCNW2ovQZyT+pNQ8U404/wA3Ty6febYCc446tiHq1aK8tE7+pznhgLaeLfENkF2Bltp4hjqvl7Tj6EYrmtY0Nj4h1WOGNxa2sbTsQeFym4dfVq6W62WHxB0W5J2i/sZLUnPBZMOv48mt3WLeL+x9UdY0Ektq4dwOWwpxk98VLqOMlJfaS/DT9DTPMHHF04Tl0Sf3Jq3za1MbVb6W1tPDjRysgkniD4ONylQCD+ddVXji+KLvxAsViLRIjpmWjfcfnCKc59/kP5169bTC4tIZwMCRFf8AMZrPEUpU0lLcwwznHEVKU+ii/vin/kS0VFc3MNnbPcXEgjiQZZj0FPjkSaJJY2DI6hlI7g9K5rdTv5lflvqOooooGQXPWH/rqP61PUFz1h/66j+tT0AFQQf665/66D/0FanqCD/XXP8A10H/AKCtAE9FFFABXnWsz+Bhq94t/wCI763vPMYSxx6hOgRu4Cg4H0Fei1xcEWseJr7U5o/EU+mRWl5JaxW1rFGSuzjdIXBJLdccDBFAF/wIzN4Vh+a5kiE0wgmuWYyTReY2x23c8rg/yAHFdLWJ4T1O51TQxLdyRzTxTzW7TxDCTeXIyb1HYHGfrmtugAooooAKgvP+PKf/AHD/ACqeoLz/AI8p/wDcP8qAJ6KKKAIG/wCP5P8Arm38xU9QN/x/J/1zb+YqegAooooAKKKKACiiigAooooAjuJlt7aWZyAsaFyT6AZriPCHhnTnaw1ueDffeU5DE8A7zhseuO9a3ju9az8K3Hln55SEH05J/QGpvCaFPD2jA9Tp8bH6kA/1rojzQouSdruxnTc/bSqRdrLl9ebVr/yVfeb9FFFc5ocZr2p2mhePLHUb+YQ276bNEXI6kOrYHqfat628SaPdQWEsd/CBf/8AHurNhnPcY9QePrxWhPa290qrcQRTBGDqJEDYYdCM96xJfA/huZ7l20mHfcHMjAsDnOcrz8vPpiunnpSilO6a7HX7ShOMVUumtNLFfQv3njnxVL2U2sQP0jJP865LxVqNvptx400+SZUmvVtnt4z1kJUBsflXomkaHp+hW7w6fB5ayNvdixZnb1JPJqxcadY3TFrizt5mOATJErE4OR1HarhiIRqc1rqyX3W/yNIYqEK3NZtWiu21vXsTRIIoUjHRVC/lT6KK4zgCiiigCAf8fz/9cl/manqAf8fz/wDXJf5mp6ACiiigAooooAKKKKACiiigArkPGnyy6VL/AM89Us2/8fcf1rr65Dx4QmlGYnAhubR8+n70/wCNbYf+LE6MJ/HivMnvfm+JOkr/AHLCdvzZRXUVyGkTt4h8Yya5axkaXa2zWcUzf8t3Lgsyj+6MYz3rr6ddW5YvdIeJXLyxe6X+bCiiisDmCiiigAooooAKKKKAII/+Puf6L/Wp6gj/AOPuf6L/AFqegAooooAKKKKACiiigAooooAKpJ/yF3/3D/7LV2qSf8hd/wDcP/stAF2iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5nxhJ4ejitP7f1OexUlvJMNzJDvPGc7Dz261heFJdJbxn/xT2pX+o2ZsZPtLT3EsscD702YLnGWG7jk/LxjnO/4kur+TVdJ0Wxvxp327znkugis4EYX5EDcbjuzkg4CmoNLfUtI8Vx6LdavJqsFzaSXKGdEEsBRkXkqACrb+MjqpoA6uiiigAqCb/X23++f/QTU9QTf6+2/3z/6CaAJ6KKKAILf/WXH/XT/ANlFT1Bb/wCsuP8Arp/7KKnoAKKKKACiiigArM1XULVNOuoxcR+a1rJIihvvAA8isbxpqkuly6ZLE7Ah5GKg9flA5/76rhLqZ5dOsVU/8e8LhvoZG/xrqpYfmSk2eFmGbqhKdGMbtL/L9G/uO41S3A+HtnKEzJbRQTL7H5c/oTVfVb238Q+HdIt45kjlubqONkDBmTAIJxx0yPzFdObFZ/D32FyVVrUREjt8uK4Lw/o8yeMEhjDSW9m+92OBtyuQfzxTpuLTbequzPGQq05QhFXjUUYv1XXvtct+L/D48ReLtN0sXklqF0+VvMQZ43AYIyMg13lpbi0soLZTuEMaxgnvgYrirPU31D4wXds0aqlhYNGpB5bJjYk/i1d3SxDmowg9kr/efXYpzjCnSeyV/vCiiiuU4gqG8tYr2yntZ1DRTRtG6nuCMGpqKadtUNNp3R5VpNxqFt4l8M+HNXjIvdOllKyA5WSExHYQe+MEfh9a6TxDIkPxB8NNI6oGjnUFjjJ+XArS1Lw+154u0XW4zGv2JZUmznc6spCgfQk/nWD8SfD15qsdnqVrMkf9nRyyHPLFvlZQB/wE16CqU6tWN3a6afq7nqqrSrVoXfLeLT8m+b/M1PHlwkGiRYnWO489XiG7DEr3H0zXncmqWWlQeIdLupz9sktngj+U4J6kZ7Zo1641HxX4usksZ97Npy3EURJKB/KLMAM4BJ4+uM9K6Gw8DXus+EtRGtW0EOuXV000U7quU4TuucA7TwPXpXRTp06EI+1e9vXf8jgjktGljoY3Ey2UbJPrd3urbJWPQ9OXbplovpCg/wDHRVmmQx+VBHHnOxQufoKfXjt3dzGTu2zlvHa+Xpmn3qkrNa6hA6OD0y20/mDXI31m9xqGvhI2kaGU7AoyeZf/AK9dv42s5b3wjfiDHmwqLhM9zGwfH4hSKZ4bsd9zca4joYNTijmRR1XcMkH8TXZTqctFPs3+n/BOPNcHLF0KMVspST8k46fiXfDD+Z4a08+kIH5cf0rWrm/BLzDRprabIa1uXiCkYKjg4/Mmukrlqq02PAz58NB+SMKP/keZv+wev/ow1u1hR/8AI8zf9g9f/QzW7RU6eg8LtL/E/wAwoooqDpCiiigAooooAKgtus3/AF1P8hU9QW3Wb/rqf5CgCeoby2S9sp7WT7k0bRt9CMH+dTUUJ21Q02ndHkE0k0/hzSW2FptNMtlclASEMbALn04xXQ2iW/jDxVNdNBK1hFCqgscENkEdPXmmX6paan41tmISOW3gvF9PukMfzFaHgC+jbwbJd+WmI5ZSSgwXC9CffGK9Kq3yOcV/Utf+AedjMrnVzCdRfw5csnp1tov8zrLi3iu7eS3nQPFINrKe4rm/DahfFvioKMKJrdQPQCIVt6Nqaazo9pqMcbRrcRhwjHJX2rmvAM11qUmt6zPAIo727/dY6FUG3P6Y+oNc0IuMKl+mnzuv8j2qdPkhVbWtkvx2/Bm7faZLc+INMvlKiK1Em8E8ncMDFac3+ok/3T/Kn0yb/USf7p/lXO5N28jhhSjBykvtO7+5L9DlfGxFtoOnaoeP7Ovbe4J9F3bT+jUtl4rt9a1XW9Cby45oQVtyG4mUr298n8j9a6C6s01HRprKXGy4gMTcZxlcV57pvw61C20aWeSSFPEFrdedZ3KNlWVVUANkdDtPUcfia7aLoypWqOzW3z/rX1PUorD1cO6dZ2ey+f8Alrf1OXsL5dEked7YywzCSGVlHMYkDAN+Z/nXpF3rk+leBtNurYIZZEjhBYZ2/Iefr8tJo3hiTRvDN99skWXULi2dZihyg4bG3gHuM+9czoKSasugwhTIiGSRlPIC5BrWpKFV83Z/efIVadfC0Ip/xJcyck+rlGz+6/yRp+IvEE154e060WSNp7yMNcKByORj6ZI/Sut8NXH2nw3YP0KxCM/Vfl/pXJeGPBjziO/1HfEoYNHDjDHB6tnoOOlS2VxJoX/CR6aJNssaNcROp6ZAxj35WsakYNckOhhhK2Ip1FisSrKSsvkrr77P7zvaKyvDupjVtFguMNvA8ty3UsAMn8a03ljjZFd1VnOFBOCx64HrXG4tOzPoqdWNSCqR2ZFc9Yf+uo/rU9QXPWH/AK6j+tT0jQKgg/11z/10H/oK1PUEH+uuf+ug/wDQVoAnooooAK4L/hHrHxjfa7fXOnWUckUz2dtIGkDs8eVLTBWUMM4wPQdea72uf1HwXo2pX8t663UE82PPNrdyQibAx8wVgDx360AP8I3QufD0cf2W3tWtZZLR4rYfug0blCU/2TjP41u1WsLC10uxhsrKBILaFdqRp0A/z3qzQAUUUUAFQXn/AB5T/wC4f5VPUF5/x5T/AO4f5UAT0UUUAQN/x/J/1zb+YqeoG/4/k/65t/MVPQAUUUUAFFFFABRRRQAUUUUAcJ4rabU7LXJ2lVbPTYZI0QLy8jREEk+xaum0WPydP06L+5Yxr+QFcnqj4+FWrXP8Vy7uT6lpQtdvFGIp44x0SHb+RFdVXSkl5v8ABL/MjCL/AGKNTrOTf4K33JpFqiiiuUsKKKKACiiigAooooAKKKKAIB/x/P8A9cl/manqAf8AH8//AFyX+ZqegAooooAKKKKACiiigAooooAK57xTokniHSb/AEuKVIpJo4SruCQMSFu3sK6GoE/4/pf+uafzaqhNwkpLdF05unNTjutRLCyh07T7eyt12wwRrGg9gMVYoopNtu7Jbbd2FFFFIQUUUUAFFFFABRRRQBBH/wAfc/0X+tT1BH/x9z/Rf61PQAUUUUAFFFFABRRRQAUUUUAFUk/5C7/7h/8AZau1ST/kLv8A7h/9loAu0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHLeLIotU1HR9BmsbS4ju5Hnke53fu0i27vL2kEOd/BzwM9ar6Jp1r4Y8YS6Xa2Nqlvf27XEMyF2nXyyissjOSSMvkHjuMd66DWNC0/XbeOG/hZ/KffFIjtG8bdMqykEGoNG8M6Zoc0s9qkz3MqhXuLmd5pCo6LuYkgewoAtavc3trpskmnWgurssqRxs21clgNzH+6AcnHOBXNXXi3UdDl1O21aG0up7azS6hazDIrl38tY2DE7SWxg5ORnjit7xHdarZ6JPJotj9s1A4WKPcoAyeWOSAcDnGeelcjHo1/f+G9V08aNf2+o3CpcPfahLCxupkdWVSUY7R8uAMAAUAdFp+q6rDr8eka0lmZbi2a4gltAyr8jKHQhieRuUg9+eBW1N/r7b/fP/oJrnrJL/WPFdrq1zplxp9vY2ckKpcMm+SWRkLYCsflATr3J9q6C5RZJbdXUMpc8H/dNAFiioPsdt/zwj/75o+x23/PCP8A75oALf8A1lx/10/9lFT1TgtbcvPmFDiTA49hUv2O2/54R/8AfNAE9FQfY7b/AJ4R/wDfNH2O2/54R/8AfNAE9FQfY7b/AJ4R/wDfNH2O2/54R/8AfNAHK+LtMm1jV7OygKiXyHcFzgD5lz+maxrDw+dQ1fWdPEgTymAViOMb8/yzXUvbQN41jj8pNqWBfGO5cD+layaXYpcSTraxiWQAO2OuOldKrOEVFdv1PDlltPE15VZfzWfmuW35ll+I2+hqlp2n29q0l1EpEt0qGQk+i4GKne0twjfuI+h/hqOG1t/skbGFCdgJOPaudNntOEZNNrbY57wjJBd694mvIWjkDXqosq4OQEGQD6Zrra4/4dabZp4JsZhbR+ZPvkkbHLHcRk/gAK6n7Hbf88I/++a2xNvatLpp92h14y3t5JdNPu0/QnoqD7Hbf88I/wDvmj7Hbf8APCP/AL5rA5ieioPsdt/zwj/75o+x23/PCP8A75oAnqC6AZIwQCDIoIP1o+x23/PCP/vmori1t1EeIUGZFHT3oA4r4eaFe6NrfiCO8tHhjDotszL8rJukPynpjkfnXoNQfY7b/nhH/wB80fY7b/nhH/3zWtaq603ORtiK8q9R1Jbu35WJ6Kg+x23/ADwj/wC+aPsdt/zwj/75rIxJmVXUqwBUjBB7iuL8Gi60HV77wreTmZIUFzZOe8JOCPwP9a677Hbf88I/++a5fxlpj2yWOu6dYLcXOmy73hQYaWIghl4+ue/euig73pv7X59P8vmdWGlzXovaX5rb/L5mnov7vWdcg9LhJP8AvpAf6VuVwXhbW7PW/EVxJDaBIruFWKOOYnQYK/qf0qbW9XstM8W237tZYI4SkyIR8hY9SPUcUToz5+VrWx4axMMLTaqacs3F+XvP8katndRXPjq9ETE+TZiJ+MYYPk/zroq8/wDCE1vqXirU5xEoSSMusbYyo3Cu5+x23/PCP/vmprR5ZW8kVltX2tF1O7l+ZPRUH2O2/wCeEf8A3zR9jtv+eEf/AHzWJ6BPRUH2O2/54R/980fY7b/nhH/3zQBPRUH2O2/54R/980fY7b/nhH/3zQBPUFt1m/66n+Qo+x23/PCP/vmoYLW3JmzChxIQOPpQBdoqD7Hbf88I/wDvmj7Hbf8APCP/AL5oA8r+LD32l6tFdW04SDUbM2sqgZJCNkg+x3j8q1vh6fJ8A6pZyEC4tpJ1kjzyvy8f1rZ8beDYvEujiO1CRXsLboGJ2qckZDcHjH64rK1ewi0bxLD5cUQj1DSZ4ZAowDJEu7f9cHFerGrGph40l8X+X/A/I9qFeFbCRoL4ld/dt+H5GQ/ia60z4SaSdJk/0qRzbs68tFt3McD1wB+Brsfh5HJH4F00SqVdhIxDDB5kY/1rzXwZ5DXmjacdrS/2iLgx9TsNuDn6Zr2r7Hbf88I/++anH2pr2aW75r/eTmXLSXskt25X+8npk3+ok/3T/Ko/sdt/zwj/AO+abLaW4hciFMhT/DXmHjk0P+oj/wB0fyp9VYrS3MKEwpkqP4af9jtv+eEf/fNAEsiCSNkPRgQa8j0zw94jg1X+ytO1GO0urIDfMTlTHweBg5z8pwa9X+x23/PCP/vmoE0ewjvZLtbdfOkUKx7YHtW9Gu6Sa7mNWEpTpyjb3ZX19H/wDh/DnxIkuzp1lfWckkryC2ub3IRFlYtsGAOchfbvWh4usll8Q6WiAx/bj5E7JwWXcv8ASuC0u3ih8N69cyIuLfVrc7iPugSYP6GvZZdJ0+4ngne2jZ4STGewyP1rrxUYUanNBW3/ACT/AFO3P8BTqx5Katr+Vm/wdjnvC95Hp0/9iKjPm6uFEhbkBMYyMc5rKuNfkvNZsEllDPDqrqFAxtjyoX+bVl3F7/ZHjC5uDAJYYrmT92eBhs1RtoJJftWrBVEdpLHI8Z6nc3AFCpK/M+v5s+DqY6agqEPst6f3Y2f6M9fuesP/AF1H9anrB0+/07VreB4EiEvyNLGozs3A8Zxz0Na/2O2/54R/9815zTTsz7KnUjUipwd0yeoIP9dc/wDXQf8AoK0fY7b/AJ4R/wDfNNtUWN7hUUKok4A/3VpFlmiiigAooooAKKKKACiiigAqC8/48p/9w/yqeoLz/jyn/wBw/wAqAJ6KKKAIG/4/k/65t/MVPUDf8fyf9c2/mKnoAKKKKACiiigAooooAKx/EevReH9PjnkglmeeUQRJFjJcgkdT04NbFcN8SZgkOjoTjNy7j6iJsfqa2w8FOoosqPLq5bJN/cmytZ+H9f1fw9Z6fLe2KaNMUlcCNvPVQ28KOxyQOa7v/l+H/XM/zqPS4Tb6RZQkYMcCKR7hRUn/AC/D/rmf50qtVzduiM6U5ewp03oopfkv8ieiiisigooooAKKKKACiiigAooooAgH/H8//XJf5mp6gH/H8/8A1yX+ZqegAooooAKKKKACiiigAooooAKgT/j+l/65p/NqnqBP+P6X/rmn82oAnooooAKKKKACiiigAooooAKKKKAII/8Aj7n+i/1qeoI/+Puf6L/Wp6ACiiigAooooAKKKKACiiigAqkn/IXf/cP/ALLV2qSf8hd/9w/+y0AXaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACoJv9fbf75/9BNT1BN/r7b/AHz/AOgmgCeiiigCC3/1lx/10/8AZRU9QW/+suP+un/soqegAooooAKKKhurhbSznuXBKxRtIQO4AzQJtJXZjwSJN43uijq3lWKxtg5wd5ODW9XLeDbK5C3mrXPl51BhIqqTkDLE/wA61PEWv2fhzSZL27kC9ViTBPmSYJC8DvjrW04OU+SOr2ObLVOtTUrazbaXq9PwNJmVkcAg4BBwehxWRrmqHRfCVzqAjEjQ24IQnGScAfzrkdHhu/DWraVd31zK/wDb8bi8D52pcn5k47HB2/ga1vGt3b3Hw81SOCeOR4liilVWBKMXTg+h5rVUFGtGO6bX52Z7CwyjXhG/NFta/Oz/ABNbwfYz6b4R020uY/Lnjh+dCehJJx+tblIBgAUtc05OcnJ9TkqTc5ub6u4UUUVJAUUUUAFQXP3Y/wDrov8AOp6gufux/wDXRf50AT0UUUAFFFFABRRRQB468h0fXtbljyRLd3UIAOCu4A5z/wAD/SoZL5IrC4kuFkZ9QKwwuMEbk2s+7nPTH51q6tZRSyeKJ23eZbagjJg8YdEBz+QrTv8ASbBNX8KWEG2W2khvGLqwPmExD5sjr1r1+eN1ft+SueTiMrlic0rRfw8jkv8AFKD/AFTZU8A26weKXkVywn0pZeRjH70jH6V6XXmfw7cyavaMTknRFz/3/evTK48arVbHu18NHDctCO0Ul9wUUUVyGAUUUUAFFFFABUFt1m/66n+QqeoLbrN/11P8hQBPRRRQAVw/j2RINT0SZ2VVEd6mWOOWgIA/PFdxXGfE/S4L/wAGXNy6kzWZWWIg9MsA2fbBP5V0YRr20U+un36HXgWliIqXXT71b9S34R0XTv7F0XVfscQvxYRp54GGIKDr68cZrqKyPCqFPCOjKwIIsocg/wC4K16itJyqO7MsRJyqyu+r/MKZN/qJP90/yp9Mm/1En+6f5VkYhD/qI/8AdH8qfTIf9RH/ALo/lT6ACiiigDnp/DOnWXhrV7G3gJS7WWWTdyWdgSOfbjH0rL/ty6sfhJBqttKGuo7KMLI3zfNkISfU9eveu1ryvWD/AGb4Z8XeH2ChYLiK5t8HrFNKpwB/snj8a7cP+9dpa6p/LZ/oejhW675Z6+9F/K9n+hT8KF/Gra956gXZWGWIk4UOAwbp2J5r06DRbOPSTYPAhR4ljlIHL4GMk+voa81+Ea+V4g1uI8YQDH0civXKrMHy1nGOi0/JHNmeBw9PGzlCCV0l8rHC+G9Mn0TX57KcqS6JKu05+XcwFd1XO3vyeOLJv+elqU/J810VctWTk1J9TycBSjRpulHaLf8An+oVBB/rrn/roP8A0FanqCD/AF1z/wBdB/6CtZHcT0UUUAFFFFABXO+LvFA8M6a08dlPd3BUsqIh2KoIBZ36KOR7ntXRVgeNbS4v/Bup2tpC808kQCRoMljuHSgCxql9qyX8NlpWnxSs8bSyXNy7JCgBAC5VSSxz07AZp3h7WDrmki7eDyJVlkgljD7wrxuUba3GRkcGsfxhqWrR3NtptjY6l9kmQvdXljCHkRc42JkgBjz83YdOTxo6Lc29rpmnWtnot/Z2zM0KRSQhTCACdz/McA468kk0AZ+neKNR1XVpILW20oWqXckH7y/YTskblGcRiM56HHPbrXS3n/HlP/uH+VefXGmC8t7fT7Twq+naxHqKTG7jh/dRBZdzSib+LcgIx1+bGOK9BvP+PKf/AHD/ACoAnoqD7JD/AHW/77P+NH2SH+63/fZ/xoAG/wCP5P8Arm38xU9UjaxfbEXa2PLY/ePqPepvskP91v8Avs/40AT0VB9kh/ut/wB9n/Gj7JD/AHW/77P+NAE9FQfZIf7rf99n/Gj7JD/db/vs/wCNAE9FQfZIf7rf99n/ABo+yQ/3W/77P+NAE9cJ4xiGr+LdD0pRloy0rD1B6/kqk/jXaG0gAyQQP98/415zpFzb618UDNDIHhjglKoGOVA2qCfTOc/jXThk7ymuif5GU4SqyVGLtdSvb+VRd/vdl8z02oP+X4f9cz/Oj7JD/db/AL7P+NQ/ZYvtgXa2PLz94+v1rmNS7RUH2SH+63/fZ/xo+yQ/3W/77P8AjQBPRUH2SH+63/fZ/wAaPskP91v++z/jQBPRUH2SH+63/fZ/xo+yQ/3W/wC+z/jQBPRUH2SH+63/AH2f8aPskP8Adb/vs/40AT0VB9kh/ut/32f8aPskP91v++z/AI0AA/4/n/65L/M1PVIWsX2xl2tjywfvH1PvU32SH+63/fZ/xoAnoqD7JD/db/vs/wCNH2SH+63/AH2f8aAJ6Kg+yQ/3W/77P+NH2SH+63/fZ/xoAnoqD7JD/db/AL7P+NH2SH+63/fZ/wAaAJ6Kg+yQ/wB1v++z/jR9kh/ut/32f8aAJ6gT/j+l/wCuafzaj7JD/db/AL7P+NQraxfbJV2tgRofvH1b3oAu0VB9kh/ut/32f8aPskP91v8Avs/40AT0VB9kh/ut/wB9n/Gj7JD/AHW/77P+NAE9FQfZIf7rf99n/Gj7JD/db/vs/wCNAE9FQfZIf7rf99n/ABo+yQ/3W/77P+NAE9FQfZIf7rf99n/Gj7JD/db/AL7P+NABH/x9z/Rf61PVKO1iNzMNrYAX+I+/vU32SH+63/fZ/wAaAJ6Kg+yQ/wB1v++z/jR9kh/ut/32f8aAJ6Kg+yQ/3W/77P8AjR9kh/ut/wB9n/GgCeioPskP91v++z/jR9kh/ut/32f8aAJ6Kg+yQ/3W/wC+z/jR9kh/ut/32f8AGgCeqSf8hd/9w/8AstTfZIf7rf8AfZ/xqtDGserOFBA2HqSf7tAGhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBN/r7b/fP/oJqeoJv9fbf75/9BNAE9FFFAEFv/rLj/rp/7KKnqC3/ANZcf9dP/ZRU9ABRRRQAVkeKJmg8M37L1aPy/wDvohf61r1heKsyadbWucC6vIYj9N2f6VdP40c2MbWHnbezNe1t0tLSG3QYWJAg/AYrm/F6LLqXhmJ1DKdTVsEZHCMad4y8TXugxWdvpente396ziJApbAUAk4HJ6j9aw7ebxVrHibSLbV9GSFbCUXEl1ET5ZBQgDnvn0P4V00KMl+9bVtev9dT18JhpQiquijZ21V9E1t66G/47tpZfDEl1bruuNPljvYx7xnJ/wDHd1eYQ6Pq/ifWLibTCx029vgJyGwq7FDAtj2c49xXuMyq8EiMAVZSCD3GK5T4e6NPoekX9tNC0atfyPDu/ij2qFb8cVeGxPsqUrbrb5/5Wua4TGexoSt8S2+f+TVzrqKKK4DzAooooAKKKKACoLn7sf8A10X+dT1Bc/dj/wCui/zoAnooooAKKKKACiiigDzvUEU/8LBVv+WaxTL7MIdw/UCqXhDwbq2ka9pF2032nSxbPMGyFETyJgrtznsvPtUXjiXU9E1zWBDbNcWGt2gVykZJjdU2Dke+PwNem6dE0OmWsTjDJCikehAFenUqypUVy7SX/tqR61WboUueFv3iSfoo2/Bt/eeZfCec3eoTllwbOxS2P4yu1erV5z8MbVotR8QzkYV7towfXax/+Kr0asMfJPESt/WhhmclLFSt5fkFFFFcZwBRRRQAUUUUAFQW3Wb/AK6n+QqeoLbrN/11P8hQBPRRRQAVFc20F5bSW1zEksMi7XRxkMPepaKE7aoabTuhFVUQIqhVUYAA4ApaKKBBTJv9RJ/un+VPpk3+ok/3T/KgAh/1Ef8Auj+VPpkP+oj/AN0fyp9ABRRRQAV578TNEvbsWV9p1vJK7EW1ysSFiYy6uucdgy/rXoVFa0KrozU10N8PXdCoqkehwOrWg8C67N4jsNPM2m3MRS8iib5kkLbhJz2PTsBWaniPxNqviLw/eXVi2naRNdBYlV+Zt6nG7nngHsBzXp7KHUqwBUjBBHBFcr8QIWj8LjUIGKT6ZPFdQ7RxlW24I9MMa6qNdTkoyjeT0v8Agv8Ahzsw+JjUlGE4pyel3frov+H7F/V7OSTXdGvI1YiKV0kx2DL1P5VuVy2jeNdI8S3KW1k06XKHzDFNHtOzpnIyO47966muSpGcGozVmjy3hpUKkuZNNu/4JfoFQQf665/66D/0FanqCD/XXP8A10H/AKCtZjJ6KKKACiiigAooooAKKKKACoLz/jyn/wBw/wAqnqC8/wCPKf8A3D/KgCeiiigCBv8Aj+T/AK5t/MVPUDf8fyf9c2/mKnoAKKKKACiiigAooooAwPEniPTtJsri3kvIhfPFiKDd85LcA49P8Ks+HdKttM0a1SKFElaMNK4X5mY8nJ+tcbeWzat8StV00bFSSKBXlKBmRVTcQvpnIFejgBQABgDgV01YqnBRXWzf3GckliHy7KKT9WlJ/cmhag/5fh/1zP8AOp6g/wCX4f8AXM/zrmNCeiiigAooooAKKKKACiiigAooooAgH/H8/wD1yX+ZqeoB/wAfz/8AXJf5mp6ACiiigAooooAKKKKACiiigAqBP+P6X/rmn82qeoE/4/pf+uafzagCeiiigAooooAKKKKACiiigAooooAgj/4+5/ov9anqCP8A4+5/ov8AWp6ACiiigAooooAKKKKACiiigAqkn/IXf/cP/stXapJ/yF3/ANw/+y0AXaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACoJv8AX23++f8A0E1PUE3+vtv98/8AoJoAnooooAgt/wDWXH/XT/2UVPUFv/rLj/rp/wCyip6ACiiigArD1v59X0OL1uWf/vlCa3Kw9R+fxXoi/wBxJ3P/AHyBV09/v/I5cZ/DS7uP/pSKes/N4/8ADA/ux3bf+OKK6iuSgifUfiZdyyzMI9JtY1hjAGCZQSxP5CutrStooR7L87v9T08RooR7R/Nt/kxr/wCrb6GmW3/HrD/uL/Knv/q2+hplt/x6w/7i/wAqwOYlooooAKKKKACiiigAqC5+7H/10X+dT1Bc/dj/AOui/wA6AJ6KKKACiiigAooooAKKKKAMDw5or6G93C8qyGeeW4yoxgM3A+uAK36g/wCX4f8AXL+tT1U5OcuZ7lTm5ycpbsKKKKkkKKKKACiiigAqC26zf9dT/IVPUFt1m/66n+QoAnooooAKKKKACiiigApk3+ok/wB0/wAqfTJv9RJ/un+VABD/AKiP/dH8qfTIf9RH/uj+VPoAKKKKACiiigAqK6tory0mtp13RTIY3X1UjBqWihO2o07O6OCi0iy0X4jabBZReWjaZsJJJLbWUAn3wBXe1yesWd83xC0S8giJtVgkjmlK5Uc5Az6k4/WusrevLm5W3d2/VnRiZOfJJu7t+rCoIP8AXXP/AF0H/oK1PUEH+uuf+ug/9BWsDmJ6KKKACiiigAooooAKKKKACoLz/jyn/wBw/wAqnqC8/wCPKf8A3D/KgCeiiigCBv8Aj+T/AK5t/MVPUDf8fyf9c2/mKnoAKKKKACiiuMuL6ebxDDq6Of7Pt7kWSjs24EM/03Y/KrhDmObE4lUErq93+HV/I7OiqGqavaaPAst2zDcSFVF3Fscn8hVh7y3jsjeNKotwnmb88bcZzU8rtc19rDmcbq638jmdBtPM8ceIb8joyRA/8BUf+yfrXW1yngW9OpWurXrDBk1Bxj0+VTj8MkfhXV1rXvz2fS35E0FLk5p7y1+T2+5WQVB/y/D/AK5n+dT1B/y/D/rmf51ibE9FFFABRRRQAUUUUAFFFFABRRRQBAP+P5/+uS/zNT1AP+P5/wDrkv8AM1PQAUUUUAFFFFABRRRQAUUUUAFQJ/x/S/8AXNP5tU9QJ/x/S/8AXNP5tQBPRRRQAUUUUAFFFFABRRRQAUUUUAQR/wDH3P8ARf61PUEf/H3P9F/rU9ABRRRQAUUUUAFFFFABRRRQAVST/kLv/uH/ANlq7VJP+Qu/+4f/AGWgC7RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRUN3dQ2NpLdTswiiUsxVSxx7Acn6CudsvGK3XhrWdamsJbZNNeZfImO12EahvmH8JOenOKAOoqCb/X23++f/QTWVoWrarqcjG80+xt4Qmd1vqHnsr8fKy+WuOM9+1as3+vtv8AfP8A6CaAJ6KKKAILf/WXH/XT/wBlFT1Bb/6y4/66f+yiuf1u6aLxloSBiB84Iz13cf0qoR5nYwxFdUYKTXVL73Y6eiiipNwrDl/eeNrZf+eVi7/m4FblYGkxrJ4m1u6bJdWjhUn+FQoJA/Grh1fkcuJ1dOHeS/BN/oUPDd1De+OPFc0EgdENtCWA/iVWDD8CCK66uR+HtpBHpN7eJGBNdXsxlfPLbXYD8ua66tMTb2rS6WX3Kx6eMsqziull9yS/Qa/+rb6GmW3/AB6w/wC4v8qe/wDq2+hplt/x6w/7i/yrA5iWiiigAooooAKKKKACoLn7sf8A10X+dT1Bc/dj/wCui/zoAnooooAKKKKACiiigAooooAg/wCX4f8AXL+tT1B/y/D/AK5f1qegAooooAKKKKACiiigAqC26zf9dT/IVPUFt1m/66n+QoAnooooAKKKKACiiigApk3+ok/3T/Kn0yb/AFEn+6f5UAEP+oj/AN0fyp9Mh/1Ef+6P5U+gAooooAKKKKACiiigCC56w/8AXUf1qeoLnrD/ANdR/Wp6ACoIP9dc/wDXQf8AoK1PUEH+uuf+ug/9BWgCeiiigAooooAKKKKACiiigAqC8/48p/8AcP8AKp6gvP8Ajyn/ANw/yoAnooooAgb/AI/k/wCubfzFT1A3/H8n/XNv5ip6ACiisjWNYeydbOzt5Lm/ljLRogyEGcbm9Bk/pTjFydkZ1asaUeaWxJ4hvJLDQbueI4l27Ex13MQo/nVHVtLW08FTWcP/AC7whwf9pSGJ/Eg1Un0jXGmtbee6F7aPcRzTu2A0ZXlgB/dPGK6p0WWNo3UMjAqwPQg1rdQtZ31ucShLEupzxcfd5Vfzvf8AT7jnbeWPXPEccwAe2tLQZ7jzJRyP++ayrNTc3Vp4ckUvHZXcjyhhkGJeUz7EtjHtXX2OnWmmQtDZwLDGzbiBnk/jVjakZeQKoJ5YgcnHrR7VLRfIX1GU0nN+8373mtNPwSOY8BgNo97OBxPqNzIP++yP6V1Ncx8PAf8AhB7Bz96UyyH8ZGNdPRif40vVntYv+PNebCoP+X4f9cz/ADqeoP8Al+H/AFzP86xOcnooooAKKKKACiiigAooooAKKKKAIB/x/P8A9cl/manqAf8AH8//AFyX+ZqegAooooAKKKKACiiigAooooAKgT/j+l/65p/NqnqBP+P6X/rmn82oAnooooAKKKKACiiigAooooAKKKKAII/+Puf6L/Wp6gj/AOPuf6L/AFqegAooooAKKKKACiiigAooooAKpJ/yF3/3D/7LV2qSf8hd/wDcP/stAF2iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuLi0+5XQPFMU2kNe+fqM0iWjsY/tEZ2dD7gHHqRiu0ooA4nRrK3m8YW9/o2jT6VYw2TxXZktDbCZiy+WoQgbiuGO7GOcZrrblBJLbq2cFz0JH8J9Ks1BN/r7b/fP/AKCaAD7JF/00/wC/jf40fZIv+mn/AH8b/Gp6KAKUFrEXnzv4kx/rG9B71yOtxBvGVo6s3l28tvGw3E43sx611VtqEDavdacCftCgTEY42kAVy12WlsNf1EIQYtQQofXyyB/LNb0U09f6ueTmc4zppRezbf8A26m/zsdn9ki/6af9/G/xo+yRf9NP+/jf41x3iXxVfWOttZ2J4WEKAFDZdsEH8B0FdPoN3JfaFZ3Mzb5HjG9sYyRwf5VEqUoxUn1Omjj6VavKhC9479i19ki/6af9/G/xrnNHkgg0rV9ZuhIsHnzTfLIc+Wgx68n5TXS3FxFaW8k87hIoxuZj2FedalbpfeDfDelyyMqX+oqswRsMyEuT/T9K0oQU9Hs3/wAE6IQVXG06belpN/gvybNz4f26y+D7aZ0lQzSzSAMzKcGRscZ9K6f7JF/00/7+N/jUkUaQxJFGu1EUKo9AOlPrKrPnm5d2dNap7SpKfd3K72kQRvv9D/y0b/GmW9rEbaInfkoP+Wjen1qy/wDq2+hplt/x6w/7i/yqDMb9ki/6af8Afxv8aPskX/TT/v43+NT0UAQfZIv+mn/fxv8AGj7JF/00/wC/jf41PRQBB9ki/wCmn/fxv8aPskX/AE0/7+N/jU9FAEH2SL/pp/38b/Gobi1iAjxv5kUf6xvX61dqC5+7H/10X+dAB9ki/wCmn/fxv8aPskX/AE0/7+N/jU9FAEH2SL/pp/38b/Gj7JF/00/7+N/jU9FAEH2SL/pp/wB/G/xo+yRf9NP+/jf41PRQBB9ki/6af9/G/wAaPskX/TT/AL+N/jU9FAFL7LF9sC/Pjy8/6xvX61N9ki/6af8Afxv8aP8Al+H/AFy/rU9AEH2SL/pp/wB/G/xo+yRf9NP+/jf41PRQBB9ki/6af9/G/wAaPskX/TT/AL+N/jU9FAEH2SL/AKaf9/G/xo+yRf8ATT/v43+NT0UAQfZIv+mn/fxv8ahgtYiZc7+JCP8AWN7e9Xagtus3/XU/yFAB9ki/6af9/G/xo+yRf9NP+/jf41PRQBB9ki/6af8Afxv8aPskX/TT/v43+NT0UAQfZIv+mn/fxv8AGj7JF/00/wC/jf41PRQBB9ki/wCmn/fxv8aZLaxCFz8/3T/y0b/GrVMm/wBRJ/un+VAEEVrEYUPz8qP+Wjf40/7JF/00/wC/jf41JD/qI/8AdH8qfQBB9ki/6af9/G/xo+yRf9NP+/jf41PRQBB9ki/6af8Afxv8aPskX/TT/v43+NT0UAQfZIv+mn/fxv8AGj7JF/00/wC/jf41PRQBSntYgYsb+ZAP9Y3v71N9ki/6af8Afxv8aLnrD/11H9anoAg+yRf9NP8Av43+NNtUCPcKucCQdTn+Fas1BB/rrn/roP8A0FaAJ6KKKACiiigArmvGfiK98PaRJcWGnPdTBC5kbiGFQQMscgk88KOT7CulrD8Yafdar4S1Gxso/NuZowqJuC5OQep4oAZquqak+vQaJpBtYrhrZrqae6jaRUQMFVQqspJJJ5zwAetWfDurSazpIuJ4liuopZLe4jQ5VZI3KNg+hIyPY1Q1W3v7DxTBrlpp8t/E9m1pPDA6LIp3h0Yb2AI+8DznkU7w5Z6jpGnwR3Flvnvrue6uykq7bYyMzgc/exkLx356UAZsPirVns7XXpI7P+xLm8W3WEI3nJG0nlpKX3bTlsErt4B61115/wAeU/8AuH+VcNBousf2LZeFH011tra9R31DzU8p7dJvNXAzu3nCrjbgcnNdzef8eU/+4f5UAT0VB9jtf+feL/vgUfY7X/n3i/74FAA3/H8n/XNv5ip653WnXTL+zuhDEbLlLlNgwoJAD9OxIrb+x2v/AD7w/wDfApuNkmZxqqU5Q6r9ev8AXYnrC0cC417Wbw87ZVtkPoFXkD8TVvUpdP0uye5nt4sDhUCDLseij3NV9B0kW2mA3lvF9pndppF2g7Sxzj8BirWkW+5hUanXhBfZu391l+b+4r+O7mS08E6nLDIySeWqqyHBBZgvB/Gs9l8QeFXglNxd69prYjliEQa4iPZlx94djn61L49trceGhCkEatPdwRZCgHmRf8K6b7Ha/wDPvF/3wK2jPkpK6vdv9D141PZ0I3Sabd/uXXdHKz/EXS5LZI9MSW61WV1jj090aNw5OCGJGBjnPNV7jxVrcN1Gmp6VFp9ldwXAiDSb5VdE3fMRwAecDrXY/YLMkH7JBkHIPljg1k+I/Cll4hsI7VmNqySCRZYVG7oQR9CCacKlDmScdO71f6fkOnVw6kk4WXdu7Xpt+QeCovJ8FaOvrao35jP9a3qo2Wk2djYW9pHAjJBEsSs6gkhRjJ468VP9jtf+feL/AL4Fc9SXNNy7s5qs+epKXdsnqD/l+H/XM/zo+x2v/PvF/wB8Covslv8AbAvkRY8vONg9agzLlFQfY7X/AJ94v++BR9jtf+feL/vgUAT0VB9jtf8An3i/74FH2O1/594v++BQBPRUH2O1/wCfeL/vgUfY7X/n3i/74FAE9FQfY7X/AJ94v++BR9jtf+feL/vgUAT0VB9jtf8An3i/74FH2O1/594v++BQAD/j+f8A65r/ADNT1TFpb/bGXyIseWDjYPU1L9jtf+feL/vgUAT0VB9jtf8An3i/74FH2O1/594v++BQBPRUH2O1/wCfeL/vgUfY7X/n3i/74FAE9FQfY7X/AJ94v++BR9jtf+feL/vgUAT0VB9jtf8An3i/74FH2O1/594v++BQBPUCf8f0v/XNP5tR9jtf+feL/vgVEtpb/bJV8iLAjQgbB6tQBcoqD7Ha/wDPvF/3wKPsdr/z7xf98CgCeioPsdr/AM+8X/fAo+x2v/PvF/3wKAJ6Kg+x2v8Az7xf98Cj7Ha/8+8X/fAoAnoqD7Ha/wDPvF/3wKPsdr/z7xf98CgCeioPsdr/AM+8X/fAo+x2v/PvF/3wKACP/j7n+i/1qeqcdpbm5mBgiwAuBsHHWpfsdr/z7xf98CgCeioPsdr/AM+8X/fAo+x2v/PvF/3wKAJ6Kg+x2v8Az7xf98Cj7Ha/8+8X/fAoAnoqD7Ha/wDPvF/3wKPsdr/z7xf98CgCeioPsdr/AM+8X/fAo+x2v/PvF/3wKAJ6op/yF3/3D/7LU/2O1/594v8AvgVWhjji1ZxGiqNh4UY/u0AaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUE3+vtv98/+gmp6gm/19t/vn/0E0AT0UUUAcLepfWXiq41hm8iBLmG3Jx8skbfe5PpgfnWbofiNjcPo+rWgh03VHl+zXbEgO5OCvpnOfTtXV+JViPhrVzKBtU7gT2IC4NY39hyaj8MI7ZAq3cYN1bsy52uHLjHpkcfjXdSlBxXOt3b08zgwWGhTx7p1VeE09X0cmrv5K3yL3h/wzLHNHqGpySG9ikIUHGCoXYM/gM/lWVoviOXRtQXSbxPLsoHeIvt5DFyQSewrr/D+pHV/D9hqDbd88Cu+3oGx82PxzSa7ZR3WiaggUB3hJLAckqMjP5Vlz++41F5ehjXy6WGivYStKF79ebun6tI5bxPrjtqOo6PudlljiiiVQMByQTnv0OKf/Y1qnxF0e1O900/S2liyf4vM25P/fRq94Y0m2vtIttSvoxNeSTm5ErcMGBwOR2+UHHSiOVJ/irKI23eRo+yTH8LGUHB98YNaxla8Y9E7/kdeTU6rlUxU38UXbuovW34nV0UUVwnUNf/AFbfQ0y2/wCPWH/cX+VPf/Vt9DTLb/j1h/3F/lQBLRRRQAUUUUAFFFFABUFz92P/AK6L/Op6gufux/8AXRf50AT0UUUAFFFFABRRRQAUUUUAQf8AL8P+uX9anqD/AJfh/wBcv61PQAUUUUAFFFFABRRRQAVBbdZv+up/kKnqC26zf9dT/IUAT0UUUAFFFFABRRRQAUyb/USf7p/lT6ZN/qJP90/yoAIf9RH/ALo/lT6ZD/qI/wDdH8qfQAUUUUAFFFFABRRRQBBc9Yf+uo/rU9QXPWH/AK6j+tT0AFQQf665/wCug/8AQVqeoIP9dc/9dB/6CtAE9FFFABRRRQAUUUUAFFFFABUF5/x5T/7h/lU9QXn/AB5T/wC4f5UAT0UUUAUry1ivXa2nXdFLC6sPbIrnEbXtOlvNJ0+1a4jQl4rieT7qsBgAnqQc/lXTSTwpqcMTyosjxNtQsAW5HQVaq4zcVqrnNiML7VqSbi+63t2PP9Yl1fRE8y8P2yDTInuop5AcSMQFVWPqGPrnFdV4e1+z8Q6XDdW00RlMatNCrgtEx6hh1HIPXris34gfvPCklqOt1cQQD8ZF/oKNS8EWV7qsd5a3E2nIyFLmKy/dfaBncMkdDnqeprp/dzpJz0d3r6W6edztwmEoUaHvN3lJ676JKy/y/ETxqRIugwA58zWbcEewyx/lXU1zdj4F0PT7+G8hiuDLE3mKJLh2Uyf3yCeWrpKxqyhyxjB3saVpQ5Ywg72v0tv82FFFFYnOFFFFABUH/L8P+uZ/nU9Qf8vw/wCuZ/nQBPRRRQAUUUUAFFFFABRRRQAUUUUAQD/j+f8A65L/ADNT1AP+P5/+uS/zNT0AFFFFABRRRQAUUUUAFFFFABUCf8f0v/XNP5tU9QJ/x/S/9c0/m1AE9FFFABRRRQAUUUUAFFFFABRRRQBBH/x9z/Rf61PUEf8Ax9z/AEX+tT0AFFFFABRRRQAUUUUAFFFFABVJP+Qu/wDuH/2WrtUk/wCQu/8AuH/2WgC7RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBN/r7b/fP/AKCanqCb/X23++f/AEE0AT0UUUAeW/FHUILvR2sbScS3EWooJooySRmJsAj8D+Vem26bLWJCPuoBj8K801q2mg+LmmSbR5F5NG+fV40I/kw/OvUK7MRaNKnGPa/3/wDDHoYq0aFKEdrN/f8A8FHndjrL+GdA8T2FtsabRrhnt0kBwIpDlQcYzglq7bRrx9S0KwvZVUPc20crqvQFlBIHtzXm/wARvI0zWNRfZ5Q1PSlQMBxJKsynr67B+grp/BWqGFJvDN/LANQ0siFQhx5sQUbWAPt1/Cta9JSo+1S1ev4K/wCJriaKnQVeK1er+5X/AB/M6xVjgi2oioiDhVGAB9K4f4aXjaxDrWsyxIk13e87R2CjAz7Zrtro7bSZvSNj+lYHgFFj8DaVtUDMW44HUkmuaDSoz7tpfm/0OSm1HDT03aX5v9DpKKKK5zlGv/q2+hplt/x6w/7i/wAqe/8Aq2+hplt/x6w/7i/yoAlooooAKKKKACiiigAqC5+7H/10X+dT1Bc/dj/66L/OgCeiiigAooooAKKKKACiiigCD/l+H/XL+tT1B/y/D/rl/Wp6ACiiigAooooAKKKKACoLbrN/11P8hU9QW3Wb/rqf5CgCeiiigAooooAKKKKACmTf6iT/AHT/ACp9Mm/1En+6f5UAEP8AqI/90fyp9Mh/1Ef+6P5U+gAooooAKKKKACiiigCC56w/9dR/Wp6guesP/XUf1qegAqCD/XXP/XQf+grU9QQf665/66D/ANBWgCeiiigAooooAKKKKACiiigAqC8/48p/9w/yqeoLz/jyn/3D/KgCeiiigDn/ABL4eh14IoKw30UZe1ugPmicMpBz6ZrFi8Ua5oMl5aa1ptzqItW82S/towiCEgEEDuQcjHoPauzb/j+T/rm38xUroskbRuoZGBDKRkEHtW8K1o8k1dfkdNPEJR5Ki5o/l6P+kcDaWF9421CLXm1KSLTLfUA1rabTsliib755+8WB57CvQKgs7O3sLSO1tIVhgiG1EUcAVPSrVed2Wy2Jr1vaOy0itl5BRRRWJgFFFFABRRRQAVB/y/D/AK5n+dT1B/y/D/rmf50AT0UUUAFFFFABRRRQAUUUUAFFFFAEA/4/n/65L/M1PUA/4/n/AOuS/wAzU9ABRRRQAUUUUAFFFFABRRRQAVAn/H9L/wBc0/m1T1An/H9L/wBc0/m1AE9FFFABRRRQAUUUUAFFFFABRRRQBBH/AMfc/wBF/rU9QR/8fc/0X+tT0AFFFFABRRRQAUUUUAFFFFABVJP+Qu/+4f8A2WrtUk/5C7/7h/8AZaALtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUE3+vtv98/+gmp6gm/19t/vn/0E0AT0UUUAVooo3nld40Z0lJRiuSvyjp6VZqC3/1lx/10/wDZRU9AHO+NPDp8S+H3tIVi+1K6PC8nAUhhu591zWf4r0PUYdSg8SeH47YX9qkn2hGT5rldowOOpwMD6jmuyoreniJwsuiv+O50UsVOnZLVK+nrujiW+JXhy602VHvGhuGi2mN424cqTjOOx4z61r+CF2+CdIH/AE7Kavf2BpBhnibTbVo53MkqtECHYnJJz71dggitreOCCNY4o1CIijAUAYAFOpUpOHLTTWvUurVounyUk1rfV3/rckooornOQa/+rb6GmW3/AB6w/wC4v8qe/wDq2+hplt/x6w/7i/yoAlooooAKKKKACiiigAqC5+7H/wBdF/nU9QXP3Y/+ui/zoAnooooAKKKKACiiigAooooAg/5fh/1y/rU9Qf8AL8P+uX9anoAKKKKACiiigAooooAKgtus3/XU/wAhU9QW3Wb/AK6n+QoAnooooAKKKKACiiigApk3+ok/3T/Kn0yb/USf7p/lQAQ/6iP/AHR/Kn0yH/UR/wC6P5U+gAooooAKKKKACiiigCC56w/9dR/Wp6guesP/AF1H9anoAKgg/wBdc/8AXQf+grU9QQf665/66D/0FaAJ6KKKACiiigAooooAKKKKACoLz/jyn/3D/Kp6iukaS1lRRlmUgCgCWioPPk/59ZvzX/Gjz5P+fWb81/xoAG/4/k/65t/MVPVQySm5WT7LLgIV6r3I9/apPPk/59ZvzX/GgCeioPPk/wCfWb81/wAaPPk/59ZvzX/GgCeioPPk/wCfWb81/wAaPPk/59ZvzX/GgCeioPPk/wCfWb81/wAaPPk/59ZvzX/GgCeioPPk/wCfWb81/wAaPPk/59ZvzX/GgCeoP+X4f9cz/Ojz5P8An1m/Nf8AGo/Ml+0iT7LLjZt6r6/WgC3RUHnyf8+s35r/AI0efJ/z6zfmv+NAE9FQefJ/z6zfmv8AjR58n/PrN+a/40AT0VB58n/PrN+a/wCNHnyf8+s35r/jQBPRUHnyf8+s35r/AI0efJ/z6zfmv+NAE9FQefJ/z6zfmv8AjR58n/PrN+a/40AA/wCP5/8Arkv8zU9VBJKLlpPssuCgXqvqff3qTz5P+fWb81/xoAnoqDz5P+fWb81/xo8+T/n1m/Nf8aAJ6Kg8+T/n1m/Nf8aPPk/59ZvzX/GgCeioPPk/59ZvzX/Gjz5P+fWb81/xoAnoqDz5P+fWb81/xo8+T/n1m/Nf8aAJ6gT/AI/pf+uafzajz5P+fWb81/xqNZJRcvJ9llwyKo5XsT7+9AFuioPPk/59ZvzX/Gjz5P8An1m/Nf8AGgCeioPPk/59ZvzX/Gjz5P8An1m/Nf8AGgCeioPPk/59ZvzX/Gjz5P8An1m/Nf8AGgCeioPPk/59ZvzX/Gjz5P8An1m/Nf8AGgCeioPPk/59ZvzX/Gjz5P8An1m/Nf8AGgAj/wCPuf6L/Wp6qJJKs8jm1lwwGOV7fjUnnyf8+s35r/jQBPRUHnyf8+s35r/jR58n/PrN+a/40AT0VB58n/PrN+a/40efJ/z6zfmv+NAE9FQefJ/z6zfmv+NHnyf8+s35r/jQBPRUHnyf8+s35r/jR58n/PrN+a/40AT1ST/kLv8A7h/9lqbz5P8An1m/Nf8AGoYklbUGmaFkQoRliP8AZ9D7GgC7RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEN1dQWVrLdXUyQwRKXkkc4CgdyawrLxnp934f1LWzFcRWdjK8Z3oQ8m0DBCnkbtwAB9q6IgMMMAR6GvP7nTry58J+LIYbaV5jq73EcYXmVUaN8L65CkD1oA6bTNflu9TOm3+my6feNB9oiR5FkEkeQDgqeCCRke461qTf6+2/3z/6Ca5i0vYfEPjexv8ATxK9nY2MyyzNEyDzJGjwnzAcgISR24rpbtHcxFVdtr5OwgHoR3oAs0VS2v8A887z/v4v+NG1/wDnnef9/F/xoAmt/wDWXH/XT/2UVPWdHHKrSEx3XzNkYdfQdeak2v8A887z/v4v+NAF2iqW1/8Annef9/F/xo2v/wA87z/v4v8AjQBdoqltf/nnef8Afxf8aNr/APPO8/7+L/jQBdoqltf/AJ53n/fxf8aNr/8APO8/7+L/AI0AW3/1bfQ0y2/49Yf9xf5VWZZCpAju+R/z0X/GmxRyJEimO7yFAOHXH86ANCiqW1/+ed5/38X/ABo2v/zzvP8Av4v+NAF2iqW1/wDnnef9/F/xo2v/AM87z/v4v+NAF2iqW1/+ed5/38X/ABo2v/zzvP8Av4v+NAF2oLn7sf8A10X+dQ7X/wCed5/38X/Go5Y5XC4juuGBOXX/ABoA0aKpbX/553n/AH8X/Gja/wDzzvP+/i/40AXaKpbX/wCed5/38X/Gja//ADzvP+/i/wCNAF2iqW1/+ed5/wB/F/xo2v8A887z/v4v+NAF2iqW1/8Annef9/F/xo2v/wA87z/v4v8AjQBN/wAvw/65f1qes7y5fP3+XdbduPvrnr9ak2v/AM87z/v4v+NAF2iqW1/+ed5/38X/ABo2v/zzvP8Av4v+NAF2iqW1/wDnnef9/F/xo2v/AM87z/v4v+NAF2iqW1/+ed5/38X/ABo2v/zzvP8Av4v+NAF2oLbrN/11P8hUO1/+ed5/38X/ABqOOOVS+Y7rliRh1/xoA0aKpbX/AOed5/38X/Gja/8AzzvP+/i/40AXaKpbX/553n/fxf8AGja//PO8/wC/i/40AXaKpbX/AOed5/38X/Gja/8AzzvP+/i/40AXaZN/qJP90/yqrtf/AJ53n/fxf8aa6SMjAR3eSCOXX/GgC5D/AKiP/dH8qfVBEkWNQY7vIAHDr/jTtr/887z/AL+L/jQBdoqltf8A553n/fxf8aNr/wDPO8/7+L/jQBdoqltf/nnef9/F/wAaNr/887z/AL+L/jQBdoqltf8A553n/fxf8aNr/wDPO8/7+L/jQBNc9Yf+uo/rU9Z0kcrbMR3XDAnLr/jUm1/+ed5/38X/ABoAu1BB/rrn/roP/QVqHa//ADzvP+/i/wCNSWiOnmllddz5G8gnGAO30oAs0UUUAFFFFABRRRQAUUUUAFFFFABRRRQBzkvjG1jupP8AQbxtPiuhaS6gAnlJLuC4I3bsBiFLbcA10deXXFxEng7UfCRb/idy6hLHHbYO+QSXBdZQP7m1t27oMGvUaACiiigAooooAKKKKACiiigDL1vW49EitWa0ubuW6nEEMFsFLs21m/iZRjCnvVabxMLbTori40nUILme4Ftb2Ugj82ZyM8YcqBgE5JGNpqn4wTRTcaQ+u/ao7VJZNtwkpjhjYoR+9YEEAgkDt1B688tZy/Y7yy1YTTyeGrHWJBbTzMz7IXtyhbceTGJSQGPY9cUAegaPrMerpcr9nmtbq1l8q4tp8b42wGH3SQQQQQQcGtKuW8LypqGv+IdXtW8ywuZIIoJh92Xy48My+oycZ6Haa6mgAooooAKKKKACiiigArFsfFGm6l4hudGspTPNbReZLKnMYO7btz3I746fWtquYigWL4kMIowkQ0cABVwAfOJoAfb+MbW4uoMWN4lhc3BtYNQYJ5UkgJAAG7cASCASME/UUSeMbWO6k/0G8OnxXQs5NQATyUl3BcY3bsBiFLYxmuSsriKXwloPhVG/4nVrfW6T22DviEMwd5COy7VyG6HIxRPcRJ4Nv/CRb/ieSahLFHbYO9w9yZFlA/ubG3bugxQB6jRRRQAUUUUAFFFFABRRRQBi6b4o03V9cvNLsZTO9pGskkqcx5LEbQe5BBzjjt1BqHT/ABSdUuQlromqNamd4RekRCI7GKFv9Zu25U/w59qgtYVg+I14IogkS6PAFVFwP9dLwO1cnYDR4JNETw1NqEesi+Rbm0nndpUh3HzhMmdqgDJBwOcY60AdgPGNqbof6Def2ebr7GNRwnk+bu2Yxu3bd3y7sYz+ddHXlwuIj4LXwju/4nn9oCI2uDvx9q8zzcf3Nnzbun416jQAUUUUAFFFFABRRRQBFc3EVpay3M7hIYUMjsf4VAyT+VYVj4tjuruyhudMvrGO/Vms5rgJtlwu7B2sSp2gnDAcA9+K27y7hsLGe8uGKwwRtI5AzhQMnjvXn2m61YeMNSW5ur+OO8aGWPTNOVW/cbkILyNjBkK546KMgZJzQB0th4wtr65sx9gvILO/ZksryUJ5c5AJ4AYsuQCV3AZAoi8Y2st1FixvF0+a5NpFqBCeU8u4rjG7dgsCobGCa5mxvoNT0jwdodsSdTsJ7dry2wQ9sIYyHLj+EZGBnruGKr29xFJ4P0zwkrf8TuHUIY5bbB3xiO4DtIR/c2rkN0ORQB6jRRRQAUUUUAFFFFABVe+vYNOsLi9un2W9vG0sjYzhQMmrFVdS1CDStMub+6LCC3jMj7RkkAdAO5oAyrDxOLrULazu9LvtPe7jaW1NzsIlCgEj5WO1gDnBxSaL4pOuNbvb6JqkdnOC0d5KIhEVwSDxIWwccfL3Fc3o2t6f4j1FtSvLzzdRNtKtlplsDm3QrlvmIAaUgYJ6DoPU1NLj0gXmgQeErq8+0EGO/gkndzFbiJgRMpOEZW2ADjngcUAdZZ+MbW7ubXFjeR2N5MYLW/cJ5UzjOAAG3AHacEgZ/EV0deY2F3Dd+HPCvhyI/wDE3sry2F1agHfAIGy7MOwO3g99wxmvTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqG7uoLGznu7mQRwQRtJI56KoGSfyFTVieMbGfUvBusWdqpeeW0kWNB1Y44H49KAG6X4nTUL6G0n069sJLmEz2v2kJiZBjONrHDDcCVODg/Wt2uJi1az8S+KvDsulSiZLKKea62g/uN0YRUf0Yk/d6/Ka7agAooooAKKKKACsvV9aTSntYFtZ7y7u3KQW8G3c2BliSxAAA6kmtSub8X+Ko/DVrbIoj+13jmOFps+XHgfM7kDOBkcDkkge4AFHjG0+wtIbK8W9W7Fl/Z5VfOM5G4KDu242/Nu3YxzmnDxfZpp11cXFrdQXVrOltJYsqmYyvjYq4JVt24YIOPpg1ysUmlWqaNrVtqLahDbao8uqXpQj95JAyeYwx8qglB6AY9zUd9It9qd/wCJbXdNpMOqWDmaNSwdIlZZJFx95VMg5H9w+lAHdaTri6ncXVpLZ3Fle2u0y28+0kK2drAqSCDg9D1BrVrk9FuoNZ8b6lq2nyrPp6WEFoLhOUkkDyOQp6HAZc49a6ygAooooAKKKKAMfxJ4ksvDGmi9vd77nEccUYy7sfT6DJJ9BTNT8RCw1D7BbadeajdJD9oljtdn7qPJAJ3MMkkHCjJODXH+O7DXmg1q/ksbO4tfKSG1f7UweCPcpbCeWQWZgMnd0AHbnVTVYvD3i3Ub3xA0ViL+xtmjbeXjLx+YHjVsDcw3KQMZOelAGtL4ttZI7D+zLS51Oa+gNzFFb7FIiGMsxdlA5IGM5zx61p6VqdvrOmQ39rv8qUH5XXDKwJDKw7EEEH6V5/4bZfCt1pF5rh+w29xpDRCSf5Vjk85pPLY/wttccH+6RXVeCIpE8PvPJG8a3d5c3UaOpUiOSVmXIPTIIP40AdHRRRQAUUUUAFc5b+L4Lm6h8vTb46fPcG2i1AKpieTJHQNv2kggNtxn25romBKkA4JHWvJNBRdN07QrO11G+/4SeC7jt7myadyBEHxIGi+6IwmSHxycHJJoA7k+MbUXR/0G8/s8XX2M6jhPJEu7ZjG7dt3fLuxjP50XnjG1s7m6/wBBvJbGylEN3fRhPKhc4yCC24gbhkgHGfY1yLXEQ8GSeEd3/E8OoGIWuDvIN15nm4/ubDu3dPxqS/vIbPw94s8OzH/ibX13c/ZbXB3zic5RkHcDdgnttOcUAem0VHBGYreONjkogUn1wKkoAKKKKACqWrapbaLpdxqN3v8AJhXJCLlmJIAAHckkAfWrtc547EreD7xI4jIjmNJiI/MMcRdQ7he5VcsPpntQA6PxdaxrfjVLO60yWytxdSR3Gxi0RyAylGYHkEY65p1p4phknlg1Cxu9LkS2N2Bd7PnhX7zAozYIyMg8jIrg721jvF1yPw/eXGt2z6bHJLcSSee4kjlVliWTvuXednY/WtTxDND41u3XQJhdrBo16kkkf3RJMqBIyezHacjqMc0AdRpniqLUL22t5tOvbH7ZEZrN7kJidRgnG1iVOCDhsHH0Nb9cJb6raeIdd8KrpsnmtYiSe7VQQbceSYwj/wB1izY2nng13dABRRRQAUUUUAYth4o03U/EF1o9lKZ5baLzJZU5jB3bdoPcjvjp061VtvGNrc3VvixvEsLq4Ntb37BPKlkBIAADbgCQQCQAT9RTIoFi+I0qxRiOMaMgG1cAHzmrlrG5im8K+HfC6N/xObS+t1uLYA74RDKGeRh2XC5B6HcMdaAOsfxjapdP/oN4dPjuvsb6iAnkrLu24xu3Y3HbuxjP50t94xtrK5ux9hvJrKxkEV5exhPLgYgE5BYMcBgWKg4z9a5GW4iXwZd+ES3/ABPH1CSJLbB3sHuTIJQP7mw7t3Tipr+9gsNC8X6BOT/at/c3P2S2wd9wJ1GwoP4gCcEjptOcUAeljkZFFQ2sTQWcELHLRxqpPqQMVNQAUUUUARXN1BZW0lzdTRwwRrueSRgqqPUk1h23jLTLrw7da4iz/Y4JmhA8v55GDBRtXr8xIABx15xW/JHHMhSVFdD1VhkVxWmaxB4c8NeIdTu45Gji1a7IjQfM5MpCgfUkc/jQBrReLbeOS7i1WyutLltrU3jLcFGDQjhmBRmHBwCOvIp1j4qhuLkW97YXemO9u11CbvZiSJcbiCrHBGQSpwRmuLmkt/FGh6/PHfxX/iG509glrbq2yCFSG8pMgbiTjJ7nHAAq/rV1B40v7aPQphcGHTL3znXpE0sYREY9mJz8vUbaAOj0zxZDqN3Zwvp97aR36M9lNOEC3AA3cAMSp2/MAwGRXQ15/aana69ceD7PT333Ni4nvIwpDWoWB0KuP4SWYDB6/SvQKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKo1OwbUTpwvbY3wXebYSr5gX125zirVeTxT6xoS+KtVtru3uLwaxFajzbYDcX8gZLA5A2tjH410Oqajq+jfYrLUPE9lE8iyO88diXnlORtVIRnCgE5bnsMCgDt6K84t/F2uXeh2HkSwC8l1xtLaea1ZA0YVyHMZIKtwDt45GOKsfbvFTXniDT11m1B0iNJkuDZDdNvjLhGGcADaRkcnI6Y5AO/orzmfxzdXs+l2yXg0sTaXDfzzR2T3TF5BwiqAQAMEkn2ArqPCOs3Wt6M815HtnhneAyCFolmCniRVbkAgg4PfNAG9RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWfrqTyaDfrbz+RL5DbZNm7HHPH04oAmstTsNSWRrC9trpYm2SGCVXCt6HB4NWq8s8PSa9a6T4T0bS9QtLf+0dNa5edrMExBViIAUEbj8xGT1zntV7X/E+p6fJqnl6/aLc2KExWdrYPc79qA/vmH+rJOeONowcmgD0WiuJXWNd1vX7awsLyDT4JdHhv3kMHmuruzDaMkDHA6+nvxQ0/wASeJJNG0LXbq7tDDeX0dlLZx2+BhpDGXDk53ZG7HTt70Aei0V5ldeOdQuJNUurO/EJs7iWG2sP7MlmFwIzg7pVHBYg4x04zmvRbG6+26fbXflvF58SyeW4wy7gDg+4zQBYooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5248IWtxbajC1zMBfahHfuQB8rIYyFHt+7H5mpNU8OS3eux6zYapNYXgt/ssjLEkivHu3AYYcEHPNb1FAHLWXgi2s4oI/t91N5OqnVA8u0s8hUqQxxyDkmtJdAhW+1m686TdqsaRyDjCBUKjH4GteigDlx4O+yLp8ml6rcWV5Z2SWJmEaSCaJRwHVhjIOSCMdTWxo+ljSLAWxuri7kZ2kknuH3O7sck+gHoBwK0KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACormEXNrNAxIWVChI7ZGKlooAwbDwtb2E+iypcSsdKsms4wwHzqQgyff5B+dUJ/BDSDVbaHW7y303U5ZJri1jRMl3Hz4cjIU+n4ZrraKAMXTPDkOmajDercSSSRadFp+GAAKxkkN9Tmq8XhC1h0DTdJFzMYrC7S7RyBuZlkMgB9snFdFRQBy0/g6XzL6Kw1y9sLC/laW4toVQnc33yjkZTd3x3JxiumiiWGFIkzsRQq5JJwPc9afRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVT1HUYtNgjklV3aWRYokQcu7dBzwPqaALlFA6c1TbUYo9Vj0+RHWSWMyRN1VwuNw9iMjr60AXKKZM7Rwu6RNKyjIRSAW9hkgVz/hHxhb+MbW5ubSwvLaG3maBmufL5deoAVj69aAOjorE0vxF/aetajpg027gewZVlllaMoSw3DG1ieR7VQsvGy60102haPe6jb2srQyzq8USlx1Ch3DHHuAPegDqqK5G2+Imk3Hhe+18wXcVtaXJtWidFMjSAqMABiPvNjOce9WYPFx/t+x0W/0e8sry9R5Id7xOhVRk8qxOfw/GgDpaK5C08eC+1zVNItfD2qzXWmFRchXtwBuGRgtKM5FafhzxZpfihLr+z2lE1pJ5VxDKm1om9CRlT+BNAG5RRRQAUUUUAFFFFABRWV4j1yPw3oN3q81rPcw2qGSRINu4KO/zEf41dsbpb7T7a7RSqzxLKFPUBgDj9aALFFFFABRRWN4o8QxeFtAudYntLi5htwC6wFcgE4z8xHGSOmT7UAbNFZE+u+TqOkWq2U0g1EMfNVlCxYXd8wJyc+1a2RkjuOaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoormde8a2mh6Tf6kbK6ubeymWCVotg+ckDGGYHAJGTjvxmgDpqKarb41cDqM4qtp+oRajDI8aujxSNFLG/VHHUccH6igC3RXP+L/Fdv4N0Y6reWV1c2qsqObfYSpJwOGYdz2q9PqzwaC+qtp9wdkRma3DR+YFAz13bc496ANKisA+LrC38HjxNfxXFlYmJZtsih32tjbwhYc5Hf61nX/jxtL0JtdvfDupR6WIxJ5okgZgp6EqJO+R0yfagDsKK5y68Wxpf2WnWWn3N7f3Vr9sEKMiBIuBksxAzk4wM/hTLDxnb6jpGrX8GnXoOlyvFcW7GMSblUM2Pn2nGf73agDpqK4m1+JNrceGY/EbaHqsWkOpf7SxgO1QSCSol3dR2BrrNN1G11fTbfULGXzbW4QSRPtK7lPscEUAWqKKKACiszXNXOi2cNwLOW68y4jg2RMqld5xu+YjgVp0AFFZmvaudD0tr0Wkt3iRE8qJlU/MwXOWIHGa0x0oAKKKiuZjb20kywvMUUt5cZG5vYbiB+ZFAEtFY/hfxDB4p8P22sW0EsMNxu2xy43DDFecZHatigAoorE8V+JYfCeiPqlxZ3FzCjKrCErldxCgncRxkjpmgDborLuNZMGuafpgs5XF5HJJ54Zdse0A4IJyc57CtPIJI7igBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z"
}
},
{
"id": "/page/6/Caption/1",
"block_type": "Caption",
"html": "<p>(a) UCSD upscale split. (b) UCSD original split.</p>",
"polygon": [
[
136.4150390625,
309.181640625
],
[
455.760986328125,
309.181640625
],
[
455.760986328125,
317.689453125
],
[
136.4150390625,
317.689453125
]
],
"bbox": [
136.4150390625,
309.181640625,
455.760986328125,
317.689453125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": null
},
{
"id": "/page/6/Caption/2",
"block_type": "Caption",
"html": "<p></p>",
"polygon": [
[
375.626953125,
307.44140625
],
[
451.529296875,
307.44140625
],
[
451.529296875,
315.94921875
],
[
375.626953125,
315.94921875
]
],
"bbox": [
375.626953125,
307.44140625,
451.529296875,
315.94921875
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableGroup/278",
"block_type": "TableGroup",
"html": "<content-ref src='/page/6/Caption/3'></content-ref><content-ref src='/page/6/Table/4'></content-ref><content-ref src='/page/6/Caption/5'></content-ref>",
"polygon": [
[
50.11199951171875,
328.427001953125
],
[
546.2578125,
328.427001953125
],
[
546.2578125,
575.984375
],
[
50.11199951171875,
575.984375
]
],
"bbox": [
50.11199951171875,
328.427001953125,
546.2578125,
575.984375
],
"children": [
{
"id": "/page/6/Caption/3",
"block_type": "Caption",
"html": "<p><span id=\"page-6-1\"></span>Figure 3. UCSD crowd counting dataset. Both plots show comparisons of predicted and ground truth counts over time. While AMDCN does not beat the state of the art on the original split, the predictions still follow the true counts reasonably. The jump in the original split is due to that testing set including multiple scenes of highly varying counts.</p>",
"polygon": [
[
50.11199951171875,
328.427001953125
],
[
546.2578125,
328.427001953125
],
[
546.2578125,
359.3114013671875
],
[
50.11199951171875,
359.3114013671875
]
],
"bbox": [
50.11199951171875,
328.427001953125,
546.2578125,
359.3114013671875
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/Table/4",
"block_type": "Table",
"html": "<table><tbody><tr><th>Method</th><th>maximal</th><th>downscale</th><th>upscale</th><th>minimal</th><th>original</th></tr><tr><td>AMDCN (without perspective information)</td><td>1.63</td><td>1.43</td><td>0.63</td><td>1.71</td><td>1.74</td></tr><tr><td>AMDCN (with perspective information)</td><td>1.60</td><td>1.24</td><td>1.37</td><td>1.59</td><td>1.72</td></tr><tr><td>[18] (with perspective information)</td><td>1.65</td><td>1.79</td><td>1.11</td><td>1.50</td><td>-</td></tr><tr><td>[18] (without perspective information)</td><td>2.22</td><td>1.93</td><td>1.37</td><td>2.38</td><td>-</td></tr><tr><td>[15]</td><td>1.70</td><td>1.28</td><td>1.59</td><td>2.02</td><td>-</td></tr><tr><td>[13]</td><td>1.70</td><td>2.16</td><td>1.61</td><td>2.20</td><td>-</td></tr><tr><td>[19]</td><td>1.43</td><td>1.30</td><td>1.59</td><td>1.62</td><td>-</td></tr><tr><td>[2]</td><td>1.24</td><td>1.31</td><td>1.69</td><td>1.49</td><td>-</td></tr><tr><td>[27]</td><td>1.70</td><td>1.26</td><td>1.59</td><td>1.52</td><td>1.60</td></tr><tr><td>[28]</td><td>-</td><td>-</td><td>-</td><td>-</td><td>1.07</td></tr><tr><td>[1,28]</td><td>-</td><td>-</td><td>-</td><td>-</td><td>2.16</td></tr><tr><td>[7]</td><td>-</td><td>-</td><td>-</td><td>-</td><td>2.25</td></tr><tr><td>[5]</td><td>-</td><td>-</td><td>-</td><td>-</td><td>2.24</td></tr><tr><td>[6]</td><td>-</td><td>-</td><td>-</td><td>-</td><td>2.07</td></tr></tbody></table>",
"polygon": [
[
60.9609375,
367.76953125
],
[
532.810546875,
367.76953125
],
[
532.810546875,
557.26171875
],
[
60.9609375,
557.26171875
]
],
"bbox": [
60.9609375,
367.76953125,
532.810546875,
557.26171875
],
"children": [
{
"id": "/page/6/TableCell/369",
"block_type": "TableCell",
"html": "<th>Method</th>",
"polygon": [
[
60.9609375,
367.76953125
],
[
61.9609375,
367.76953125
],
[
61.9609375,
368.76953125
],
[
60.9609375,
368.76953125
]
],
"bbox": [
60.9609375,
367.76953125,
61.9609375,
368.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/370",
"block_type": "TableCell",
"html": "<th>maximal</th>",
"polygon": [
[
61.9609375,
367.76953125
],
[
62.9609375,
367.76953125
],
[
62.9609375,
368.76953125
],
[
61.9609375,
368.76953125
]
],
"bbox": [
61.9609375,
367.76953125,
62.9609375,
368.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/371",
"block_type": "TableCell",
"html": "<th>downscale</th>",
"polygon": [
[
62.9609375,
367.76953125
],
[
63.9609375,
367.76953125
],
[
63.9609375,
368.76953125
],
[
62.9609375,
368.76953125
]
],
"bbox": [
62.9609375,
367.76953125,
63.9609375,
368.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/372",
"block_type": "TableCell",
"html": "<th>upscale</th>",
"polygon": [
[
63.9609375,
367.76953125
],
[
64.9609375,
367.76953125
],
[
64.9609375,
368.76953125
],
[
63.9609375,
368.76953125
]
],
"bbox": [
63.9609375,
367.76953125,
64.9609375,
368.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/373",
"block_type": "TableCell",
"html": "<th>minimal</th>",
"polygon": [
[
64.9609375,
367.76953125
],
[
65.9609375,
367.76953125
],
[
65.9609375,
368.76953125
],
[
64.9609375,
368.76953125
]
],
"bbox": [
64.9609375,
367.76953125,
65.9609375,
368.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/374",
"block_type": "TableCell",
"html": "<th>original</th>",
"polygon": [
[
65.9609375,
367.76953125
],
[
66.9609375,
367.76953125
],
[
66.9609375,
368.76953125
],
[
65.9609375,
368.76953125
]
],
"bbox": [
65.9609375,
367.76953125,
66.9609375,
368.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/375",
"block_type": "TableCell",
"html": "<td>AMDCN (without perspective information)</td>",
"polygon": [
[
60.9609375,
368.76953125
],
[
61.9609375,
368.76953125
],
[
61.9609375,
369.76953125
],
[
60.9609375,
369.76953125
]
],
"bbox": [
60.9609375,
368.76953125,
61.9609375,
369.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/376",
"block_type": "TableCell",
"html": "<td>1.63</td>",
"polygon": [
[
61.9609375,
368.76953125
],
[
62.9609375,
368.76953125
],
[
62.9609375,
369.76953125
],
[
61.9609375,
369.76953125
]
],
"bbox": [
61.9609375,
368.76953125,
62.9609375,
369.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/377",
"block_type": "TableCell",
"html": "<td>1.43</td>",
"polygon": [
[
62.9609375,
368.76953125
],
[
63.9609375,
368.76953125
],
[
63.9609375,
369.76953125
],
[
62.9609375,
369.76953125
]
],
"bbox": [
62.9609375,
368.76953125,
63.9609375,
369.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/378",
"block_type": "TableCell",
"html": "<td>0.63</td>",
"polygon": [
[
63.9609375,
368.76953125
],
[
64.9609375,
368.76953125
],
[
64.9609375,
369.76953125
],
[
63.9609375,
369.76953125
]
],
"bbox": [
63.9609375,
368.76953125,
64.9609375,
369.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/379",
"block_type": "TableCell",
"html": "<td>1.71</td>",
"polygon": [
[
64.9609375,
368.76953125
],
[
65.9609375,
368.76953125
],
[
65.9609375,
369.76953125
],
[
64.9609375,
369.76953125
]
],
"bbox": [
64.9609375,
368.76953125,
65.9609375,
369.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/380",
"block_type": "TableCell",
"html": "<td>1.74</td>",
"polygon": [
[
65.9609375,
368.76953125
],
[
66.9609375,
368.76953125
],
[
66.9609375,
369.76953125
],
[
65.9609375,
369.76953125
]
],
"bbox": [
65.9609375,
368.76953125,
66.9609375,
369.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/381",
"block_type": "TableCell",
"html": "<td>AMDCN (with perspective information)</td>",
"polygon": [
[
60.9609375,
369.76953125
],
[
61.9609375,
369.76953125
],
[
61.9609375,
370.76953125
],
[
60.9609375,
370.76953125
]
],
"bbox": [
60.9609375,
369.76953125,
61.9609375,
370.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/382",
"block_type": "TableCell",
"html": "<td>1.60</td>",
"polygon": [
[
61.9609375,
369.76953125
],
[
62.9609375,
369.76953125
],
[
62.9609375,
370.76953125
],
[
61.9609375,
370.76953125
]
],
"bbox": [
61.9609375,
369.76953125,
62.9609375,
370.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/383",
"block_type": "TableCell",
"html": "<td>1.24</td>",
"polygon": [
[
62.9609375,
369.76953125
],
[
63.9609375,
369.76953125
],
[
63.9609375,
370.76953125
],
[
62.9609375,
370.76953125
]
],
"bbox": [
62.9609375,
369.76953125,
63.9609375,
370.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/384",
"block_type": "TableCell",
"html": "<td>1.37</td>",
"polygon": [
[
63.9609375,
369.76953125
],
[
64.9609375,
369.76953125
],
[
64.9609375,
370.76953125
],
[
63.9609375,
370.76953125
]
],
"bbox": [
63.9609375,
369.76953125,
64.9609375,
370.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/385",
"block_type": "TableCell",
"html": "<td>1.59</td>",
"polygon": [
[
64.9609375,
369.76953125
],
[
65.9609375,
369.76953125
],
[
65.9609375,
370.76953125
],
[
64.9609375,
370.76953125
]
],
"bbox": [
64.9609375,
369.76953125,
65.9609375,
370.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/386",
"block_type": "TableCell",
"html": "<td>1.72</td>",
"polygon": [
[
65.9609375,
369.76953125
],
[
66.9609375,
369.76953125
],
[
66.9609375,
370.76953125
],
[
65.9609375,
370.76953125
]
],
"bbox": [
65.9609375,
369.76953125,
66.9609375,
370.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/387",
"block_type": "TableCell",
"html": "<td>[18] (with perspective information)</td>",
"polygon": [
[
60.9609375,
370.76953125
],
[
61.9609375,
370.76953125
],
[
61.9609375,
371.76953125
],
[
60.9609375,
371.76953125
]
],
"bbox": [
60.9609375,
370.76953125,
61.9609375,
371.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/388",
"block_type": "TableCell",
"html": "<td>1.65</td>",
"polygon": [
[
61.9609375,
370.76953125
],
[
62.9609375,
370.76953125
],
[
62.9609375,
371.76953125
],
[
61.9609375,
371.76953125
]
],
"bbox": [
61.9609375,
370.76953125,
62.9609375,
371.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/389",
"block_type": "TableCell",
"html": "<td>1.79</td>",
"polygon": [
[
62.9609375,
370.76953125
],
[
63.9609375,
370.76953125
],
[
63.9609375,
371.76953125
],
[
62.9609375,
371.76953125
]
],
"bbox": [
62.9609375,
370.76953125,
63.9609375,
371.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/390",
"block_type": "TableCell",
"html": "<td>1.11</td>",
"polygon": [
[
63.9609375,
370.76953125
],
[
64.9609375,
370.76953125
],
[
64.9609375,
371.76953125
],
[
63.9609375,
371.76953125
]
],
"bbox": [
63.9609375,
370.76953125,
64.9609375,
371.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/391",
"block_type": "TableCell",
"html": "<td>1.50</td>",
"polygon": [
[
64.9609375,
370.76953125
],
[
65.9609375,
370.76953125
],
[
65.9609375,
371.76953125
],
[
64.9609375,
371.76953125
]
],
"bbox": [
64.9609375,
370.76953125,
65.9609375,
371.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/392",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
65.9609375,
370.76953125
],
[
66.9609375,
370.76953125
],
[
66.9609375,
371.76953125
],
[
65.9609375,
371.76953125
]
],
"bbox": [
65.9609375,
370.76953125,
66.9609375,
371.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/393",
"block_type": "TableCell",
"html": "<td>[18] (without perspective information)</td>",
"polygon": [
[
60.9609375,
371.76953125
],
[
61.9609375,
371.76953125
],
[
61.9609375,
372.76953125
],
[
60.9609375,
372.76953125
]
],
"bbox": [
60.9609375,
371.76953125,
61.9609375,
372.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/394",
"block_type": "TableCell",
"html": "<td>2.22</td>",
"polygon": [
[
61.9609375,
371.76953125
],
[
62.9609375,
371.76953125
],
[
62.9609375,
372.76953125
],
[
61.9609375,
372.76953125
]
],
"bbox": [
61.9609375,
371.76953125,
62.9609375,
372.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/395",
"block_type": "TableCell",
"html": "<td>1.93</td>",
"polygon": [
[
62.9609375,
371.76953125
],
[
63.9609375,
371.76953125
],
[
63.9609375,
372.76953125
],
[
62.9609375,
372.76953125
]
],
"bbox": [
62.9609375,
371.76953125,
63.9609375,
372.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/396",
"block_type": "TableCell",
"html": "<td>1.37</td>",
"polygon": [
[
63.9609375,
371.76953125
],
[
64.9609375,
371.76953125
],
[
64.9609375,
372.76953125
],
[
63.9609375,
372.76953125
]
],
"bbox": [
63.9609375,
371.76953125,
64.9609375,
372.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/397",
"block_type": "TableCell",
"html": "<td>2.38</td>",
"polygon": [
[
64.9609375,
371.76953125
],
[
65.9609375,
371.76953125
],
[
65.9609375,
372.76953125
],
[
64.9609375,
372.76953125
]
],
"bbox": [
64.9609375,
371.76953125,
65.9609375,
372.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/398",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
65.9609375,
371.76953125
],
[
66.9609375,
371.76953125
],
[
66.9609375,
372.76953125
],
[
65.9609375,
372.76953125
]
],
"bbox": [
65.9609375,
371.76953125,
66.9609375,
372.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/399",
"block_type": "TableCell",
"html": "<td>[15]</td>",
"polygon": [
[
60.9609375,
372.76953125
],
[
61.9609375,
372.76953125
],
[
61.9609375,
373.76953125
],
[
60.9609375,
373.76953125
]
],
"bbox": [
60.9609375,
372.76953125,
61.9609375,
373.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/400",
"block_type": "TableCell",
"html": "<td>1.70</td>",
"polygon": [
[
61.9609375,
372.76953125
],
[
62.9609375,
372.76953125
],
[
62.9609375,
373.76953125
],
[
61.9609375,
373.76953125
]
],
"bbox": [
61.9609375,
372.76953125,
62.9609375,
373.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/401",
"block_type": "TableCell",
"html": "<td>1.28</td>",
"polygon": [
[
62.9609375,
372.76953125
],
[
63.9609375,
372.76953125
],
[
63.9609375,
373.76953125
],
[
62.9609375,
373.76953125
]
],
"bbox": [
62.9609375,
372.76953125,
63.9609375,
373.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/402",
"block_type": "TableCell",
"html": "<td>1.59</td>",
"polygon": [
[
63.9609375,
372.76953125
],
[
64.9609375,
372.76953125
],
[
64.9609375,
373.76953125
],
[
63.9609375,
373.76953125
]
],
"bbox": [
63.9609375,
372.76953125,
64.9609375,
373.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/403",
"block_type": "TableCell",
"html": "<td>2.02</td>",
"polygon": [
[
64.9609375,
372.76953125
],
[
65.9609375,
372.76953125
],
[
65.9609375,
373.76953125
],
[
64.9609375,
373.76953125
]
],
"bbox": [
64.9609375,
372.76953125,
65.9609375,
373.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/404",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
65.9609375,
372.76953125
],
[
66.9609375,
372.76953125
],
[
66.9609375,
373.76953125
],
[
65.9609375,
373.76953125
]
],
"bbox": [
65.9609375,
372.76953125,
66.9609375,
373.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/405",
"block_type": "TableCell",
"html": "<td>[13]</td>",
"polygon": [
[
60.9609375,
373.76953125
],
[
61.9609375,
373.76953125
],
[
61.9609375,
374.76953125
],
[
60.9609375,
374.76953125
]
],
"bbox": [
60.9609375,
373.76953125,
61.9609375,
374.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/406",
"block_type": "TableCell",
"html": "<td>1.70</td>",
"polygon": [
[
61.9609375,
373.76953125
],
[
62.9609375,
373.76953125
],
[
62.9609375,
374.76953125
],
[
61.9609375,
374.76953125
]
],
"bbox": [
61.9609375,
373.76953125,
62.9609375,
374.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/407",
"block_type": "TableCell",
"html": "<td>2.16</td>",
"polygon": [
[
62.9609375,
373.76953125
],
[
63.9609375,
373.76953125
],
[
63.9609375,
374.76953125
],
[
62.9609375,
374.76953125
]
],
"bbox": [
62.9609375,
373.76953125,
63.9609375,
374.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/408",
"block_type": "TableCell",
"html": "<td>1.61</td>",
"polygon": [
[
63.9609375,
373.76953125
],
[
64.9609375,
373.76953125
],
[
64.9609375,
374.76953125
],
[
63.9609375,
374.76953125
]
],
"bbox": [
63.9609375,
373.76953125,
64.9609375,
374.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/409",
"block_type": "TableCell",
"html": "<td>2.20</td>",
"polygon": [
[
64.9609375,
373.76953125
],
[
65.9609375,
373.76953125
],
[
65.9609375,
374.76953125
],
[
64.9609375,
374.76953125
]
],
"bbox": [
64.9609375,
373.76953125,
65.9609375,
374.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/410",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
65.9609375,
373.76953125
],
[
66.9609375,
373.76953125
],
[
66.9609375,
374.76953125
],
[
65.9609375,
374.76953125
]
],
"bbox": [
65.9609375,
373.76953125,
66.9609375,
374.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/411",
"block_type": "TableCell",
"html": "<td>[19]</td>",
"polygon": [
[
60.9609375,
374.76953125
],
[
61.9609375,
374.76953125
],
[
61.9609375,
375.76953125
],
[
60.9609375,
375.76953125
]
],
"bbox": [
60.9609375,
374.76953125,
61.9609375,
375.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/412",
"block_type": "TableCell",
"html": "<td>1.43</td>",
"polygon": [
[
61.9609375,
374.76953125
],
[
62.9609375,
374.76953125
],
[
62.9609375,
375.76953125
],
[
61.9609375,
375.76953125
]
],
"bbox": [
61.9609375,
374.76953125,
62.9609375,
375.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/413",
"block_type": "TableCell",
"html": "<td>1.30</td>",
"polygon": [
[
62.9609375,
374.76953125
],
[
63.9609375,
374.76953125
],
[
63.9609375,
375.76953125
],
[
62.9609375,
375.76953125
]
],
"bbox": [
62.9609375,
374.76953125,
63.9609375,
375.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/414",
"block_type": "TableCell",
"html": "<td>1.59</td>",
"polygon": [
[
63.9609375,
374.76953125
],
[
64.9609375,
374.76953125
],
[
64.9609375,
375.76953125
],
[
63.9609375,
375.76953125
]
],
"bbox": [
63.9609375,
374.76953125,
64.9609375,
375.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/415",
"block_type": "TableCell",
"html": "<td>1.62</td>",
"polygon": [
[
64.9609375,
374.76953125
],
[
65.9609375,
374.76953125
],
[
65.9609375,
375.76953125
],
[
64.9609375,
375.76953125
]
],
"bbox": [
64.9609375,
374.76953125,
65.9609375,
375.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/416",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
65.9609375,
374.76953125
],
[
66.9609375,
374.76953125
],
[
66.9609375,
375.76953125
],
[
65.9609375,
375.76953125
]
],
"bbox": [
65.9609375,
374.76953125,
66.9609375,
375.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/417",
"block_type": "TableCell",
"html": "<td>[2]</td>",
"polygon": [
[
60.9609375,
375.76953125
],
[
61.9609375,
375.76953125
],
[
61.9609375,
376.76953125
],
[
60.9609375,
376.76953125
]
],
"bbox": [
60.9609375,
375.76953125,
61.9609375,
376.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/418",
"block_type": "TableCell",
"html": "<td>1.24</td>",
"polygon": [
[
61.9609375,
375.76953125
],
[
62.9609375,
375.76953125
],
[
62.9609375,
376.76953125
],
[
61.9609375,
376.76953125
]
],
"bbox": [
61.9609375,
375.76953125,
62.9609375,
376.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/419",
"block_type": "TableCell",
"html": "<td>1.31</td>",
"polygon": [
[
62.9609375,
375.76953125
],
[
63.9609375,
375.76953125
],
[
63.9609375,
376.76953125
],
[
62.9609375,
376.76953125
]
],
"bbox": [
62.9609375,
375.76953125,
63.9609375,
376.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/420",
"block_type": "TableCell",
"html": "<td>1.69</td>",
"polygon": [
[
63.9609375,
375.76953125
],
[
64.9609375,
375.76953125
],
[
64.9609375,
376.76953125
],
[
63.9609375,
376.76953125
]
],
"bbox": [
63.9609375,
375.76953125,
64.9609375,
376.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/421",
"block_type": "TableCell",
"html": "<td>1.49</td>",
"polygon": [
[
64.9609375,
375.76953125
],
[
65.9609375,
375.76953125
],
[
65.9609375,
376.76953125
],
[
64.9609375,
376.76953125
]
],
"bbox": [
64.9609375,
375.76953125,
65.9609375,
376.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/422",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
65.9609375,
375.76953125
],
[
66.9609375,
375.76953125
],
[
66.9609375,
376.76953125
],
[
65.9609375,
376.76953125
]
],
"bbox": [
65.9609375,
375.76953125,
66.9609375,
376.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/423",
"block_type": "TableCell",
"html": "<td>[27]</td>",
"polygon": [
[
60.9609375,
376.76953125
],
[
61.9609375,
376.76953125
],
[
61.9609375,
377.76953125
],
[
60.9609375,
377.76953125
]
],
"bbox": [
60.9609375,
376.76953125,
61.9609375,
377.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/424",
"block_type": "TableCell",
"html": "<td>1.70</td>",
"polygon": [
[
61.9609375,
376.76953125
],
[
62.9609375,
376.76953125
],
[
62.9609375,
377.76953125
],
[
61.9609375,
377.76953125
]
],
"bbox": [
61.9609375,
376.76953125,
62.9609375,
377.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/425",
"block_type": "TableCell",
"html": "<td>1.26</td>",
"polygon": [
[
62.9609375,
376.76953125
],
[
63.9609375,
376.76953125
],
[
63.9609375,
377.76953125
],
[
62.9609375,
377.76953125
]
],
"bbox": [
62.9609375,
376.76953125,
63.9609375,
377.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/426",
"block_type": "TableCell",
"html": "<td>1.59</td>",
"polygon": [
[
63.9609375,
376.76953125
],
[
64.9609375,
376.76953125
],
[
64.9609375,
377.76953125
],
[
63.9609375,
377.76953125
]
],
"bbox": [
63.9609375,
376.76953125,
64.9609375,
377.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/427",
"block_type": "TableCell",
"html": "<td>1.52</td>",
"polygon": [
[
64.9609375,
376.76953125
],
[
65.9609375,
376.76953125
],
[
65.9609375,
377.76953125
],
[
64.9609375,
377.76953125
]
],
"bbox": [
64.9609375,
376.76953125,
65.9609375,
377.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/428",
"block_type": "TableCell",
"html": "<td>1.60</td>",
"polygon": [
[
65.9609375,
376.76953125
],
[
66.9609375,
376.76953125
],
[
66.9609375,
377.76953125
],
[
65.9609375,
377.76953125
]
],
"bbox": [
65.9609375,
376.76953125,
66.9609375,
377.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/429",
"block_type": "TableCell",
"html": "<td>[28]</td>",
"polygon": [
[
60.9609375,
377.76953125
],
[
61.9609375,
377.76953125
],
[
61.9609375,
378.76953125
],
[
60.9609375,
378.76953125
]
],
"bbox": [
60.9609375,
377.76953125,
61.9609375,
378.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/430",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
61.9609375,
377.76953125
],
[
62.9609375,
377.76953125
],
[
62.9609375,
378.76953125
],
[
61.9609375,
378.76953125
]
],
"bbox": [
61.9609375,
377.76953125,
62.9609375,
378.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/431",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
62.9609375,
377.76953125
],
[
63.9609375,
377.76953125
],
[
63.9609375,
378.76953125
],
[
62.9609375,
378.76953125
]
],
"bbox": [
62.9609375,
377.76953125,
63.9609375,
378.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/432",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
63.9609375,
377.76953125
],
[
64.9609375,
377.76953125
],
[
64.9609375,
378.76953125
],
[
63.9609375,
378.76953125
]
],
"bbox": [
63.9609375,
377.76953125,
64.9609375,
378.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/433",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
64.9609375,
377.76953125
],
[
65.9609375,
377.76953125
],
[
65.9609375,
378.76953125
],
[
64.9609375,
378.76953125
]
],
"bbox": [
64.9609375,
377.76953125,
65.9609375,
378.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/434",
"block_type": "TableCell",
"html": "<td>1.07</td>",
"polygon": [
[
65.9609375,
377.76953125
],
[
66.9609375,
377.76953125
],
[
66.9609375,
378.76953125
],
[
65.9609375,
378.76953125
]
],
"bbox": [
65.9609375,
377.76953125,
66.9609375,
378.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/435",
"block_type": "TableCell",
"html": "<td>[1,28]</td>",
"polygon": [
[
60.9609375,
378.76953125
],
[
61.9609375,
378.76953125
],
[
61.9609375,
379.76953125
],
[
60.9609375,
379.76953125
]
],
"bbox": [
60.9609375,
378.76953125,
61.9609375,
379.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/436",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
61.9609375,
378.76953125
],
[
62.9609375,
378.76953125
],
[
62.9609375,
379.76953125
],
[
61.9609375,
379.76953125
]
],
"bbox": [
61.9609375,
378.76953125,
62.9609375,
379.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/437",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
62.9609375,
378.76953125
],
[
63.9609375,
378.76953125
],
[
63.9609375,
379.76953125
],
[
62.9609375,
379.76953125
]
],
"bbox": [
62.9609375,
378.76953125,
63.9609375,
379.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/438",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
63.9609375,
378.76953125
],
[
64.9609375,
378.76953125
],
[
64.9609375,
379.76953125
],
[
63.9609375,
379.76953125
]
],
"bbox": [
63.9609375,
378.76953125,
64.9609375,
379.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/439",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
64.9609375,
378.76953125
],
[
65.9609375,
378.76953125
],
[
65.9609375,
379.76953125
],
[
64.9609375,
379.76953125
]
],
"bbox": [
64.9609375,
378.76953125,
65.9609375,
379.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/440",
"block_type": "TableCell",
"html": "<td>2.16</td>",
"polygon": [
[
65.9609375,
378.76953125
],
[
66.9609375,
378.76953125
],
[
66.9609375,
379.76953125
],
[
65.9609375,
379.76953125
]
],
"bbox": [
65.9609375,
378.76953125,
66.9609375,
379.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/441",
"block_type": "TableCell",
"html": "<td>[7]</td>",
"polygon": [
[
60.9609375,
379.76953125
],
[
61.9609375,
379.76953125
],
[
61.9609375,
380.76953125
],
[
60.9609375,
380.76953125
]
],
"bbox": [
60.9609375,
379.76953125,
61.9609375,
380.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/442",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
61.9609375,
379.76953125
],
[
62.9609375,
379.76953125
],
[
62.9609375,
380.76953125
],
[
61.9609375,
380.76953125
]
],
"bbox": [
61.9609375,
379.76953125,
62.9609375,
380.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/443",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
62.9609375,
379.76953125
],
[
63.9609375,
379.76953125
],
[
63.9609375,
380.76953125
],
[
62.9609375,
380.76953125
]
],
"bbox": [
62.9609375,
379.76953125,
63.9609375,
380.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/444",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
63.9609375,
379.76953125
],
[
64.9609375,
379.76953125
],
[
64.9609375,
380.76953125
],
[
63.9609375,
380.76953125
]
],
"bbox": [
63.9609375,
379.76953125,
64.9609375,
380.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/445",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
64.9609375,
379.76953125
],
[
65.9609375,
379.76953125
],
[
65.9609375,
380.76953125
],
[
64.9609375,
380.76953125
]
],
"bbox": [
64.9609375,
379.76953125,
65.9609375,
380.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/446",
"block_type": "TableCell",
"html": "<td>2.25</td>",
"polygon": [
[
65.9609375,
379.76953125
],
[
66.9609375,
379.76953125
],
[
66.9609375,
380.76953125
],
[
65.9609375,
380.76953125
]
],
"bbox": [
65.9609375,
379.76953125,
66.9609375,
380.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/447",
"block_type": "TableCell",
"html": "<td>[5]</td>",
"polygon": [
[
60.9609375,
380.76953125
],
[
61.9609375,
380.76953125
],
[
61.9609375,
381.76953125
],
[
60.9609375,
381.76953125
]
],
"bbox": [
60.9609375,
380.76953125,
61.9609375,
381.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/448",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
61.9609375,
380.76953125
],
[
62.9609375,
380.76953125
],
[
62.9609375,
381.76953125
],
[
61.9609375,
381.76953125
]
],
"bbox": [
61.9609375,
380.76953125,
62.9609375,
381.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/449",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
62.9609375,
380.76953125
],
[
63.9609375,
380.76953125
],
[
63.9609375,
381.76953125
],
[
62.9609375,
381.76953125
]
],
"bbox": [
62.9609375,
380.76953125,
63.9609375,
381.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/450",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
63.9609375,
380.76953125
],
[
64.9609375,
380.76953125
],
[
64.9609375,
381.76953125
],
[
63.9609375,
381.76953125
]
],
"bbox": [
63.9609375,
380.76953125,
64.9609375,
381.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/451",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
64.9609375,
380.76953125
],
[
65.9609375,
380.76953125
],
[
65.9609375,
381.76953125
],
[
64.9609375,
381.76953125
]
],
"bbox": [
64.9609375,
380.76953125,
65.9609375,
381.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/452",
"block_type": "TableCell",
"html": "<td>2.24</td>",
"polygon": [
[
65.9609375,
380.76953125
],
[
66.9609375,
380.76953125
],
[
66.9609375,
381.76953125
],
[
65.9609375,
381.76953125
]
],
"bbox": [
65.9609375,
380.76953125,
66.9609375,
381.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/453",
"block_type": "TableCell",
"html": "<td>[6]</td>",
"polygon": [
[
60.9609375,
381.76953125
],
[
61.9609375,
381.76953125
],
[
61.9609375,
382.76953125
],
[
60.9609375,
382.76953125
]
],
"bbox": [
60.9609375,
381.76953125,
61.9609375,
382.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/454",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
61.9609375,
381.76953125
],
[
62.9609375,
381.76953125
],
[
62.9609375,
382.76953125
],
[
61.9609375,
382.76953125
]
],
"bbox": [
61.9609375,
381.76953125,
62.9609375,
382.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/455",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
62.9609375,
381.76953125
],
[
63.9609375,
381.76953125
],
[
63.9609375,
382.76953125
],
[
62.9609375,
382.76953125
]
],
"bbox": [
62.9609375,
381.76953125,
63.9609375,
382.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/456",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
63.9609375,
381.76953125
],
[
64.9609375,
381.76953125
],
[
64.9609375,
382.76953125
],
[
63.9609375,
382.76953125
]
],
"bbox": [
63.9609375,
381.76953125,
64.9609375,
382.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/457",
"block_type": "TableCell",
"html": "<td>-</td>",
"polygon": [
[
64.9609375,
381.76953125
],
[
65.9609375,
381.76953125
],
[
65.9609375,
382.76953125
],
[
64.9609375,
382.76953125
]
],
"bbox": [
64.9609375,
381.76953125,
65.9609375,
382.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
},
{
"id": "/page/6/TableCell/458",
"block_type": "TableCell",
"html": "<td>2.07</td>",
"polygon": [
[
65.9609375,
381.76953125
],
[
66.9609375,
381.76953125
],
[
66.9609375,
382.76953125
],
[
65.9609375,
382.76953125
]
],
"bbox": [
65.9609375,
381.76953125,
66.9609375,
382.76953125
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": null
},
{
"id": "/page/6/Caption/5",
"block_type": "Caption",
"html": "<p><span id=\"page-6-0\"></span>Table 3. Mean absolute error of various methods on UCSD crowds</p>",
"polygon": [
[
177.205078125,
566.9296875
],
[
417.1847839355469,
566.9296875
],
[
417.1847839355469,
575.984375
],
[
177.205078125,
575.984375
]
],
"bbox": [
177.205078125,
566.9296875,
417.1847839355469,
575.984375
],
"children": null,
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/5/SectionHeader/3",
"2": "/page/5/SectionHeader/16"
},
"images": null
},
{
"id": "/page/6/SectionHeader/6",
"block_type": "SectionHeader",
"html": "<h1>5. Conclusion</h1>",
"polygon": [
[
48.5595703125,
594.6561584472656
],
[
119.20110321044922,
594.6561584472656
],
[
119.20110321044922,
607.1484375
],
[
48.5595703125,
607.1484375
]
],
"bbox": [
48.5595703125,
594.6561584472656,
119.20110321044922,
607.1484375
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6"
},
"images": {}
},
{
"id": "/page/6/SectionHeader/7",
"block_type": "SectionHeader",
"html": "<h2>5.1. Summary</h2>",
"polygon": [
[
49.194580078125,
619.6148376464844
],
[
115.55853271484375,
619.6148376464844
],
[
115.55853271484375,
630.73828125
],
[
49.194580078125,
630.73828125
]
],
"bbox": [
49.194580078125,
619.6148376464844,
115.55853271484375,
630.73828125
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": {}
},
{
"id": "/page/6/Text/8",
"block_type": "Text",
"html": "<p block-type=\"Text\" class=\"has-continuation\">We have proposed the use of aggregated multicolumn dilated convolutions, the AMDCN, as an alternative to the HydraCNN <a href=\"#page-8-4\">[18]</a> or multicolumn CNN <a href=\"#page-9-0\">[28]</a> for the vision task of counting objects in images. Inspired by the multicolumn approach to multiscale problems, we also employ dilations to increase the receptive field of our columns. We</p>",
"polygon": [
[
49.53076171875,
643.11328125
],
[
286.3651123046875,
643.11328125
],
[
286.3651123046875,
713.49609375
],
[
49.53076171875,
713.49609375
]
],
"bbox": [
49.53076171875,
643.11328125,
286.3651123046875,
713.49609375
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": {}
},
{
"id": "/page/6/Text/9",
"block_type": "Text",
"html": "<p block-type=\"Text\">then aggregate this multiscale information using another series of dilated convolutions to enable a wide network and detect features at more scales. This method takes advantage of the ability of dilated convolutions to provide exponentially increasing receptive fields. We have performed experiments on the challenging UCF crowd counting dataset, the TRANCOS traffic dataset, multiple splits of the UCSD crowd counting dataset, and the WorldExpo crowd counting dataset.</p>",
"polygon": [
[
308.689453125,
596.2764739990234
],
[
545.958984375,
596.2764739990234
],
[
545.958984375,
701.89453125
],
[
308.689453125,
701.89453125
]
],
"bbox": [
308.689453125,
596.2764739990234,
545.958984375,
701.89453125
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": null
},
{
"id": "/page/7/Page/267",
"block_type": "Page",
"html": "<content-ref src='/page/7/FigureGroup/228'></content-ref><content-ref src='/page/7/TableGroup/229'></content-ref><content-ref src='/page/7/Text/4'></content-ref><content-ref src='/page/7/SectionHeader/5'></content-ref><content-ref src='/page/7/Text/6'></content-ref><content-ref src='/page/7/Text/7'></content-ref><content-ref src='/page/7/Text/8'></content-ref><content-ref src='/page/7/SectionHeader/9'></content-ref><content-ref src='/page/7/Text/10'></content-ref><content-ref src='/page/7/SectionHeader/11'></content-ref><content-ref src='/page/7/ListGroup/230'></content-ref>",
"polygon": [
[
0.0,
0.0
],
[
612.0,
0.0
],
[
612.0,
792.0
],
[
0.0,
792.0
]
],
"bbox": [
0.0,
0.0,
612.0,
792.0
],
"children": [
{
"id": "/page/7/FigureGroup/228",
"block_type": "FigureGroup",
"html": "<content-ref src='/page/7/Figure/0'></content-ref><content-ref src='/page/7/Caption/1'></content-ref>",
"polygon": [
[
48.111328125,
89.18701171875
],
[
545.110595703125,
89.18701171875
],
[
545.110595703125,
284.431640625
],
[
48.111328125,
284.431640625
]
],
"bbox": [
48.111328125,
89.18701171875,
545.110595703125,
284.431640625
],
"children": [
{
"id": "/page/7/Figure/0",
"block_type": "Figure",
"html": "",
"polygon": [
[
61.259765625,
89.18701171875
],
[
527.431640625,
89.18701171875
],
[
527.431640625,
257.16796875
],
[
61.259765625,
257.16796875
]
],
"bbox": [
61.259765625,
89.18701171875,
527.431640625,
257.16796875
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": {
"/page/7/Figure/0": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHABNsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKrXxvhbf8S9bcz5HFwWC479ATWZu8Vf88tG/7+S//E1cYXV7o0jT5le6NyisPd4q/wCeWjf9/Jf/AImrmnnWDI/9pJYqmPk+zM5OffcBTdOyvdBKlZXuvvNCisbxNqk2i6YmpxgtDbyqbiNVyXjOV49MMyn8DXMWurazetb22oMgmtL2K0uHWFeZizncuQcYj8oj/f8AaszM9Aory3SLu+g0yTUbbVpHktNDs5JAyo/mOJLjKOccYwVOMN6nI56zxZrEunSWdvDetaPOsrB/3ahiu3A3SAj+L7oUsecYwaAOmorzyLxXqE9vZXE+pR2lzK+nrHZCJcXCTeV5jjI3dXdeDgbOetRzeKdTWHdFqyNevZXE09mYUP2OVXQKvAzxuIwxJOM0Aej0VwlzresWXiI6c1+jeTPBFEk5jVrpH2l32Km4n5mUFMAbMnvVb/hLLyJVkk1bdM9jcTXVosEbGylV41C44IxvIO89s5xQB6JRXmya7f3V3Zu+pNIltqpjiKyREThrR2VGZVCtl/lG3+9jlgCLA8RanLbwJZ6wt09wlr58qwofscslxFGUwBxlXfCtlhs5NAHoNFMhRo4I0eVpXVQGkYAFzjqQABz7Cn0AFFMm83yX8gIZcfLvJ2598VnZ13+5p3/fb/4U0rmc6nK7Wb9EalFZedd/uad/32/+FTWx1Xzx9qWzEWDnymYt+op8vmSq13blf3F6isvxHeXFh4cv7q0cJcRRFo2K7gD9O9c9c6vf2Wpy6dd6wYLRLoI+oyRxKyKYQ4QkrsGWzglenHUg1JsdrRXLSa7dR+B49SnmMUzusYnSNRuUy7Fkw5CqGXDZPA3ZwcYONZ+J76dfLu9YS0tkkuFW+xG/msgiMcZO0Ich2PygFgvB6mgD0KivPLbxTqMtvYTXGqJb3UsunIlp5Sf6THMIfMk5GeryDIIA2etEuv61BY6bNPqixR3kc8rzv5USxshUJGCykcgsSDydpwRQB6HRXAnxLqRkt2utRitLtrqwiWxWIYnjl8rzHG4b+ryKDxjZgjNZd74lvtRstRhj1OQwy6bcTkgRK8LI8eBtUEplWYEOxbjtigD1KiuH/wCEhvBeYi1RZp/tZgWx2RktBsyJ+Bu5GH3D5cHGK6Pw3Jdz+HrG6vrprm4uYUmZiioFLKDtAUDge+T70AatFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFY9w3iT7RJ9mj0owbjsMkkgbHbOBjNVGPN1KjHm6mxRWHu8Vf8APLRv+/kv/wATRu8Vf88tG/7+S/8AxNV7LzX3mnsf7y+83KKRc7RuxuxzjpXA3vifXLbUp7JAGaKVrLd5XBmmLNbt9FRU3dvnrMxO/ory3V552W8DXxh3W+pxxwhUVZHW5XnGMlscnB/h+ue30u6u4rnV7W6uZLoWbqY5WjUOQ0YYjCAA4OccZoA26K82tPF2ozBtupCSCSGCV7hhExtg0oV2wgKrhWztYsV4JOOtmPxLdPJLHJr6R2UctwItQ8qPEzIsRSPptOd7ngAtt+XFAHoFFeeJ4g12TRptS+2jCLZxsvloqxiWOJpJSxBxjc2M/KM5IIFPj8SX7QJ9q1iG1tgLgxXyhHE7Js2IW2hCfmf7gG7bwQQaAPQKK86j8W38t3pyi/xI72UU0DLEoYSrGWYLgu3L5DfKoIxg45hstdu7PRzEdcMb29o8sBlWN2urjzJA0J4ydu1PlXDfvOtAHpdFYXh65v76XULi8uG2pcvDHbbFAjC47gZJ5I646cVu0AFFFULg6t57fZlsjDxt81nDfjgU0rkTnyq9r+hforLzrv8Ac07/AL7f/CjOu/3NO/77f/Cny+Zn7dfyv7jUopkXmeUnmhRJgbtnTPfFcrdanqker3sqXh+z2+qW9mlr5abWSSOIsS2N2cyEjBHvmpN1qdbRXI+Gtcu9QvrNJL9btriyae8hCKv2GYFAI+BkfecYfJ+TPrWbeeK9Ri154rKf7SRPcwfYnEYOY4ZGXCjLjLoo3MwDBuF5FAHoFFefL4luvtLwxeIEubQx2rT3oijH2XzGkDngbR9xR8wO3dzmnWmvazdmQ2mofa1t4b2aPy4UzdmKQLGp46EHkrjPUYoA7+ivPLPxNqcsOJNVgNqzwCe+QxubUPv3ZIQIoJVQA2Su7JzxVe78X3yaY5h1jdMgu2hlCRItwI5CqcsDu4H3UXJznIyKAPS6K8+g1ieHVb9JdaNpBcX8bTTP5eLdDaRuu3cuFDNlQWyPkIHzEk6nhzU9V1bVf9JuytvBZxy+WkKqLgvLcIJCSMgFY0YAY6+lAHW0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVVvzfi3H9nLbNPuGRcMwXH/AAEE56U0ruw0ruxaorD3eKv+eWjf9/Jf/iaN3ir/AJ5aN/38l/8Aia09l5r7zX2P95feblFUNOOrlpP7TSyVcDZ9mZz9c7gKpeKdUutE06PULdfMjjk2zRBclwysqAe/mGP8Cazas7Gco8rsblFefxarq+oG1hupAJLe8NhJIsKgmdYZy8iZBxkeWR25NUtFu72DT/7StdVeURWWmhwVRxKWYq6scZ4yRxg5HOaRJ6bRXJeMtcuNLkigtb1rWVreWZeI1Dsu3A3ODnr9xVLHPUd88eJ7+S5t3bUUhuJLu2iTTgifvYXRGLgkbuSzDdnAxjGeaAO9orzhfE+pvFAsGspLcz2kcs8XkJ/okzTwoUxjIwHYbWyRjk9KuHXdZt/EbWBu0kaG5SBLeVkV7iMopMm1U3ZJLHcCEGMEcE0Ad3RXnKeLLuOBXbWvOaSxWa4RYI82kzSxoV5wFA3sPnJ24y2elQ/8JBqcrR3YvmnltJruO3jDRlbphbrJGhKqAxJJA24yOnrQB6ZRXB/25qE1zFZ6frovIJpLZWvkijJiZy+9Bgbc4VSAQSuec5Fd0gKoqsxYgYLHqffigB1FFRXHn+Q32YRmb+HzCQv44oE3ZXJaKy867/c07/vt/wDCjOu/3NO/77f/AAquXzMfbr+V/calFU7Q6mZT9sW0EeOPJZic/iKq+I7q6tNI8yzlEU73NtCJCobaHnRCcH2Y0mrGsJcyvaxrUVw763ewX72F9rf2K1hmuE/tCSOIM7KsTIhyuzOJHPABITjHNXr7XbuHwjpV9cyNY3V55KykKi+WzIWIJkO1OmMsD6YJIpFHVUV5q3i3UjoU1zcatHZPBa3MlvL5aMLuWOaRAvK4PyohwoUnfkYHFX5fEd8moxI2qLHcNetAdPMaZEIjZlk6buSAd2dvOMZoA7uivOLrxDrtnZWLS6nGrz6cl4sswjjWWZusQGwllXj5V+c7+tXZfEt7DqkQm1ERTm+khk0wQqxWFYnZXAwHOdqnOcHOBg0Ad1RXl7+Ir3ULSRZNZYWyPp9ybhWgzHuuVV8lVKqAMEqSxGOSQSDevfFGpwWN5cQagkl6sN601j5aH7F5SOY2Ixu6qg+YkNvyMCgD0KioLOGaC1SO4uXuZRndK6qpbn0UAD0/Cp6ACiiigAooooAKKKKACiiigAooooAKKY8qIwVickZwFJ/lTftEf+3/AN8N/hQBLRUX2iP/AG/++G/wo+0R/wC3/wB8N/hQBLRUX2iP/b/74b/Cj7RH/t/98N/hQBLRUX2iP/b/AO+G/wAKPtEf+3/3w3+FAEtFRfaYskZbI/2D/hR9oj/2/wDvhv8ACgCWiovtEf8At/8AfDf4UfaI/wDb/wC+G/woAloqL7RH/t/98N/hR9oj/wBv/vhv8KAKdxolldXwu5hMzh0kMfnuIy6YKsUztJBAPTsPQUWeiWVlefaohM0oVkTzZ3cRqxBYKGJCgkDp6DsKufaI/wDb/wC+G/wo+0R/7f8A3w3+FAEtZ1nollY3f2qITNKEZE82d5BGrEEqoYkKCQOnoPQVcFzEc4LcdfkP+FH2iP8A2/8Avhv8KAJcUVF9oj/2/wDvhv8ACj7RH/t/98N/hQBLRUX2iP8A2/8Avhv8KPtEf+3/AN8N/hQBLRUX2iP/AG/++G/wo+0R/wC3/wB8N/hQBLRUQuYj0LH/AIAf8KPtEf8At/8AfDf4UAS0VF9oj/2/++G/wo+0R/7f/fDf4UAS1R1DSrbU9nntOpQMoMM7xEq2Mg7SMg4H5VZ+0R/7f/fDf4UfaI/9v/vhv8KAKB8Pad58UojlVYjGyQrM4iygAQ7M7cjAxx2HoK1Ki+0R/wC3/wB8N/hR9oj/ANv/AL4b/CgCnPollcX4vJRMzh1k8vz38suuNrFM7SRgduwPYVo1ELmIjILEeoQ/4UfaI/8Ab/74b/CgCWiovtEf+3/3w3+FH2iP/b/74b/CgCWiovtEf+3/AN8N/hR9oj/2/wDvhv8ACgCWiovtEf8At/8AfDf4UG4jAyd//fB/woAloqL7RGRkb/8Avg/4UqTI7bQTnGcFSP50ASUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUhIUEngDk1H9oj/2/++D/AIUAS0VF9oj/ANv/AL4b/Cj7RH/t/wDfDf4UAS0VF9oj/wBv/vhv8KPtEf8At/8AfDf4UAS0VF9oj/2/++G/wo+0R/7f/fDf4UAS0VEbmIDJLAf7h/wo+0R/7f8A3w3+FAEtFRfaI/8Ab/74b/Cj7RH/ALf/AHw3+FAEtFRfaI/9v/vhv8KPtEf+3/3w3+FADbyzivrZrebeEJDZjcowIOQQQQRyKzm8Nac1usI+1LguWdLqRXk343bmDZbOB16YGMVp/aI/9v8A74b/AAo+0R/7f/fDf4UAOhhjggjhiQJFGoRFUcKAMACqmo6Ra6ns+0GddqsmYZ3iyrYyp2kZBwKsm5iHUsM/7B/wo+0R/wC3/wB8N/hQA6KKOCJIokCRooVVA4AHQU/FRfaI/wDb/wC+G/wo+0R/7f8A3w3+FAEtFRfaI/8Ab/74b/Cj7RH/ALf/AHw3+FAEtFRfaI/9v/vhv8KPtEf+3/3w3+FAEtFRfaYgQMtk9PkP+FH2iP8A2/8Avhv8KAJaKi+0R/7f/fDf4UfaI/8Ab/74b/CgCWmyRpLG8bjKOpVh6g0z7RH/ALf/AHw3+FH2iP8A2/8Avhv8KAM1PDenxxyKDdF5NmZmupDIAmSoDlsgDJ475Oc5NXrGxt9OtRb2yssYZmJZizMzEliSeSSSTk1J9oj/ANv/AL4b/Cj7RH/t/wDfDf4UAR3tjDfwCKUyKAwdWikaNlI6EFSDRY2Nvp1qttbIVjDM3zMWYsxLMSTySSSST61J9pizjLZ9Nh/wo+0R/wC3/wB8N/hQBLiiovtEf+3/AN8N/hR9oj/2/wDvhv8ACgCWiovtEf8At/8AfDf4UfaI/wDb/wC+G/woAloqL7RH/t/98N/hR9oj/wBv/vhv8KAJaKi+0xZIy2R/sH/Cg3MQBJLADqdh/wAKAJaKKKACiiigAooooAKKKKACiiigAooooAKKKY8qI21ic4zgKT/KgB9FRfaI/wDb/wC+G/wo+0R/7f8A3w3+FAEtFRfaI/8Ab/74b/Cj7RH/ALf/AHw3+FAEtFRfaI/9v/vhv8KPtEf+3/3w3+FAEtFRfaI/9v8A74b/AAo+0xEkZbI6/If8KAJaKi+0R/7f/fDf4UfaI/8Ab/74b/CgCWiovtEf+3/3w3+FH2iP/b/74b/CgCWs6TRLKXUReuJmkEglCGd/L3gbQ2zO3OPb3681c+0R/wC3/wB8N/hR9oj/ANv/AL4b/CgCnYaJZabOZoBM0nl+UplneTYmc7V3E4H09B6CtEgHqKi+0R/7f/fDf4UC5iPQsf8AgB/woAp2GiWWmzGaATNIYxErTTvJsQHO1dxOB/8AW9BWjUX2iP8A2/8Avhv8KPtEf+3/AN8N/hQBLRUX2iP/AG/++G/wo+0R/wC3/wB8N/hQBLRUX2iP/b/74b/Cj7RH/t/98N/hQBLRUX2iP/b/AO+G/wAKBcxEZBYj/cP+FAEtFRfaI/8Ab/74b/Cj7RH/ALf/AHw3+FAEtFRfaI/9v/vhv8KPtEf+3/3w3+FAFPUdEstVbN0JipQxuiTuiyIeqsFIDD6+p9TQNDshqK3xWYyK5lRGmcxq5XaWCZ2g4JHTufWrn2iP/b/74b/Cj7RH/t/98N/hQBLWcNEshqS3xEzSrIZUVp3MaOVKlghO0HBI6dz6mrn2iMf3/wDvg/4UC5jIyN2P9w/4UAS4oqL7RH/t/wDfDf4UfaI/9v8A74b/AAoAloqL7RH/ALf/AHw3+FH2iP8A2/8Avhv8KAJaKi+0R/7f/fDf4UfaI/8Ab/74b/CgCWiojcxAZJYD/cP+FH2iP/b/AO+G/wAKAJaKYkqSEhScjkggj+dPoAKKKKAOa8Tm6MixWN/crqEsRWztYMACTPMsh7oMrnPHbkkCkQ3b+KI0tdQuLny5ma+zgQRRlDsiA/v5KHjnGSeCAdS/0DSdTuRc32n29xMECCSRASFyTjPpkn86SHw9o9vfm+h063jui5kMqoA249Tn1OTQBcdit0MIz/J2x6+5p3mv/wA8JPzX/Gj/AJev+Af1qWgCLzX/AOeEn5r/AI0ea/8Azwk/Nf8AGpaKAIvNf/nhJ+a/40ea/wDzwk/Nf8alooAi81/+eEn5r/jR5r/88JPzX/GpaKAKyyP9ok/cSdF7r7+9Sea//PCT81/xqGO6jOqz2vIlWJJOehUkjj8RVui1hKSlsRea/wDzwk/Nf8aPNf8A54Sfmv8AjUtFAyLzX/54Sfmv+NHmv/zwk/Nf8alooAi81/8AnhJ+a/40ea//ADwk/Nf8alooArRSP5k37iT7/qv90e9Sea//ADwk/Nf8aIv9ZP8A7/8A7KKloAi81/8AnhJ+a/40ea//ADwk/Nf8alooAi81/wDnhJ+a/wCNHmv/AM8JPzX/ABqWigCLzX/54Sfmv+NHmv8A88JPzX/GpaKAK0EjiM/uJD87d1/vH3qTzX/54Sfmv+NFv/qz/vv/AOhGpaAIvNf/AJ4Sfmv+NHmv/wA8JPzX/GpaKAIvNf8A54Sfmv8AjR5r/wDPCT81/wAalooAi81/+eEn5r/jR5r/APPCT81/xqWigCtbyOLeP9xIePVf8ak81/8AnhJ+a/40W3/HtH/u1LQBF5r/APPCT81/xo81/wDnhJ+a/wCNS0UARea//PCT81/xo81/+eEn5r/jUtFAEXmv/wA8JPzX/GmySv5T/uJPunuv+NT0yX/Uv/umgCOOV/LX9xJ0Hdf8aA7NdJmNk+RupHqvoalj/wBUn+6KY3/H1H/uN/NaAJaKKKACiiigAooooAKKKKACiiigAooooAZN/qJP90/ypU/1a/QUk3+ok/3T/KlT/Vr9BQA6iiigAooooAKKKKAIrj/Un6j+YqWqupXCWmny3EgYpGAzbRk4yM1ZBDAEHIPIIot1FzK/L1FooooGFFFFABRRRQBFN/yz/wB8VLUU3/LP/fFS0AFFFFABRRRQAUUUUARP/r4vx/lUtRP/AK+L8f5VLQAUUUUAFFFFABRRRQBF/wAvQ/3D/Opai/5eh/uH+dS0AFFFFABRRRQAUUUUARJ/x8S/Rf60tx/x7S/7h/lSJ/x8S/Rf60tx/wAe0v8AuH+VAEg6CigdBRQAUUUUAFFFFABRRRQAUUUUAFFFFAHNW3il5/FLaR5MPE0kO0SEyoFQN5jLjG05AHPce+N5pEjujvdVygxuOO9ZMPhsRajHN9sdraK7kvY4NgyJZAwbL9SvzsQPfqQMVsD/AI+j/uD+ZoAPtMH/AD2j/wC+hR9pg/57R/8AfQqWigCL7TB/z2j/AO+hR9pg/wCe0f8A30KlooAi+0wf89o/++hR9pg/57R/99CpaKAIvtMH/PaP/voVHHcQ+dKfOj5I/iHpVmoo/wDXTfUfyoAPtMH/AD2j/wC+hR9pg/57R/8AfQqWigCL7TB/z2j/AO+hR9pg/wCe0f8A30KlooAi+0wf89o/++hR9pg/57R/99CpaKAIvtMH/PaP/voVHDcQjfmaP75/iFWazNG1a11eO8e0YssF1JA5P95cZx7c01FtXKUW02tkXvtMH/PaP/voUfaYP+e0f/fQqWikSRfaYP8AntH/AN9Cj7TB/wA9o/8AvoVLRQBF9pg/57R/99Cj7TB/z2j/AO+hUtFAEX2mD/ntH/30Kjt7iEQKDNGD/vCrNRW/+oX8f50AH2mD/ntH/wB9Cj7TB/z2j/76FS0UARfaYP8AntH/AN9Cj7TB/wA9o/8AvoVLRQBF9pg/57R/99Cj7TB/z2j/AO+hUtFAEL3EHlt++j6H+IUkVxAIUBmj+6P4hUr/AOrb6Gkh/wBTH/uj+VADftMH/PaP/voUfaYP+e0f/fQqWigCL7TB/wA9o/8AvoUfaYP+e0f/AH0KlooAi+0wf89o/wDvoUfaYP8AntH/AN9CpaKAK1xcQmBwJoycf3hUn2mD/ntH/wB9Ci4/493+lS0AQRyJJcuUdWGxehz3NT1EP+Pp/wDcX+ZqWgAooooAKKKKAIv+Xr/gH9alqL/l6/4B/WpaACiiigAooooAKKKKAMXVP9F1CDUxwIWWKY/9M34P5HafwNbVVZreO7W6t5RmOWMIw9iCKh0W4kn05UnObi3YwTe7Lxn8Rg/jVbx9DBe5Wa6S1+a0f4W+5mhRRRUm4UUUUAFFFFAEUX+sn/3/AP2UVLUUX+sn/wB//wBlFS0AFFFFABRRRQAUUUUARW/+rP8Avv8A+hGpait/9Wf99/8A0I1LQAUUUUAFFFFABRRRQBFbf8e0f+7UtRW3/HtH/u1LQAUUUUAFFFFABTJf9S/+6afTJf8AUv8A7poAWP8A1Sf7opjf8fUf+4381p8f+qT/AHRTG/4+o/8Acb+a0AS0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAyb/USf7p/lSp/q1+gpJv9RJ/un+VKn+rX6CgB1FFFABRRRQAUUUUAQXkay2kkbjcjgKwPcE1T0KR/7O+zSnMto5t3J77fun8V2n8avXH+pP1H8xWf/wAefiT0jvov/Iif4qf/AB2qjqmjCr7s4z+T+e342+81aKKKk3CiiigAooooAim/5Z/74qWopv8Aln/vipaACiiigAooooAKKKKAIn/18X4/yqWon/18X4/yqWgAooooAKKKKACiiigCL/l6H+4f51LUX/L0P9w/zqWgAooooAKKKKACiiigCJP+PiX6L/WluP8Aj2l/3D/KkT/j4l+i/wBaW4/49pf9w/yoAkHQUUDoKKACiiigAooooAKKKKACiiigAooooAKiH/H0f9wfzNS1EP8Aj6P+4P5mgCWiiigAooooAKKKKACoo/8AXTfUfyqWoo/9dN9R/KgCWiiigAooooAKKKKAMvxDfyadolxLBzdOBDbr6yudqfqQfwrH8MWKaFrt9pMZzE1tDMh/vMuY3P1O1D+NXbz/AImXi2ysxzDp0ZvJvTzGykY/Le34CmX/APovifR7zossk9m5/wB5d6/rH+tdMdI8ndN/qvy/E7IaQ9n/ADJv9V+X4nRUUUVzHGFFFFABRRRQAVFb/wCoX8f51LUVv/qF/H+dAEtFFFABRRRQAUUUUANf/Vt9DSQ/6mP/AHR/Klf/AFbfQ0kP+pj/AN0fyoAfRRRQAUUUUAFFFFAEVx/x7v8ASpaiuP8Aj3f6VLQBEP8Aj6f/AHF/malqIf8AH0/+4v8AM1LQAUUUUAFFFFAEX/L1/wAA/rUtRf8AL1/wD+tS0AFFFFABRRRQAUUUUARJ/wAfEv0X+tZ4/wBC8REdIr+PP/bVB/Vf/Qa0E/4+Jfov9ap63BJLpxlhGbi2YTxD1ZecfiMj8aqG9u5hiE+XnW8df8/vV0aNFR288d1bRXERzHIgdT7EZqSpNk01dBRRRQMKKKKAIov9ZP8A7/8A7KKlqKL/AFk/+/8A+yipaACiiigAooooAKKKKAIrf/Vn/ff/ANCNS1Fb/wCrP++//oRqWgAooooAKKKKACiiigCK2/49o/8AdqWorb/j2j/3aloAKKKKACiiigApkv8AqX/3TT6ZL/qX/wB00ALH/qk/3RTG/wCPqP8A3G/mtPj/ANUn+6KY3/H1H/uN/NaAJaKKKACiiigAooooAKKKKACiiigCvf3sOnWFxe3BIhgjMjkDJwBngVxFjr2r6za6lFZX0Mt5/aUSqttLEPIgaFHKqWBDYIdc4JJ3EDjjv6o3GjafdLMJbcEzTLO7KxVvMChQwYEEEKoGQRxQBW0W8N7oJd2uGljaWGX7RsLh0ZlYEoApwQcEDpitFJW2L+4k6e3+NRxWlvY6eba1iWKFFbao98kn3JJJJ7k1YT/Vr9BQAzzW/wCeEn/jv+NHmt/zwk/8d/xqWigCLzW/54Sf+O/40ea3/PCT/wAd/wAalooAi81v+eEn/jv+NHmt/wA8JP8Ax3/GpaKAK08rGE/uZByPT1+tUdbMhsBcxwSebaOLhenIX7w6913D8a0rj/Un6j+YqQgMCCMg8EGnF2dyKsOeDj3IY7nzY1kSKRkcBlI28g/jTvNb/nhJ/wCO/wCNUNCJitZbBz89lKYhnunVD/3yQPwrUokrOwqU+eCk/wCn1IvNb/nhJ/47/jR5rf8APCT/AMd/xqWikaEXmt/zwk/8d/xo81v+eEn/AI7/AI1LRQBWmlY+X+5k++PT/GpPNb/nhJ/47/jRN/yz/wB8VLQBF5rf88JP/Hf8aPNb/nhJ/wCO/wCNS0UARea3/PCT/wAd/wAaPNb/AJ4Sf+O/41LRQBF5rf8APCT/AMd/xo81v+eEn/jv+NS0UAVnlbz4v3Mnf0/xqTzW/wCeEn/jv+ND/wCvi/H+VS0ARea3/PCT/wAd/wAaPNb/AJ4Sf+O/41LRQBF5rf8APCT/AMd/xo81v+eEn/jv+NS0UARea3/PCT/x3/GjzW/54Sf+O/41LRQBW81vtIPkyfc6cev1qTzW/wCeEn/jv+NH/L0P9w/zqWgCLzW/54Sf+O/40ea3/PCT/wAd/wAalooAi81v+eEn/jv+NHmt/wA8JP8Ax3/GpaKAIvNb/nhJ/wCO/wCNHmt/zwk/8d/xqWigCskrefJ+5k6D0/xonlY28o8mQfIfT0+tSJ/x8S/Rf60tx/x7S/7h/lQBIOgooHQUUAFFFFABRRRQAUUUUAFFFFABRRRQAVEP+Po/7g/malqIf8fR/wBwfzNAEtFFFABRRRQAUUUUAFRR/wCum+o/lUtRR/66b6j+VAEtFFFABRRRQAUjMqIXYhVUZJPQClrD8UyPJpkemQsVn1KUWqkdVQ8yN+CBv0qoR5pJF04c8lETwsrXFlcavICJNTmNwueoi+7GP++AD9Sai8UAx6DNeqPmsbmO7H0RwW/8d3V0EcaQxJFGoVEUKqjoAOgqrcWqX2n3tpJ9ydXib6MMf1q1UXtefpf8DRVV7ZT6X/Dt9xcBBAIOQaKyfDF0954Z06aT/W+QqSf76/K36g1rVEo8snF9DKcXCTi+gUUUVJIUUUUAFRW/+oX8f51LUVv/AKhfx/nQBLRRRQAUUUUAFFFFADX/ANW30NJD/qY/90fypX/1bfQ0kP8AqY/90fyoAfRRRQAUUUUAFFFFAEVx/wAe7/SpaiuP+Pd/pUtAEQ/4+n/3F/malqIf8fT/AO4v8zUtABRRRQBzfid7sOsdhqFwl/LEVsrSADBkzzJISD+7GVznjr1JAqdZtQTxpHbzXSNZyWMkiQJHt2srxDcTk5PzH0AH4mrd/oGlandC5vbGKacIIxI2c7ck4+mSau/ZoftCXHlr5yIY1fHIUkEj6ZA/KgBrsVuhhGf5O2PX3NO81/8An3k/Nf8AGj/l6/4B/WpaAIvNf/n3k/Nf8aPNf/n3k/Nf8alooAi81/8An3k/Nf8AGjzX/wCfeT81/wAalooAi81/+feT81/xo81/+feT81/xqWigCssr/aJP3EnRe6+/vUnmv/z7yfmv+NCf8fEv0X+tS0AY2kSPaSXWmmF/3D74hlf9U+SO/Y7h+Fanmv8A8+8n5r/jWfqX+h6jZaiOE3fZpv8Adc/KT9Gx+ZrVqpa69zCh7qdP+X8un+XyIvNf/n3k/Nf8aPNf/n3k/Nf8aloqTci81/8An3k/Nf8AGjzX/wCfeT81/wAalooArRSv5k37iT7/AKr/AHR71J5r/wDPvJ+a/wCNEX+sn/3/AP2UVLQBF5r/APPvJ+a/40ea/wDz7yfmv+NS0UARea//AD7yfmv+NHmv/wA+8n5r/jUtFAEXmv8A8+8n5r/jR5r/APPvJ+a/41LRQBWglcRn9xIfnbuv94+9Sea//PvJ+a/40W/+rP8Avv8A+hGpaAIvNf8A595PzX/GjzX/AOfeT81/xqWigCLzX/595PzX/GjzX/595PzX/GpaKAIvNf8A595PzX/GjzX/AOfeT81/xqWigCtbyuLeP9xIeOuV/wAak81/+feT81/xotv+PaP/AHaloAi81/8An3k/Nf8AGjzX/wCfeT81/wAalooAi81/+feT81/xo81/+feT81/xqWigCLzX/wCfeT81/wAabJK/lP8AuJPunuv+NT0yX/Uv/umgCOOV/LX9xJ0Hdf8AGgOzXSZjZPkb7xHqvoalj/1Sf7opjf8AH1H/ALjfzWgCWiiigAooooAKKKKACiiigAooooAKKKKAGTf6iT/dP8qVP9Wv0FJN/qJP90/ypU/1a/QUAOooooAKKKKACiiigCK4/wBSfqP5ipaiuP8AUn6j+YqWgDKm/wBD8RQS9I72Mwt/vrll/Mbh+ArVrP1uB5tLkeEZngIni/3kOcfjgj8at286XVtFcRHMcqB1PsRmqeqTMKfu1JQ+a+e/46/MloooqTcKKKKAIpv+Wf8Avipaim/5Z/74qWgAooooAKKKKACiiigCJ/8AXxfj/Kpaif8A18X4/wAqloAKKKKACiiigAooooAi/wCXof7h/nUtRf8AL0P9w/zqWgAooooAKKKKACiiigCJP+PiX6L/AFpbj/j2l/3D/KkT/j4l+i/1pbj/AI9pf9w/yoAkHQUUDoKKACiiigAooooAKKKKACiiigAooooA5tYbuTxkY4NUvTbW8fn3MTMpQl8hIx8uQBhmPOeF9a3WYrdHEbP8g+7j19zTo7aGKeaaOMLLMQZGHVsDAz+FA/4+j/uD+ZoAPNf/AJ95PzX/ABo81/8An3k/Nf8AGpaKAIvNf/n3k/Nf8aPNf/n3k/Nf8alooAi81/8An3k/Nf8AGjzX/wCfeT81/wAalooAi81/+feT81/xqOOV/Ol/cSdR3X0+tWaij/1031H8qADzX/595PzX/GjzX/595PzX/GpaKAIvNf8A595PzX/GjzX/AOfeT81/xqWigCLzX/595PzX/GsKCRtS8Xz3HkyNDpkX2dBlf9c+Gc9ey7B/wI1tX97Fp2nXN7OcRQRtI30AzVHw3ZS2WiQ/aR/pdwWuLj/ro53EfhnH4VrD3YOXy/z/AK8zaHuwlP5L9fw0+Zo+a/8Az7yfmv8AjUcMr/P+4kPznuv+NWaih/5af75rIxMPw7I1vNq+n+TJ/o987qoK8JKBIO/qzflW55r/APPvJ+a/41jp/ovjmVeiX1gr/V4nIP6SL+Vbta1dZX7/ANP8TavrLm7pP/P8bkXmv/z7yfmv+NHmv/z7yfmv+NS0VkYkXmv/AM+8n5r/AI0ea/8Az7yfmv8AjUtFAEXmv/z7yfmv+NR28riBf3Eh/Ff8as1Fb/6hfx/nQAea/wDz7yfmv+NHmv8A8+8n5r/jUtFAEXmv/wA+8n5r/jR5r/8APvJ+a/41LRQBF5r/APPvJ+a/40ea/wDz7yfmv+NS0UAQvK/lt+4k6Huv+NJFK/kp+4k+6O6/41K/+rb6Gkh/1Mf+6P5UAN81/wDn3k/Nf8aPNf8A595PzX/GpaKAIvNf/n3k/Nf8aPNf/n3k/Nf8alooAi81/wDn3k/Nf8aPNf8A595PzX/GpaKAK1xK5gf9xIOPVf8AGpPNf/n3k/Nf8aLj/j3f6VLQBBGxa5fKMnyLwcep9DU9RD/j6f8A3F/maloAKKKKACiiigCL/l6/4B/Wpai/5ev+Af1qWgAooooAKKKKACiiigCJP+PiX6L/AFqWok/4+Jfov9aloAr31ql9Yz2snCyoVz6eh/CodIunvNNieXidMxzD0dThv1FXqyof9C8QTQ9Ir1POT/rouAw/EbT+BqlqmjCp7lSM++j/AE/HT5mrRRRUm4UUUUARRf6yf/f/APZRUtRRf6yf/f8A/ZRUtABRRRQAUUUUAFFFFAEVv/qz/vv/AOhGpait/wDVn/ff/wBCNS0AFFFFABRRRQAUUUUARW3/AB7R/wC7UtRW3/HtH/u1LQAUUUUAFFFFABTJf9S/+6afTJf9S/8AumgBY/8AVJ/uimN/x9R/7jfzWnx/6pP90Uxv+PqP/cb+a0AS0UUUAFFFFABRRRQAUUUUAFFFFABRUN5dwWFnNd3UgjghQySOegUDJrjrHxPqGpyyWqz28M0+qrbRGPbIbeE23n89QW+VlzyMk9cUAdpN/qJP90/ypU/1a/QVl6Pez3+iyvclWnimnt3dRgOY5GTdjtnbnHvWgk67F+STp/cNAE1FReev9yT/AL9mjz1/uSf9+zQBLRUXnr/ck/79mjz1/uSf9+zQBLRUXnr/AHJP+/Zo89f7kn/fs0AFx/qT9R/MVLVaedTCflk6j+A+tSeev9yT/v2aAJaytF/0c3enH/l1lPlj/pm/zL+WSP8AgNaHnr/ck/79msu7mW11yzuwsgSdTbS5Q9fvIfz3D/gVVHW6MK3uuNTs7fJ/8Gz+Rs0VF56/3JP+/Zo89f7kn/fs1JuS0VF56/3JP+/Zo89f7kn/AH7NABN/yz/3xUtVpp1Pl/LJ98fwGpPPX+5J/wB+zQBLRUXnr/ck/wC/Zo89f7kn/fs0AS0VF56/3JP+/Zo89f7kn/fs0AS0VF56/wByT/v2aPPX+5J/37NAA/8Ar4vx/lUtVnnXz4jtk7/wGpPPX+5J/wB+zQBLRUXnr/ck/wC/Zo89f7kn/fs0AS0VF56/3JP+/Zo89f7kn/fs0AS0VF56/wByT/v2aPPX+5J/37NAB/y9D/cP86lqt56/aQdsn3P7h9ak89f7kn/fs0AS0VF56/3JP+/Zo89f7kn/AH7NAEtFReev9yT/AL9mjz1/uSf9+zQBLRUXnr/ck/79mjz1/uSf9+zQAJ/x8S/Rf60tx/x7S/7h/lUSTr58h2ydB/AaJ51NvKNsn3D/AAH0oAsjoKKB0FFABRRRQAUUUUAFFFFABRRRQAUUUUAFRD/j6P8AuD+ZqWoh/wAfR/3B/M0AS0UUUAFFFFABRRRQAVFH/rpvqP5VLUUf+um+o/lQBLRRRQAUUUUAYHiH/Tr3TNFHK3E3n3A/6YxEMQfq2wfia36wNF/4mGtapq55jD/YrY/7EZO8j6uWH/ARW/WtTS0O35/1p8jar7todvzf9W+QVFD/AMtP981LUUP/AC0/3zWRiY+vf6PqmhX/AGjuzbv/ALsqlf8A0IJW7WN4shebwvfNEMywILiP/ejIcfqtasEyXFvFPGcpIgdT6gjIrWWtOL9V+v6m09acX2uv1/VklFFFZGIUUUUAFRW/+oX8f51LUVv/AKhfx/nQBLRRRQAUUUUAFFFFADX/ANW30NJD/qY/90fypX/1bfQ0kP8AqY/90fyoAfRRRQAUUUUAFFFFAEVx/wAe7/SpaiuP+Pd/pUtAEQ/4+n/3F/malqIf8fT/AO4v8zUtABRRRQAUUUUARf8AL1/wD+tS1F/y9f8AAP61LQAUUUUAFFFFABRRRQBEn/HxL9F/rUtRJ/x8S/Rf61LQAVma5G4slvIlJms3E6gdSB94fipNadBAIIIyD2pp2dyKkOeDiNjkSWJJI2DI4DKR3Bp1ZWiEwR3Gmsfms5NqZ7xnlP04/wCA1q0SVnYVKfPBSe/69fxCiiikaEUX+sn/AN//ANlFS1FF/rJ/9/8A9lFS0AFFFFABRRRQAUUUUARW/wDqz/vv/wChGpait/8AVn/ff/0I1LQAUUUUAFFFFABRRRQBFbf8e0f+7UtRW3/HtH/u1LQAUUUUAFFFFABTJf8AUv8A7pp9Ml/1L/7poAWP/VJ/uimN/wAfUf8AuN/NafH/AKpP90Uxv+PqP/cb+a0AS0UUUAFFFFABRRRQAUUUUAFFFFADXRJEKOoZSMFWGQay38N6WwnKW/kvNOtwZIWKMsiqEBUjp8oxjocn1Na1FAFS3soNO002tspWJFY/MxYkkkkknkkkkknqTVlP9Wv0FJN/qJP90/ypU/1a/QUAOooooAKKKKACiiigCK4/1J+o/mKlqK4/1J+o/mKloAKpavaveaXPFFxMBviPo6ncv6gVdopp2dyZwU4uL2ZXsbpb6xguk4WVA2PTParFZWlf6LeX2nHhY5POiH+w+T+jbhWrTkrPQijNygnLfr6rRhRRRUmpFN/yz/3xUtRTf8s/98VLQAUUUUAFFFFABRRRQBE/+vi/H+VS1E/+vi/H+VS0AFFFFABRRRQAUUUUARf8vQ/3D/Opai/5eh/uH+dS0AFFFFABRRRQAUUUUARJ/wAfEv0X+tLcf8e0v+4f5Uif8fEv0X+tLcf8e0v+4f5UASDoKKB0FFABRRRQAUUUUAFFFFABRRRQAUUUUAFRD/j6P+4P5mnedF53k+anm7d2zcN2PXHpTR/x9H/cH8zQBLRRRQAUUUUAFFFFABUUf+um+o/lUtRR/wCum+o/lQBLRRRQAVm6/qD6ZolzcwjdcbRHAv8AelY7UH/fRFaVYF//AMTLxVp9gOYbFDfTjtvOUiH/AKG3/ARWlJJyu9lqa0Ypzu9lq/l/nsaek6emlaTa2KHcIIwpb+8e5/E5P41cooqG23dmcpOTbfUKih/5af75qWoof+Wn++aQh8iLLG0bjKsCpHqDWN4Rdj4atYJDmS032j565iYp/JRW3WFon+ja5r1j2+0JdJ9JEGf/AB5HrWOsJL0f6fqbQ1pyXaz/AE/U3aKKKyMQooooAKit/wDUL+P86lqK3/1C/j/OgCWiiigAooooAKKKKAGv/q2+hpIf9TH/ALo/lSv/AKtvoaSH/Ux/7o/lQA+iiigAooooAKKKKAIrj/j3f6VLUVx/x7v9KloAiH/H0/8AuL/M1LUQ/wCPp/8AcX+ZqWgAooooA5vxO94rqlhqM6X8sRWytIFXmTP+skJB/djK5zgdepIFVLbUL86ja3b3kjC41aewe1wPLEaLLggYyD+7DZz0J7Yxu3/h/StTuhdXllHNOEEYkbOduSccdsk1JHo+nxagb9LSNbo/8tAO+ME46ZwAM9ccUATuxW6GEZ/k7Y9fc07zX/595PzX/Gj/AJev+Af1qWgCLzX/AOfeT81/xo81/wDn3k/Nf8alooAi81/+feT81/xo81/+feT81/xqWigCLzX/AOfeT81/xo81/wDn3k/Nf8alooArLK/2iT9xJ0Xuvv71J5r/APPvJ+a/40J/x8S/Rf61LQBF5r/8+8n5r/jR5r/8+8n5r/jUtFAGNeSPZ6zaXvkuI5h9ll5Xkk5Q9fXI/wCBVqea/wDz7yfmv+NRalZ/b9Onts7Wdfkb+6w5U/gQDSaZefb9OhuGG12XEi/3XHDD8CDVPWNzCHuVXHvqvyf6P5k3mv8A8+8n5r/jR5r/APPvJ+a/41LRUm5WilfzJv3En3/Vf7o96k81/wDn3k/Nf8aIv9ZP/v8A/soqWgCLzX/595PzX/GjzX/595PzX/GpaKAIvNf/AJ95PzX/ABo81/8An3k/Nf8AGpaKAIvNf/n3k/Nf8aPNf/n3k/Nf8alooArQSuIz+4kPzt3X+8fepPNf/n3k/Nf8aLf/AFZ/33/9CNS0ARea/wDz7yfmv+NHmv8A8+8n5r/jUtFAEXmv/wA+8n5r/jR5r/8APvJ+a/41LRQBF5r/APPvJ+a/40ea/wDz7yfmv+NS0UAVreVxbx/uJDx6r/jUnmv/AM+8n5r/AI0W3/HtH/u1LQBF5r/8+8n5r/jR5r/8+8n5r/jUtFAEXmv/AM+8n5r/AI0ea/8Az7yfmv8AjUtFAEXmv/z7yfmv+NNklfyn/cSfdPdf8anpkv8AqX/3TQBHHK/lr+4k6Duv+NAdmukzGyfI33iPVfQ1LH/qk/3RTG/4+o/9xv5rQBLRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADJv9RJ/un+VKn+rX6Ckm/1En+6f5Uqf6tfoKAHUUUUAFFFFABRRRQBFcf6k/UfzFS1Fcf6k/UfzFS0AFFFFAGVqP8AouqWF8OFZjbS/wC6/wB0/gwA/wCBVq1V1K0+3abcW2cNIhCt/dbqD+BwaTTLv7dptvckYd0+df7rDhh+BBqnrFMwh7tWUe+v6P8AT7y3RRRUm5FN/wAs/wDfFS1FN/yz/wB8VLQAUUUUAFFFFABRRRQBE/8Ar4vx/lUtRP8A6+L8f5VLQAUUUUAFFFFABRRRQBF/y9D/AHD/ADqWov8Al6H+4f51LQAUUUUAFFFFABRRRQBEn/HxL9F/rS3H/HtL/uH+VIn/AB8S/Rf60tx/x7S/7h/lQBIOgooHQUUAFFFFABRRRQAUUUUAFFFFABRRRQBwWnw3EPisGVFlujqlwzxtakMkJV9kvm/7uxeuOduMjNdswc3R2Mo+QZ3Lnv8AUVPUQ/4+j/uD+ZoANs//AD0j/wC/Z/xo2z/89I/+/Z/xqWigCLbP/wA9I/8Av2f8aNs//PSP/v2f8alooAi2z/8APSP/AL9n/GjbP/z0j/79n/GpaKAIts//AD0j/wC/Z/xqONZvOl/eR9R/AfT61ZqKP/XTfUfyoANs/wDz0j/79n/GjbP/AM9I/wDv2f8AGpaKAIj5ygkyxADkkof/AIqsLwwk91b3Wss6BtSmMqbkOREvyxjr/dG7/gRqfxTNJ/ZIsIGK3GoyLaRkdVDffb8EDH8K2IYY7eCOCJQscahEUdgBgCtfhp+v5L/g/kbfDS/xfkv+D+Q3bP8A89I/+/Z/xo2z/wDPSP8A79n/ABqWisjEi2z/APPSP/v2f8ajhWb58SR/fP8AAf8AGrNRQ/8ALT/fNABtn/56R/8Afs/41h3AmtfGtnJ5keL2zkhJ2H70bB17+jP+VdDWF4n/AHCaZqHT7JfxFm9EfMTfo+fwrWlrK3fT+vmbUNZ8ve6/y/E2Ns//AD0j/wC/Z/xo2z/89I/+/Z/xqWisjEi2z/8APSP/AL9n/GjbP/z0j/79n/GpaKAIts//AD0j/wC/Z/xqO3WbyFxJHj/cP+NWait/9Qv4/wA6ADbP/wA9I/8Av2f8aNs//PSP/v2f8alooAi2z/8APSP/AL9n/GjbP/z0j/79n/GpaKAIts//AD0j/wC/Z/xo2z/89I/+/Z/xqWigCF1n8tv3kfQ/8sz/AI0kSz+SmJI/uj/lmf8AGpX/ANW30NJD/qY/90fyoAbtn/56R/8Afs/40bZ/+ekf/fs/41LRQBFtn/56R/8Afs/40bZ/+ekf/fs/41LRQBFtn/56R/8Afs/40bZ/+ekf/fs/41LRQBWuFm8h8yR4x/cP+NSbZ/8AnpH/AN+z/jRcf8e7/SpaAIIw4uX3spOxei47n3qeoh/x9P8A7i/zNS0AMlljhiaWV1jjUZZnOAB7mhpolmSFpEErgsqFhlgMZIHfGR+YrH8W2dldeGr176wjvkgiaVYnz94A85HI/DnFcz4MlsF1wRWsOiyytHcK8+nw7WUJIoB+82EYEYGeq557AHoNFFFAEX/L1/wD+tS1F/y9f8A/rUtABRRRQAUUUUAFFFFAESf8fEv0X+tS1En/AB8S/Rf61LQAUUUUAFZVn/oWuXdoeI7kfaovr0cfntP/AAI1q1l64DDBDqKA77KTzGx3jPDj8jn8KqG9u5hiNIqp/Lr8uv4fialFIpDKGUggjII70tSbkUX+sn/3/wD2UVLUUX+sn/3/AP2UVLQAUUUUAFFFFABRRRQBFb/6s/77/wDoRqWorf8A1Z/33/8AQjUtABRRRQAUUUUAFFFFAEVt/wAe0f8Au1LUVt/x7R/7tS0AFFFFABRRRQAUyX/Uv/umn0yX/Uv/ALpoAWP/AFSf7opjf8fUf+4381p8f+qT/dFMb/j6j/3G/mtAEtFFFABRRRQAUUUUAFFFFABTFljaR41dTIgBZQeVz0yO3Q0+vNPEdnoln4rMTWeiWgn2tLJexkmQssp3j5lAVWUZxyd3UcZAPRDOZ7Iz2LQzl4y0Lb/kc4+X5hng8cjNco/iPWI1vbRY4ri9guIYvMisZcAOCWPlFtxUbSA+4Kc9eDW7pIj1LwrZq9sLWK4s0UwQ5QRqyY2rjBAA6dCKgHhmMM07anqDXp8vF2XTzFVN21cBdpHzv1U53ZPQYALOl339o6ILhp0mch1dkgaHDKSpUoxJUgjBBJ5FXUnj2L97oP4D/hVe00+HTNMe2hLsPnkZ5DlndiWZifUkk+npVxP9Wv0FADPtEf8Atf8AfB/wo+0R/wC1/wB8H/CpaKAIvtEf+1/3wf8ACj7RH/tf98H/AAqWigCL7RH/ALX/AHwf8KPtEf8Atf8AfB/wqWigCtPPGYT97qP4D6/SpPtEf+1/3wf8KLj/AFJ+o/mKloAi+0R/7X/fB/wo+0R/7X/fB/wqWigCL7RH/tf98H/CsvT5ktNUv7M7gjsLmL5T0bhh/wB9DP8AwKtmsrVv9GubHURwIpPKlP8A0zfA/Rtpqo66dzCv7qVTs/w2f+fyND7RH/tf98H/AAo+0R/7X/fB/wAKloqTcrTTxny/vffH8B/wqT7RH/tf98H/AAom/wCWf++KloAi+0R/7X/fB/wo+0R/7X/fB/wqWigCL7RH/tf98H/Cj7RH/tf98H/CpaKAIvtEf+1/3wf8KPtEf+1/3wf8KlooArPOnnxH5u/8B/wqT7RH/tf98H/Ch/8AXxfj/KpaAIvtEf8Atf8AfB/wo+0R/wC1/wB8H/CpaKAIvtEf+1/3wf8ACj7RH/tf98H/AAqWigCL7RH/ALX/AHwf8KPtEf8Atf8AfB/wqWigCt56faQfm+5/cPr9Kk+0R/7X/fB/wo/5eh/uH+dS0ARfaI/9r/vg/wCFH2iP/a/74P8AhUtFAEX2iP8A2v8Avg/4UfaI/wDa/wC+D/hUtFAEX2iP/a/74P8AhR9oj/2v++D/AIVLRQBWSdPPkPzdB/Af8KJ54zbyj5vuH+A+n0qRP+PiX6L/AFpbj/j2l/3D/KgCQdBRQOgooAKKKKACiiigAooooAKKKKAGNLGjojuqtIdqAnBY4JwPXgE/hQk0UkkkaSIzxkB1DAlSRkZHbjmuO8f2enC3tb64srBrne0a3V6hZIwI3YAgEZyRtAJxlh3wDc8Ey2j2d6llb2McKTKRJZJtRy0asQeTllztPPYdOlAHUVEP+Po/7g/malqIf8fR/wBwfzNAEtFFFABRRRQAUUUUAFRR/wCum+o/lUtRR/66b6j+VAEtFFQXt3FYWM95O22KCNpHPsBk00ruyGk27Ix4/wDiZeMpZOsGlQ+Uvp50gBb8kCj/AIGa36x/DNpLbaJHJcri7u2a6uPZ3O7H4DC/hWxV1X71lstDSs1zcq2Wn9er1CiiiszIKih/5af75qWoof8Alp/vmgCWs3xDZnUPDuo2qZ8yS3fZjs4GV/UCtKinGTi010KhJxkpLoVNLvBqOk2d6vS4hSX/AL6AP9at1heE/wB1pEtietjdTW3/AAEOSn/jrLW7VVIqM2kVVio1GlsFFFFQZhUVv/qF/H+dS1Fb/wCoX8f50AS0UUUAFFFFABRRRQA1/wDVt9DSQ/6mP/dH8qV/9W30NJD/AKmP/dH8qAH0UUUAFFFFABRRRQBFcf8AHu/0qWorj/j3f6VLQBEP+Pp/9xf5mpaiH/H0/wDuL/M1LQBS1g3o0a8OnZ+2eS3k4AJ3Y4xnjPpnj1rm/DdrqsOtvPJBcQWtykrvFJHGqooZViztGfMIDs3b5ue1bniG51Gz0ee50z7GJYlLs15IURFAJJyAenvge9Z+j65eahrr2U9zpaiGEs8NrJJI7E7CDlkUAANyBk/MM4oA6WiiigCL/l6/4B/Wpai/5ev+Af1qWgAooooAKKKKACiiigCJP+PiX6L/AFqWok/4+Jfov9aloAKKKKACmuiyRsjgMrAgg9xTqKAMvQ3ZLSSxkJMtlIYST1K9UP4qR+talZVx/oWv29x0ivF+zyf74yyH8tw/KtWqnvfuYYfSLg/s6fLp+FiKL/WT/wC//wCyipaii/1k/wDv/wDsoqWpNwooooAKKKKACiiigCK3/wBWf99//QjUtRW/+rP++/8A6EaloAKKKKACiiigAooooAitv+PaP/dqWorb/j2j/wB2paACiiigAooooAKZL/qX/wB00+mS/wCpf/dNACx/6pP90Uxv+PqP/cb+a0+P/VJ/uimN/wAfUf8AuN/NaAJaKKKACiiigAooooAKKKKACuO8SW2q3usC3WC4aw2pIJoY428tVDtJtLAt5jERqO2D9a7GuQ1HxBrWl6heLcHREt4wjRq9zJ5m1mKglVQnJIxj2OM0AdFo/wBsOjWX9o5+2+Qnn5xnfgZzjjOfTirtVNLlkn0mzmlnhuJJIUZpoB8khIB3L7HtVugBk3+ok/3T/KlT/Vr9BSTf6iT/AHT/ACpU/wBWv0FADqKKKACiiigAooooAiuP9SfqP5ipaiuP9SfqP5ipaACiiigAqC9tUvbKe1k+7KhQn0yOtT0UJ2FKKkmnsyjo9093pcLy/wCvUGOUejqdrfqKvVlWv+ia9d2vSO5UXMf+8MK4/wDQT+NatVJa6GVCTcLPdaP5f57kU3/LP/fFS1FN/wAs/wDfFS1JsFFFFABRRRQAUUUUARP/AK+L8f5VLUT/AOvi/H+VS0AFFFFABRRRQAUUUUARf8vQ/wBw/wA6lqL/AJeh/uH+dS0AFFFFABRRRQAUUVnazcSJbJaW7YubtvKjI/hH8TfgMn64ppXdiKk1CLkw0y8a+nvJgoFuJNkJ7uF4LfTOcfSrtx/x7S/7h/lUVpbx2o+zwrtjjRFUegAqW4/49pf9w/yodr6BTUlFKTuyQdBRQOgopFhRRRQAUUUUAFFFFABRRRQBheKn1FLCE6favdDzD50EaoxkGxtqndxtL7Mnrj8aZ4TtNQsLO4tL15XjikVYnlVVLHYN5UKB8m/djI/TFO16/wBYsbyy+xDTBbSyeWxu52jZmKsQowp9AeOeDxjmneGdWm1q0uLqS5spl80LGtoWIQbQeSwUnOcjjGCMZoA3KiH/AB9H/cH8zVOHWbe41OWxiiuXeJzG8ohbylYKGxv6dCPxq4P+Po/7g/maAJaKKKACiiigAooooAKij/1031H8qlqKP/XTfUfyoAlrA8R/6dPp2ijkXk3mTj/pjHhm/M7F/wCBVv1gaR/xMNf1TVTzHERY25/2UOZCPq5I/wCACtaWjc+359P8zaj7rc+359P8/kb9FFFZGIUUUUAFRQ/8tP8AfNS1FD/y0/3zQBLRRRQBhad/ovi7WLU8LcRw3iD3wY2/9AX863awtS/0XxZo110W4Sazc+pIEi/+i2/Ot2tautpd1+Wn6G1bXll3S/DT9AooorIxCorf/UL+P86lqK3/ANQv4/zoAlooooAKKKKACiiigBr/AOrb6Gkh/wBTH/uj+VZuszyOkenWzFZ7oEMw6xxj7zf0HuaNCnkFu9jcMWntCE3Hq6EZRvy4+oNVy+7cw9uva+zt8/Pe33amrRRRUm4UUUUAFFFFAEVx/wAe7/SpaiuP+Pd/pUtAEQ/4+n/3F/malqIf8fT/AO4v8zUtAGb4h+zf8I7qH2wyi38ht5ixvxj+HPGfTPFcz4XVV1iAXMd6lztuzmZ42DTeaPNLFAPmxswB8oAIHNdH4iTUZtGnh02zs7yWVSjQ3chRGUgg9FOfocfWsjw54cu9K1ZrmSxs7eIxuCy6hPdyFmZThTIoCDgk46nHpQBoeIp7+3bTZLW5SGA3sMc6+XlpA0ijAOeBgnPGTx075CapqcHiS3jme8Zp9Skt2jKL9n8jY7IUbHLfKCec53ZGMV109vDcqizRq4R1kUHsynIP4Gq8ej6fFqDX6Wsa3TEkv7kYJA6AkDkjk0ATOxW6GEZ/k/hx6+5p3mv/AM+8n5r/AI0f8vX/AAD+tS0ARea//PvJ+a/40ea//PvJ+a/41LRQBF5r/wDPvJ+a/wCNHmv/AM+8n5r/AI1LRQBF5r/8+8n5r/jR5r/8+8n5r/jUtFAFZZX+0SfuJOi919/epPNf/n3k/Nf8aE/4+Jfov9aloAi81/8An3k/Nf8AGjzX/wCfeT81/wAalooAi81/+feT81/xo81/+feT81/xqWigDO1WGW902WKOGRZhh4myvyupyp6+oFSWN/8AbrGG5SCTEig4yvB7jr2PFXaytO/0PVL3TzwjH7VD9GPzD8Gyf+BVS1jYwl7lVS6PT9V+v4FyKV/Mm/cSff8AVf7o96k81/8An3k/Nf8AGiL/AFk/+/8A+yipak3IvNf/AJ95PzX/ABo81/8An3k/Nf8AGpaKAIvNf/n3k/Nf8aPNf/n3k/Nf8alooAi81/8An3k/Nf8AGjzX/wCfeT81/wAalooArQSuIz+4kPzt3X+8fepPNf8A595PzX/Gi3/1Z/33/wDQjUtAEXmv/wA+8n5r/jR5r/8APvJ+a/41LRQBF5r/APPvJ+a/40ea/wDz7yfmv+NS0UARea//AD7yfmv+NHmv/wA+8n5r/jUtFAFa3lcW8f7iQ8eq/wCNSea//PvJ+a/40W3/AB7R/wC7UtAEXmv/AM+8n5r/AI0ea/8Az7yfmv8AjUtFAEXmv/z7yfmv+NHmv/z7yfmv+NS0UARea/8Az7yfmv8AjTZJX8p/3En3T3X/ABqemS/6l/8AdNAEccr+Wv7iToO6/wCNAdmukzGyfI33seq+hqWP/VJ/uimN/wAfUf8AuN/NaAJaKKKACiiigAooooAKKKKACuH8QKp8Wwm2jvZJwFJEbxrEs/lzeUfmGS2N3H3fuk13FcTq+g6xrGsyz3Gj6c0cW0QTJq1xbu6jd97y054Y8HpuOCcmgDpPD32b/hHNN+x+b9m+zJ5fm/fxtH3scZ9fetKqNlDcWGhQQmGB7mC2VfKg+SMsq/dXPRcjAzWDF4nvZLl9OEVm9/8Aa0tVeN28pWMbyMCDzlVjbpwcjpzgA6mb/USf7p/lSp/q1+grO0zUH1PSJJ5Y1jmR5oJUU5AeN2RsH0JXI9jV1LmDYv76Pp/eFAE1FRfaYP8AntH/AN9Cj7TB/wA9o/8AvoUAS0VF9pg/57R/99Cj7TB/z2j/AO+hQBLRUX2mD/ntH/30KPtMH/PaP/voUAFx/qT9R/MVLVae4gMJAmjPI/iHrUn2mD/ntH/30KAJaKi+0wf89o/++hR9pg/57R/99CgCWiovtMH/AD2j/wC+hR9pg/57R/8AfQoAz9b/ANHW11Ef8ukoL/8AXNvlb+YP/Aa1arTva3NvLBJLGY5EKMNw5BGDVPRb5H0yOOeZPPgJgkyw5KnGfxGD+NVvH0MF7lZr+ZX+a0/K33GhN/yz/wB8VLVaa4gPl4mj++P4hUn2mD/ntH/30Kk3JaKi+0wf89o/++hR9pg/57R/99CgCWiovtMH/PaP/voUfaYP+e0f/fQoAloqL7TB/wA9o/8AvoUfaYP+e0f/AH0KAB/9fF+P8qlqs9xB58R86PAz/EKk+0wf89o/++hQBLRUX2mD/ntH/wB9Cj7TB/z2j/76FAEtFRfaYP8AntH/AN9Cj7TB/wA9o/8AvoUAS0VF9pg/57R/99Cj7TB/z2j/AO+hQAf8vQ/3D/OparfaIPtIPnR42ddw9ak+0wf89o/++hQBLRUX2mD/AJ7R/wDfQo+0wf8APaP/AL6FAEtFRfaYP+e0f/fQo+0wf89o/wDvoUAS1k6f/p+pXGpHmKPNvbfQH52/Fhj6LS6xfqtottbToLm6byo2DD5M/eb8Bk/XFW7Y2lpbRW8MsaxxqFUbh0FWtI37nPL95VUekdfn0+7f7iVP+PiX6L/WluP+PaX/AHD/ACqJLiDz5D50eMD+IUT3EBt5QJoySh/iHpUHQWR0FFA6CigAooooAKKKKACiiigAooooA5fxysb6VAv+l/aC7iEWrIrEeU+/JcEAbN/PXOMc1N4V+z51Dy4545PMjykhXCx+WvlhNv8ADtx15znPameKdP1TVTbWlvpthd2RbdI817JBIh2sPlKKSvUDIJJyRjBzVjwxpNxpFnPFcW9tBvlDIsNxJOSNoGXkkAZjx6cAAUAUotBuF8SRXcen21qUu5J5byKUlriNlYBCp5zllJB+Ubcjrx0bIHujksMIPusR39qnqIf8fR/3B/M0AHkJ/ek/7+N/jR5Cf3pP+/jf41LRQBF5Cf3pP+/jf40eQn96T/v43+NS0UAReQn96T/v43+NHkJ/ek/7+N/jUtFAEXkJ/ek/7+N/jUccCedLzJ1H/LRvT61ZqKP/AF031H8qAM/XbldL0W6u08xpVTbCnmN80jHag692IFP0jSI9L0i1st8jNFGA7CRhufqzde5JP41S1L/iY+J9N04cxWgN/OPcfLEP++izf8ArfrWXuwUe+v8Al/XmbT92mo99f8v1+8i8hP70n/fxv8aPIT+9J/38b/GpaKyMSLyE/vSf9/G/xo8hP70n/fxv8alooAi8hP70n/fxv8ajhgQ7+ZPvn/lo3+NWaih/5af75oAPIT+9J/38b/GjyE/vSf8Afxv8alooA57xZCsOjLfAyZsbmG55kb7quA3f+6Wrc8hP70n/AH8b/GotSs11DS7uyb7txC8R/wCBAj+tVvDl41/4b065f/WPAgkz2cDDfqDWr1pryf5/8MzZ60l5P8/+GZe8hP70n/fxv8aPIT+9J/38b/GpaKyMSLyE/vSf9/G/xqO3gQwKcyf9/G/xqzUVv/qF/H+dAB5Cf3pP+/jf40eQn96T/v43+NS0UAReQn96T/v43+NHkJ/ek/7+N/jUtFAEXkJ/ek/7+N/jTZUhhieWSR1jRSzMZWwAOp61PWRqP/Exv49LXmFQJrs/7OflT/gRH5A+tOKuzOrPkjdb9PX+vwGaXameObU5xIstyP3al2zHEPur179T7mmahCtk9pqilwiARXOHbmNu/X+E8/Qmtt/9W30NRiNJrMRSKGR49rKe4I5qub3rmbofuuRPXe/nvf7xfIT+9J/38b/GjyE/vSf9/G/xqjo0rxxS6dOxaazYJuPV4z9xvy4+oNadS1Z2Nac+eKl/XmReQn96T/v43+NHkJ/ek/7+N/jUtFIsi8hP70n/AH8b/GjyE/vSf9/G/wAalooArXECCBzmTp/z0b/GpPIT+9J/38b/ABouP+Pd/pUtAEEaBLlwCx+RerE9z61PUQ/4+n/3F/maloAoa5cXNpoV/cWYzcxQO8Y2b/mA4+XufbvWR4ev/tV8V/tzUr790T5V1p3kKORzu8pefbPetjWYrybRb2KwcpdvCwhYNtIbHGD2Pv2rB0Czki1pZbPTNT06zEDrcrfXG8SyErtwN78jDZbjOe/YA6yiiigCL/l6/wCAf1qWov8Al6/4B/WpaACiiigAooooAKKKKAIk/wCPiX6L/WpaiT/j4l+i/wBaloAKKKKACiiigArK1n/RmtdTH/LrJiX/AK5Nw35cN/wGtWo54UuIJIZV3RyKUYeoIwacXZ3M60HODit+nr0/ESL/AFk/+/8A+yipaytAkkNnLBO2Z7aUwyHudoADfiMH8a1aGrOw6c1OCkuoUUUUiwooooAKKKKAIrf/AFZ/33/9CNS1Fb/6s/77/wDoRqWgAooooAKKKKACiiigCK2/49o/92paitv+PaP/AHaloAKKKKACiiigApkv+pf/AHTT6ZL/AKl/900ALH/qk/3RTG/4+o/9xv5rT4/9Un+6KY3/AB9R/wC4381oAlooooAKKKKACiiigAooooAK5HW9UuYNfltpNVvtPtlgjeI2mn+eJCS27c3lvgjA4469+3XVyWv2UkutSS3mmanqNq0CLaixuPLETgtuyN6YJyuG56du4B0MKC80ZIzdXDCaAL9ox5Upyv3sYG1u/QYPaso+F2kuPt02pzyakrRGK58tBsEYcAbQMHIlkz67uMYFamkR3cOjWUV+++8SBFmbOcuAM89+e9XaAKFlp6aZpTWySPIcySPI+Mu7sXZjjjlmJ4q6n+rX6Ckm/wBRJ/un+VKn+rX6CgB1FFFABRRRQAUUUUARXH+pP1H8xUtRXH+pP1H8xUtABRRRQAUUUUAFZUf+h+IpY+kd7EJV/wCuiYDfmpX8jWrWXrqmO0jvkBL2Ugm46lOjj/vkn8qqG9u5hiNI8/8ALr/n+Fy/N/yz/wB8VLUMjBliZSCC4II71NUm4UUUUAFFFFABRRRQBE/+vi/H+VS1E/8Ar4vx/lUtABRRRQAUUUUAFFFFAEX/AC9D/cP86lqL/l6H+4f51LQAUUUUAFFFZ2sXEkdqttbti6um8mI/3c/eb8Bk/lTSu7EVJqEXJkVh/wATDU7jUTzDHm3tvcA/O34kY+i1rVFbW8dpaxW8K7Y4lCqPYVLTk7smjBwjru9X6/1t5ESf8fEv0X+tLcf8e0v+4f5Uif8AHxL9F/rS3H/HtL/uH+VSakg6CigdBRQAUUUUAFFFFABRRRQAUUUUAYPim+ubG2sjDcz2sUtz5c89vbGd0XYxGF2t1YKCcHGfxqfw9c/abOVv7Su7/EmPMurXyGXgcAbFyPfFReJ7e4uLS1EcFzc2qT7rq3tZfLkkj2sAAcrkBipIyMgd+hb4Ytp7eC83W11a2bzA2tvdS+ZJGu0A/wATYBbJC5OPbOAAb1RD/j6P+4P5mpaiH/H0f9wfzNAEtFFFABRRRQAUUUUAFRIcSzE+o/lUtYHiS4kTTZ7S3bbc38qWkRHVS4wzfgu5vwqoR5pKJdOHPJR7i+GB9sS91puuoTlovaFPlj/MAt/wKt6ora3jtLWK2hXbFEgRFHYAYAqWnUlzSbQVZ8821t+nQKKKKggKKKKACoof+Wn++alqKH/lp/vmgCWiiigArC8M/uP7V088fZL+TavokmJR/wChkfhW7WFB/ovje7j/AIb2ySYf70bFW/R0/KtYaxkvn93/AALm1PWMo+V/u/4FzdooorIxCorf/UL+P86lqK3/ANQv4/zoAlooooAKKKKAK99eR2FlLcyZKoOFHVj0AHuTgVBpVnJa2rSXBBu7hvNnYf3j2HsBgD6VXb/iaa0F62lg2T6PNjgf8BB/M+1a9W9FY54fvKjn0Wi/V/p9/ca/+rb6Gkh/1Mf+6P5Ur/6tvoaSH/Ux/wC6P5VB0GZqv+g3Vvqy/dj/AHVz7xMev/ATg/QmtamyxpNE8UihkdSrKe4PUVm6NI8ccunTMWms2CBj1eM/cb8uPqDV7x9DnX7urbpL8/8Agr8malFFFQdAUUUUARXH/Hu/0qWorj/j3f6VLQBEP+Pp/wDcX+ZqWoh/x9P/ALi/zNS0AZt5qEtvrmm2KKhiulmLkg5GwKRj86ztJ8QXOoyeHy8cSLqWnS3cqqD8rL5OADnp+8b9KZ4zn0W3tLV9Y0tb4GQrDvCqkbEclnchUHuT9M1neCtLiN/capDp+k6fFEXtUhsk3seVOTLxkcDgKPqaAO3ooooAi/5ev+Af1qWov+Xr/gH9aloAKKKKACiiigAooooAiT/j4l+i/wBalqJP+PiX6L/WpaACiiigAooooAKKKKAMe8tpobuXU7FS06MFlhH/AC3TaOP94dj+HetK1uob22juIH3RuMg/0PvSxf6yf/f/APZRWXcq2jXb38Sk2UpzdRqP9Wf+egH/AKF+dWveVupzS/cy518L38vP/P7+99mikVldAysGVhkEHIIpag6QooooAKKKKAIrf/Vn/ff/ANCNS1Fb/wCrP++//oRqWgAooooAKKKKACiiigCK2/49o/8AdqWorb/j2j/3aloAKKKKACiiigApkv8AqX/3TT6ZL/qX/wB00ALH/qk/3RTG/wCPqP8A3G/mtPj/ANUn+6KY3/H1H/uN/NaAJaKKKACiiigAooooAKKKKACuc0fxDc6g+jJNFEDfWU9xIUyNrRvEoA56HzD+VdHXld0ug6hfraaR4a0qKZ7n7M818B5iMc/N5Cnfjj+IrmgD0Lw7fzar4a0vUbgIJrq0imkCDChmQE49smtKq2nWg0/TLWzBQiCFYsomxTtAHCjoOOnarNADJv8AUSf7p/lSp/q1+gpJv9RJ/un+VKn+rX6CgB1FFFABRRRQAUUUUARXH+pP1H8xUtRXH+pP1H8xUtABRRRQAUUUUAFNdFkjZHAKsCCD3FOooAx9IdlsEs5CTLZz/Z2J6kD7p/FStbFY04Np4khYf6u+UA/9dE6fmpP/AHzWzVT3v3MMPpDkf2dP8vwsFFFFSbhRRRQAUUUUARP/AK+L8f5VLUT/AOvi/H+VS0AFFFFABRRRQAUUUUARf8vQ/wBw/wA6lqL/AJeh/uH+dS0AFFFFABWTYf8AEw1SfUTzDFm3tvQ4Pzt+JGPovvUusXMkVqtvbNi6um8mI/3c9W/AZP4VctbaOztYraFdscShVHsKtaRv3OeX7yqo9I6v16fdv9xLRRRUHQRJ/wAfEv0X+tLcf8e0v+4f5Uif8fEv0X+tLcf8e0v+4f5UASDoKKB0FFABRRRQAUUUUAFFFFABRRRQBzt/4gubO41RFiiZbSW0jTOckSuqtnntnitDTr+a61XV7aQII7OdI48DkgxI5z+LGuV8XTaCNYeC40C0vdTaEOJb11hjYAHADHJcjHRVPvitvwbpn9n6KJvKsoftu248qzgMaICowOSSx9z+QoA6Goh/x9H/AHB/M1lf295nimPSIYN8PlSNJcZ4Ei7PkA74Dgk9sgeuNNpEjujvdVygxuOO9AE9FRfaYP8AntH/AN9Cj7TB/wA9o/8AvoUAS0VF9pg/57R/99Cj7TB/z2j/AO+hQBLRUX2mD/ntH/30KPtMH/PaP/voUAS1gCCS98aNK6MLbT4MxkjAaWQYJHrhRj/gdbX2mD/ntH/30KjjuIfOlPnR8kfxD0qoy5blwny3sWaKi+0wf89o/wDvoUfaYP8AntH/AN9CpIJaKi+0wf8APaP/AL6FH2mD/ntH/wB9CgCWiovtMH/PaP8A76FH2mD/AJ7R/wDfQoAlqKH/AJaf75o+0wf89o/++hUcNxCN+Zo/vn+IUAWaKi+0wf8APaP/AL6FH2mD/ntH/wB9CgCWsLXP9G1rQb7sLlrV/wDdlQ4/8eVK2PtMH/PaP/voVi+LJI38NXcsUiNLbbbqMBhndGwfj/vmtKPxpd9Pv0NqH8RLvp9+hv0VBHeW0sSSJPGVcBgdw6GnfaYP+e0f/fQrMxJait/9Qv4/zo+0wf8APaP/AL6FR29xCIFBmjB/3hQBZoqL7TB/z2j/AO+hR9pg/wCe0f8A30KAJao6rePZ2n7kBrqZhFAh7uf6Dkn2FWftMH/PaP8A76FZNlPDqGpyai8qeTDmG1BYc/33/EjA9h71UV1ZjWk7KEd3+Hd/L87GlYWaWFlHboS20ZZz1djyWPuTk1ZqL7TB/wA9o/8AvoUfaYP+e0f/AH0KTd3dmkYqKUY7Ie/+rb6Gkh/1Mf8Auj+VMe4g8tv30fQ/xCkiuIBCgM0f3R/EKRRPWTqv+hXVvqy/dj/dXHvEx6/8BOD9M1o/aYP+e0f/AH0KbLJazRPFJJEyOpVlLDkHrTi7Mzqw542W/T1J+tFY+jXaRQyafPOhltG2KxYfPH/A35cH3BrT+0wf89o/++hQ1Z2HTnzxUv68yWiovtMH/PaP/voUfaYP+e0f/fQpFhcf8e7/AEqWq1xcQmBwJoycf3hUn2mD/ntH/wB9CgAH/H0/+4v8zUtQRyJJcuUdWGxehz3NT0AY/iGTXoraJtDtbO5O4ieO4JyVx/CMgE/Uiue8KLHF4knjdLKxvDAzy2NvBLbk8r85QsY2/wB5QevWug8RaJda5BDDb6vc6eqMTJ5HHmj0JBBx9DUOgeHJNClfbeQyQsp3JHZpEWb+8WHJPXr60AP8RT6hbNpslrcpDA17DHOvl5aQNIowDngYJzxk8dKx7bVdSbxUjPNP/Z8moTWgc7PJYLG2EVcbw4dW+Y8HaeeQB189vDcqizRq4R1kUHsynIP4GqqaLpyaib9bRBc7i+/nAYjBYDoGI4JxnFAFh2K3QwjP8n8OPX3NO81/+feT81/xo/5ev+Af1qWgCLzX/wCfeT81/wAaPNf/AJ95PzX/ABqWigCLzX/595PzX/GjzX/595PzX/GpaKAIvNf/AJ95PzX/ABo81/8An3k/Nf8AGpaKAKyyv9ok/cSdF7r7+9Sea/8Az7yfmv8AjQn/AB8S/Rf61LQBF5r/APPvJ+a/40ea/wDz7yfmv+NS0UARea//AD7yfmv+NHmv/wA+8n5r/jUtFAEXmv8A8+8n5r/jR5r/APPvJ+a/41LRQBWilfzJv3En3/Vf7o96kMjEEG3kIPUHb/jRF/rJ/wDf/wDZRUtAGFBK+iXIt3ik/s6ZsQEkfuXP8B5+6e3p09K2PNf/AJ95PzX/ABouLeK6t5IJ0DxSDaynuKz7C4ls7kaXeuXbBNtM3/LVB2P+0O/qOfWrfvK/U5o/uZcj+F7eXl6dvu7Gh5r/APPvJ+a/40ea/wDz7yfmv+NS0VB0kXmv/wA+8n5r/jR5r/8APvJ+a/41LRQBWglcRn9xIfnbuv8AePvUnmv/AM+8n5r/AI0W/wDqz/vv/wChGpaAIvNf/n3k/Nf8aPNf/n3k/Nf8alooAi81/wDn3k/Nf8aPNf8A595PzX/GpaKAIvNf/n3k/Nf8aPNf/n3k/Nf8alooArW8ri3j/cSHj1X/ABqTzX/595PzX/Gi2/49o/8AdqWgCLzX/wCfeT81/wAaPNf/AJ95PzX/ABqWigCLzX/595PzX/GjzX/595PzX/GpaKAIvNf/AJ95PzX/ABpskr+U/wC4k+6e6/41PTJf9S/+6aAI45X8tf3EnQd1/wAaA7NdJmNk+RvvY9V9DUsf+qT/AHRTG/4+o/8Acb+a0AS0UUUAFFFFABRRRQAUUUUAFed66dbl3nxFpWkLawsTHeLbSzCMdiGRxIh9TtAHrXolcWfAt1JdtdXOvPeS7yyG8tVmEfptVjtXHsBQB0enzeV4ctpoW+27bRXRoXLefhcjazEk57EnvyaxrvxfPpy3EV7Y20V3E8ChReExHzd2Az7MhgEYkbTwVxnNdA0Fz/ZZt0uwt15OwXPlA4fGN+zp15xWLp/h/VNPsBBHq1t5qyiYSiyP7xsEMZcyEuTkcgqQQO3FAGrY3v8AaOjJd5tz5iMc283mx9xw2Bn8hzxVtJY9i/vF6DvVHTtN/svSpIDL5sjvLNJJt2hndmdsDnAyxwMn6nrV5I02L8i9B2oAXzY/+ei/nR5sf/PRfzpfLT+4v5UeWn9xfyoATzY/+ei/nR5sf/PRfzpfLT+4v5UeWn9xfyoATzY/+ei/nR5sf/PRfzpfLT+4v5UeWn9xfyoAinljMJw69R396k82P/nov51HcRp5J+Reo7e9S+Wn9xfyoATzY/8Anov50ebH/wA9F/Ol8tP7i/lR5af3F/KgBPNj/wCei/nR5sf/AD0X86Xy0/uL+VHlp/cX8qAE82P/AJ6L+dHmx/8APRfzpfLT+4v5UeWn9xfyoApalBBewxxtMUZZAySRvhkbnkfnVVNVl05xDqrI0ZOEvI/uH/fH8J9+n0rSmjT938i/fHapDFGylWjQg8EFetUpdGYzpXfPB2f4P1X9MBNEQCJEIPfcKPNj/wCei/nWS2mT6Yxl0tVeHOWspDhf+AH+E+3T6Vcsb20v1YRrslTiSGRdrofcf16UOPVBCrd8k1Z/n6P+n5FrzY/+ei/nR5sf/PRfzpfLT+4v5UeWn9xfyqTYTzY/+ei/nR5sf/PRfzpfLT+4v5UeWn9xfyoAieWPz4vnXv39qk82P/nov51G8aefF8i9+3tUvlp/cX8qAE82P/nov50ebH/z0X86Xy0/uL+VHlp/cX8qAE82P/nov50ebH/z0X86Xy0/uL+VHlp/cX8qAE82P/nov50ebH/z0X86Xy0/uL+VHlp/cX8qAIvNj+1A71+4e/vUnmx/89F/Oo/LT7UPkX7h7e9S+Wn9xfyoATzY/wDnov50ebH/AM9F/Ol8tP7i/lWdrEphtFgtwourpvJhOPuk9W/AZP4U0ruxFSahFyZFZSJf6rPqDOvlQ5t7fJ64Pzt+JGP+A+9avmx/89F/Oo7azgtLWK3ijURxqFXI9Kl8tP7i/lTk7vQmjBwj7271fr/W3kJ5sf8Az0X86PNj/wCei/nS+Wn9xfyo8tP7i/lUmpEksfny/OvRe/1ouJYzbS/Ov3D39qEjTz5fkXovb60txGn2aX5F+4e3tQBMOgooHQUUAFFFFABRRRQAUUUUAFFFFAHK+JW8QtcPDBpWnX2kOg3CWIzOD33IWUEfTJ9qf4INv/ZlyttPbuiTlTFAJVEBwPk2SklPoMDnpRrvhO51vUftDa1cR2uwKLIpuhz3JXIDZ/2s1raLpsulWX2aS4jmUN8git1hVBjoFXigCqnhXTIdbg1SCJopovNbarttZpCCzEZ65B/OtYf8fR/3B/M1LUQ/4+j/ALg/maAJaKKKACiiigAooooAKij/ANdN9R/Kpaij/wBdN9R/KgCWiiigAooooAKKKKACoof+Wn++alqKH/lp/vmgCWiiigApk0STwSQyDKSKVYeoIwafRQGxi+E5Xk8MWSSHMtuptpP96Nih/wDQa2qwtC/0fVtdsOyXQuU/3ZUBP/jwet2tK3xt99fv1Nq/8Rvvr9+oVFb/AOoX8f51LUVv/qF/H+dZmJLRRTZJEhieSRgqICzMegA6mgG7Gdq80jrFp1uxW4u8qWHWOMffb8uB7kVfhhjt4I4YlCxxqFVR2ArP0iN7hpdVnUrJc48pW6xxD7o+p+8fr7VqVctPdOeiuduq+u3p/wAHf8OgUUUVB0DX/wBW30NJD/qY/wDdH8qV/wDVt9DSQ/6mP/dH8qAH0UUUAZOq/wChXNvqy/di/dXHvEx6/wDATg/TNa3WmyRpNE8UihkdSrKehB6is3RpHijl02Zi01mwQMerxn7jflx9QavePoc6/d1bdJfn/wAFfkzUoooqDoIrj/j3f6VLUVx/x7v9KloAiH/H0/8AuL/M1LUQ/wCPp/8AcX+ZqWgAooooAKKKKAIv+Xr/AIB/Wpai/wCXr/gH9aloAKKKKACiiigAooooAiT/AI+Jfov9alqJP+PiX6L/AFqWgAooooAKKKKACiiigCKL/WT/AO//AOyipaii/wBZP/v/APsoqWgAqrf2MeoWxiclGBDRyL96Nh0Ye9WqKadtUTKKknGWzM/Tb6SYyWl2Al9BjzAOjjs6+x/Q8VoVQ1Kxe5EdxbMI72DJic9D6q3+yf8A69SaffJf2+8KY5UOyWJusbjqD/j3FNq+qMqcnGXs579H3X+a6/f6W6KKKk3Irf8A1Z/33/8AQjUtRW/+rP8Avv8A+hGpaACiiigAooooAKKKKAIrb/j2j/3alqK2/wCPaP8A3aloAKKKKACiiigApkv+pf8A3TT6zL7VVR5LSziN1dhfmRDhY/d26D6dfamk3sROpGCvJmjH/qk/3RTG/wCPqP8A3G/mtOhz5Me7Gdozj6U1v+PqP/cb+a0iyWiiigAooooAKKKKACiiigAooooAKKKKAGTf6iT/AHT/ACpU/wBWv0FJN/qJP90/ypU/1a/QUAOooooAKKKKACiiigCK4/1J+o/mKlqK4/1J+o/mKloAKKKKACiiigAooooAim/5Z/74qWopv+Wf++KloAKpX2mQ3rLLlobmP/V3ERw6/wCI9jxV2imm1qiZwjNcsldGSmpT2DrDqyqqk4S7QYjf/e/uH68e9awORkdKa6JIjI6hkYYKsMgisk2V3pR36b++tf4rN2+7/wBc2PT/AHTx9KrSXkzG86W/vR/Ff5/n6mxRVWy1C3v42aFiHQ4kjcbXjPow7VaqWmtGbRlGS5ou6In/ANfF+P8AKpaif/Xxfj/KpaRQUUUUAFFFFABRRRQBF/y9D/cP86lqL/l6H+4f51LQAVk2X/Ew1afUDzDBm3t/Q8/O34kY/wCA+9TaxcyQ2iw25xdXLeTD7E9W/AZP4VatLaOztIraEYjiUKv4Va0jfuc8v3lVR6R1fr0/z+4moooqDoCiiigCJP8Aj4l+i/1pbj/j2l/3D/KkT/j4l+i/1pbj/j2l/wBw/wAqAJB0FFA6CigAooooAKKKKACiiigAooooAKKKKACoh/x9H/cH8zUtRD/j6P8AuD+ZoAlooooAKKKKACiiigAqKP8A1031H8qlqKP/AF031H8qAJaKKKACiiigAooooAKih/5af75qtqd81pCkcCh7udtkCHue5PsByao2uhvbxs9rfzxXe4mSQncsrdyyHj8sH3qlFWu2YSqyUuWEb23/AK7/AHG5RWT/AGrPZfLqtt5af8/MGXiP17r+PHvWnFLHPGskUiyRsMhlOQfxpOLRcKsJ6Lft1+4fRRRSNDCl/wBF8cQP0W+sWjPu8Thh+kjflW7WF4k/0eTSNQHH2a/jVm9EkBiP6uD+Fbtaz1jF/wBaf8CxtU1jGXlb7v8AgWCorf8A1C/j/Opait/9Qv4/zrIxJayNS/4mN9FpS8xACa7I/uZ+VP8AgRH5A+tX727jsLOW5lztjGcDqx7Ae5OBUGk2kltbNLcYN3cN5s5HZj0UewGB+FXHRcxz1ffkqXzfp2+f5XL9FFFQdAUUUUANf/Vt9DSQ/wCpj/3R/Klf/Vt9DSQ/6mP/AHR/KgB9FFFABWTqo+xXNvqy/di/dXHvEx6/8BOD9M1rU2SNJonjkUMjgqynoQeopxdmZ1Yc8bLfp69B3UZFFZejSPFHLpszFpbMhAx6vGfuN+XH1BrUokrOw6c+eKl/XmRXH/Hu/wBKlqK4/wCPd/pUtIsiH/H0/wDuL/M1LUQ/4+n/ANxf5mpaACiiigAooooAi/5ev+Af1qWov+Xr/gH9aloAKKKKACiiigAooooAiT/j4l+i/wBalqJP+PiX6L/WpaACiiigAooooAKKKKAIov8AWT/7/wD7KKlqKL/WT/7/AP7KKloAKKKKACsvULaa3uP7TsULTKMTwj/lug/9mHb8q1KKadmZ1KanGz/4YhtbmG8to7iBw8UgypFTVjXCnRbt72ME2EzZuYwP9U3/AD0A9P735+tbCsHUMpBUjII6EU5K2q2FSqOV4y+Jb/5ryf8AwCO3/wBWf99//QjUtRW/+rP++/8A6EalqTUKKKKACiiigAooooAitv8Aj2j/AN2paitv+PaP/dqWgAooooAKhuru3soDNcyrHGO7dz6D1PtVK41UyTta6bELq4U4ds4ii/3m9fYc/SnWulBJxd3spu7wdHYYWP2Rei/Xr71fLbWRg6rk+Wlr59F/n6L5tEH+n6v/AM9LCyP4TyD/ANkH6/Sr8Vpb2Vk0NtEscYU8L3PqfU+9WaZL/qX/AN00nK+hUKSi+Z6vv/Wwsf8Aqk/3RTG/4+o/9xv5rT4/9Un+6KY3/H1H/uN/Nak1JaKKKACiiigAooooAKKKKACiiigAoqO4m+z20s5jkkEaF9ka7mbAzgDufasI+KGS4NlNpkyaiWiWO38xDv8AMDkfMDgYEUhI7beM5FAG9N/qJP8AdP8AKlT/AFa/QVSstQTU9Ka5SN4zmSN43xlHRijKcccMp5q6n+rX6CgB1FFFABRRRQAUUUUAQ3JCwEkgDI5P1FTVU1K1gvdOmtbmMSQygK6nuCaytPvLjR76PRtUlaWOTixvH/5aj/nm5/56Ad/4h75q4w5k7bmkYc0W1uunkdBRRRUGYUUUUAFFFFAEU3/LP/fFS1FN/wAs/wDfFS0AFFFFABRRRQBRvdLiu5FnR2t7tBhLiLhh7H+8PY1BFqctnItvqyLEzHalyn+qkP8A7KfY/ga1aZLFHNE0cqK8bDDKwyCKpS6MwlSs+em7P8H6/wCe41/9fF+P8qlrENle6ZPGNOdZ7fnFtO5Gz/cfnj2NTjXIImCX8M1i/TM6/Ifo4yv60+S+2oLEKOlT3X+H37fr5GpRTUkSVA8bq6HkMpyDTqg33CiiigAooooAi/5eh/uH+dS1F/y9D/cP86qaxdSQWghtzi6uWEMPsT1b8Bk/hTSu7EVJqEXJ9CGy/wCJhq09+eYbfNvb+hOfnb8wF/4CfWtaobS1jsrSK2hGI4lCipqcnd6E0YOMfe3er9f60XkFFFFSahRRRQBEn/HxL9F/rS3H/HtL/uH+VIn/AB8S/Rf60tx/x7S/7h/lQBIOgooHQUUAFFFFABRRRQAUUUUAFFFFABRRRQAVEP8Aj6P+4P5mudmuLu08UWDC+mms7u4khkOUMSkIxWIKPmDApksfcHqAOgZit0cRs/yD7uPX3NAE9FRea/8Az7yfmv8AjR5r/wDPvJ+a/wCNAEtFRea//PvJ+a/40ea//PvJ+a/40AS0VF5r/wDPvJ+a/wCNHmv/AM+8n5r/AI0AS1FH/rpvqP5Uea//AD7yfmv+NRxyv50v7iTqO6+n1oAs0VF5r/8APvJ+a/40ea//AD7yfmv+NAEtFRea/wDz7yfmv+NHmv8A8+8n5r/jQBLUdxPFa28k8zhIo1LMx7Ck81/+feT81/xrIaRtZ1AKIXawtH+YZX97KO3XlV/n9KqKvuZVajirR3e39dkWNMglnmfVLtCs8y7Yoz/yxj7D6nqfy7Vfh/5af75o81/+feT81/xqOGV/n/cSH5z3X/Gk3dlU6ahG39Ms1mS6LGkjT6fK9jOxyfKGUc/7SdD9eD71e81/+feT81/xo81/+feT81/xoTa2CdOM/iRnf2nc2Py6pbbUH/L1bgvH/wACH3l/Ue9acM0VxEssMiSRtyGQ5B/Gm+a//PvJ+a/41mzaWolaexSeyuG5LQldrn/aTOD/AD96r3X5GVqtPb3l+P37P529R3iW0a98NajBH/rTAzR/76jcv6gVdsLtb/TrW8T7s8Syj6MAf61nf2re2KH+1LFzGOPtFuNy49WXOV/Ue9VfB1yD4eS3jRpFtJZLdWVlIKq5245/u7atxfs/R/n/AMMjpp1oVKTit09uuv8Awy12OjqK3/1C/j/OjzX/AOfeT81/xrOu9Qks9OXyoGa4lby4FJGGc5x36DqfYVkld2InNQi5PZCP/wATTWhH1tLBgzejzY4H/AQc/Uj0rXqjp9ubCyjt1hlYjl3JXLseSx57nNWfNf8A595PzX/GnJ9EZ0YNLmlu9X/l8iWiovNf/n3k/Nf8aPNf/n3k/Nf8ak2JaKi81/8An3k/Nf8AGjzX/wCfeT81/wAaAHv/AKtvoaSH/Ux/7o/lTHlfy2/cSdD3X/GkilfyU/cSfdHdf8aAJ6Ki81/+feT81/xo81/+feT81/xoAloqLzX/AOfeT81/xo81/wDn3k/Nf8aAM7Vh9iubfVl+7F+6uMd4mPX/AICcH6ZrWByMioJD5sTxyWzsjgqykrgg9e9Z2j3EsMcmmzRyNLaEKCSuWjP3D19OPqDV7x9DnX7urbpL8/8Agr8madx/x7v9KlqtcSuYH/cSDj1X/GpPNf8A595PzX/GoOgB/wAfT/7i/wAzUtQRsWuXyjJ8i8HHqfQ1PQAUUUUAYniG41C2bTXtLiOKBr2GOcFNzuGkVdoPQDBOeM/Sq6xXsnjLyoNWvGtbePz7mF/LKZckRxrhM9mY854X1rentobpUWeMOEdZFB7MpyD+BFJHawwzzTxxhZZyDI3diBgfpQAjsVuhhGf5P4cevuad5r/8+8n5r/jR/wAvX/AP61LQBF5r/wDPvJ+a/wCNHmv/AM+8n5r/AI1LRQBF5r/8+8n5r/jR5r/8+8n5r/jUtFAEXmv/AM+8n5r/AI0ea/8Az7yfmv8AjUtFAFZZX+0SfuJOi919/epPNf8A595PzX/GhP8Aj4l+i/1qWgCLzX/595PzX/GjzX/595PzX/GpaKAIvNf/AJ95PzX/ABo81/8An3k/Nf8AGpaKAIvNf/n3k/Nf8aPNf/n3k/Nf8alooArRSv5k37iT7/qv90e9Sea//PvJ+a/40Rf6yf8A3/8A2UVLQBF5r/8APvJ+a/40ea//AD7yfmv+NS0UARea/wDz7yfmv+NHmv8A8+8n5r/jUtFAEJkZgQbeQg8EHb/jWRBK+iXK2skUn9nzNi3YkfumP/LM89PT8vSt2orm3iu7eS3nQPFIMMp71UXbR7GVWm5WlH4lt/l6P/gkcEriM/uJD87d1/vH3qTzX/595PzX/Gsq1g1m1g8uGe0uY0ZgpnDK5G49WGQT74qb7fqkf+u0cuB1NvcK36Nto5ezJVdL4otfJv8AK5f81/8An3k/Nf8AGjzX/wCfeT81/wAaof27An/HxaX1v7vbMR+a5FSRa7pUzbU1C3Df3WcKfyPNHJLsNYii9OZFvzX/AOfeT81/xo81/wDn3k/Nf8aejrIu5GDKe4ORTqk2IvNf/n3k/Nf8aPNf/n3k/Nf8aloJAGScAUAVreVxbx/uJDx1yv8AjUnmv/z7yfmv+NMsZorixilhlSSNl4dGBB/EVSl1SS6la30mNZ3U4e4b/VRn6/xH2H4kVSi2RUqRp/Fv26li81OGwiElwjoCcKPlLMfQAHJP0qiy6hqrf6RFNaWR6QxsolkH+02flHsOferlnpUdvN9pnka5vCMGeTqB6KOij2H61fp3UdjLknV/iaLt/m/0WnqVoES1gWGCzaOJRhVXaAP1qTzX/wCfeT81/wAaloqDdJJWRF5r/wDPvJ+a/wCNNklfyn/cSfdPdf8AGp6ZL/qX/wB00DI45X8tf3EnQd1/xoDs10mY2T5G+9j1X0NSx/6pP90Uxv8Aj6j/ANxv5rQBLRRRQAUUUUAFFFFABRRRQAUUUUAQ3SztaTLauiXBQiJ5FyqtjgkdxmuZtPDeqQQQvJcWT31vdC7WfY+Z5Njxv5hJ7q5AxwuBgYGK6yigDM0zT30zSJIZZFkmd5p5XUYBeR2c4HoC2B7CrqW0Gxf3MfQfwinzf6iT/dP8qVP9Wv0FADPs0H/PGP8A75FH2aD/AJ4x/wDfIqWigCL7NB/zxj/75FH2aD/njH/3yKlooAi+zQf88Y/++RR9mg/54x/98ipaKAK09vCISRDGOR/CPWor/SLHUrKS1ubdDG46qMMp7EHsR1Bqzcf6k/UfzFS002ndDTcXdHO6XcNZ3o0XVkja5wTa3RQAXSD+TjuPxHHTd+zQf88Y/wDvkVX1TS7fVrI20+5SCHjlQ4eJx0ZT2IqlpGqXH2ltI1XaupRLuWRRhbmP/novv6r2PsRWkkprmjv1X6m0kqi5479V+q/Xt6bav2aD/njH/wB8ij7NB/zxj/75FS0VkYEX2aD/AJ4x/wDfIo+zQf8APGP/AL5FS0UAVpreEeXiGP74/hFSfZoP+eMf/fIom/5Z/wC+KloAi+zQf88Y/wDvkUfZoP8AnjH/AN8ipaKAIvs0H/PGP/vkUfZoP+eMf/fIqWigCL7NB/zxj/75FH2aD/njH/3yKlooArPbw+fEPJjwc/wipDa25BBgiIPYoKH/ANfF+P8AKpaAMmbw7YM5kt1a0l/vW52g/Vfun8qj+z6lZ9be01CMd1URSflyp/Stqiq5311MPq8FrD3fT/Lb8DIi1TS2kEVxELSY9I7mLYT9CeD+BNaQt7cjIhix/uinSxRzxmOWNJEPVXGQfwrNOhxwHdp1zPZH+7G26P8A74bI/LFHuvyC9aG9pL7n/k/vRofZoP8AnjH/AN8ij7NB/wA8Y/8AvkVn/adWs/8Aj4tI7yMf8tLU7X/FGP8AI1NbaxY3UvkrN5c//PGZTG/5HGfwo5GNV4N2ej89P+H+RN9nh+0geTHjZ02j1rOsoIb/AFa4vfKQ28GbeAbRhjn52/P5fwPrUusXUluqxW5/0q4Hkw+zE/e/AZP4VftLWOys4raIYjiUKPf3+tNaRv3Jl+8qKPSOr9en+f3C/ZoP+eMf/fIo+zQf88Y/++RUtFQdBF9mg/54x/8AfIo+zQf88Y/++RUtFAEX2aD/AJ4x/wDfIo+zQf8APGP/AL5FS0UAVkt4fPkHkx4wP4RRPbwi3lIhjBCH+EelSJ/x8S/Rf60tx/x7S/7h/lQBIOgooHQUUAFFFFABRRRQAUUUUAFFFFABRRRQBRTRtOj1E362cQuiS3mY/iIwWA6AkcE9cVZH/H0f9wfzNS1EP+Po/wC4P5mgCWiiigAooooAKKKKACoo/wDXTfUfyqWoo/8AXTfUfyoAlooooAKKKrX97HYWjTuCx4VEXq7HgKPcmmlfREykopylsirqlzK8kem2b7bmcZaQf8sY+7/XsPf6VetbaKzto7eBNsUa7VFVdLspLaOSe5Ia8uDvmYdB6KPYDj9e9X6cn0RlSi2/aT3f4L+t/wDgBUUP/LT/AHzUtRQ/8tP981JuS0UUUAFFFFABXKW+nY8W6xFDcTWkzJDdQtGflIYFWBU8Ebkz/wACrq6wr/8A0XxhpNwOFuoZrRvqMSL/AOgv+da0nul1X5a/oVGlCqnGSvo/lbXTtsT/ANoXthxqVt5kQ/5erVSy/Vk6r+GRUOk/8TO7OpHm3hDRWv8Atc/O/wCPQewPrW5UVsMW649/51PMrbanL7GXMryvFa2/LXy++/UloooqDoCiiigAooooAa/+rb6Gkh/1Mf8Auj+VK/8Aq2+hpIf9TH/uj+VAD6KKKACiiigArJ1YfYri31Zfuw/u7jHeJj1/4CcH6ZrWpskaSxtHIoZHBVlPQg04uzM6sOeNlv09egy4ObdyOmKlrG06R4rS502ZiZbMhVY9XjP3G/Lj6g1s0SVnYKU+eKl/XmRD/j6f/cX+ZqWoh/x9P/uL/M1LSNAooooAKKKKAIv+Xr/gH9alqL/l6/4B/WpaACiiigAooooAKKKKAMa/1W40zUHeXT5ZrAou6e3+dozz96PGdvuM/StGyvrXUbZbmzuI54W6PG2R/wDr9qen/HxL9F/rWXe+HYJblr3T5pNOv25aeADEn/XRD8r/AI8+4rRcklZ6P+v6/Q1Xs5Kz0ff/AD/4H3GzRXPjXbvSiI/EFqIo+gv7cFoD/vDrH+OR71uxSxzRLLE6yRsMqynII9QaUoOO+xM6coavbv0H0UUVBAUUUUARRf6yf/f/APZRUtRRf6yf/f8A/ZRUtABRRRQAUUUUAFFFFAEVv/qz/vv/AOhGpait/wDVn/ff/wBCNS0AFRywQzrtmiSQejqD/OpKKBNJqzM1/D+lMxZbGONj3hzGf/HcU3+xdn/HvqWoQ+g87zB/4+DWpVTUdStdKs2ubuTYgIVQBlnY9FUDkk+gq1KbdlqZLC0pO0Y6+Wj/AAKVwupafbyXEmsW3kxrudrq3AAHqSrD+VYjNrfiW2iea0C6UWO6FJDC90vYnPIQ/wB3gnvxWlb6bda3cR3+tx+Xbo2+204nIQ9nl7M/oOi+55roa151T21f5f13+42dFUf4c3zd73t6Xvr5/d3OKTwxevbyXFiILBZNpOnq7eVNjrv2kBSfVR9c1u6RrFrcN/Z7250++hX5rKQAED1Qjhl9x+OK07b/AI9o/wDdqtqek2erQLHdRnch3RSodskTf3lYcg1PtefSf9f5lU1D/l5dt/a6/wDDeWnkXqK50ajqHh8+XrObqwHC6jGnzIP+myjp/vjj1ArfiljmiWWJ1kjcbldTkEeoNRKDjr0KnTcdd13H0UUVBmFMl/1L/wC6afTJf9S/+6aAFj/1Sf7opjf8fUf+4381p8f+qT/dFMb/AI+o/wDcb+a0AS0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAyb/USf7p/lSp/q1+gpJv8AUSf7p/lSp/q1+goAdRRRQAUUUUAFFFFAEVx/qT9R/MVLUVx/qT9R/MVLQAVn6vpMWrWyqZGhuIm8y3uE+/C/Yj27EdCOK0KKcZOLuioycXdGRo+rS3Mkun6giwapbgGWNfuyL2kT1U/oeDWvWZrGkDUo45oJfs9/bkvbXIGSh7gjup6Ed6TRtXOopLBcxfZ9RtiFubcnO09mU91PUH+orSUVJc8fmu3/AADScVJc8Pmu3/A/LbtfUooorIxIpv8Aln/vipaim/5Z/wC+KloAKKKKACiiigAoqhqesWWkohuZD5khxFBGpeSU+iqOTWb9j1bXudRd9N089LOB/wB9IP8AppIPuj/ZX860jTbXM9F/WxrGk2uaWi/rbuPvPFOkWupJbyXOfLYrNKiFo4SegdxwpPv+OK3QQwBBBB5BFUo9Ps7WGGygtYo7UKy+UqDbjHOR3rKNjfeGyZNKR7vTOr6fnLwjuYSe3+wfwI6VXLCWkdH59f8AIrlpz0ho/Pr/AJf1r36Oiqun6laaraLc2cwkjJwexUjqGB5BHoatVk007MxacXZhRRRSEFQ3NpbXkXl3MEcyejqDU1FF7CcVJWZl22j2tpqaTRmY7I2EaSSF1jyRnbnp0rUqL/l6H+4f51LTbb3JhTjTVoKwUUUUiwooooAKKKKAIk/4+Jfov9aW4/49pf8AcP8AKkT/AI+Jfov9aW4/49pf9w/yoAkHQUUDoKKACiiigAooooAKKKKACiiigAooooAKiH/H0f8AcH8zUtRD/j6P+4P5mgCWiiigAooooAKKKKACoo/9dN9R/Kpaij/1031H8qAJaKKKAEJCgkkADkk1kWQOrXo1KQH7LFlbNT/F2Mn49B7c96W/ZtTvDpURIgUBrxwf4T0jHu3f2+tayqqKFUBVAwABwBV/CvNnP/Fn/dj+L/4H5+gtFFFQdAVFD/y0/wB81LUUP/LT/fNAEtFFFABRRRQAVheK/wBzplvf/wDPjeQ3B/3dwV//AB1mrdqnq9kNS0a9sj/y8QPH+JUirpyUZps0oyUaib2LlRW/+oX8f51T0C9Oo+H9PvG+/Lboz57Nj5h+eauW/wDqF/H+dTKLi2mTKLjJxfQlooopEhRRRQAUUUUANf8A1bfQ0kP+pj/3R/Klf/Vt9DSQ/wCpj/3R/KgB9FFFABRRRQAUUUUAY+swyQywajApZk/dTKoyWiY/+ynB/Otiorj/AI93+lS027oiMOWTa6kQ/wCPp/8AcX+ZqWoh/wAfT/7i/wAzUtIsKKKKACiiigCL/l6/4B/Wpai/5ev+Af1qWgAooooAKKKKACiiigCJP+PiX6L/AFqWok/4+Jfov9aloAQgEEEAg9QawpfDrWUrXGgXP2CRjua3K7raQ+6fwn3XH41vUVUZyjsXCpKGxhQeIxBOlprdudNuWO1HZt0Ep/2JOmfZsGt2o54IbqB4LiJJYnGGR1DKw9waw/7Gv9H+fQbkNbjrp92xMf0jflk+nI9hV2hPbR/h/wAD+tS7U57e6/w/4Hz+86Cisiw8Q211ciyuo5LDUMf8etzgFvdG6OPcH8q16iUXF2ZnOEoO0kRRf6yf/f8A/ZRUtRRf6yf/AH//AGUVLUkhRRRQAUUUUAFFFFAEVv8A6s/77/8AoRqWorf/AFZ/33/9CNS0AFFFY+qa08FyNO02EXWqOuRGThIV/vyHsvt1PaqjFydkVCDm7In1bWIdLSNNj3F3MdtvaxcvKf6AdyeBVXTtHme8XVdYdJ9QwRFGv+qtQf4UB6n1Y8n2HFT6Toqae8l1cTG71GYfvrpxgkf3VH8KjsB+OTWpVuSiuWH3/wBdDRzUFy0/m/8ALy/P8AooorIxIrb/AI9o/wDdqWorb/j2j/3aloACARgjINc/Lot1pMr3Xh9kRGO6XTpDiGQ9yh/5Zt9OD3Heugoq4zcdi4VHDbYzdL1u21QvCA9veRf660mG2SP8O49CMg1pVnapotrqoR5d8VzFzDcwttliPsfT2PB7is9NYvNFdbfXwpgJ2x6lEuI29BIP+WZ9/un1HSq5FPWG/b/Lv+Zp7ONTWnv2/wAu/wCfrudDTJf9S/8AumnKwZQykEEZBHemy/6l/wDdNZGAsf8Aqk/3RTG/4+o/9xv5rT4/9Un+6KY3/H1H/uN/NaAJaKKKACiiigAooooAKKKKACiiigBGYKpZiAoGST2rEXxVp8unS31us88SXItVCJhpHOPu7iOOc5OOBnpW5XN3Gg3DQXQa00++Euo/axBdZ2lNgXrg4YEZ6Edu+QAbcc5udPMzQSwFkP7uXG4deuCR+tTp/q1+grK0XTZNJ0E2svlq26WQRxElIgzswRcgfKoIA4HToOlaKW8Wxfl7epoAmoqL7PF/d/U0fZ4v7v6mgCWiovs8X939TR9ni/u/qaAJaKi+zxf3f1NH2eL+7+poALj/AFJ+o/mKlqtPbxCEkL3Hc+tSfZ4v7v6mgCWiovs8X939TR9ni/u/qaAJaydY0mS7eK+sJFg1S2B8mU/dde8b+qn9DyK0fs8X939TR9ni/u/qaqMnF3RUJuDuinpGrR6rbuTG0F1C3l3Ns5+aJ/Q+oPUHoRWjWFq+iO0yanpYVNRhGCrMQtwn/PN/6HsfbNWtKvLPVrPz4UZGViksLkh4nHVWHYiqnFNc8dvyNJwTXPDb8v66F6b/AJZ/74qWq01vEPL+X+MdzUn2eL+7+prMxJaKi+zxf3f1NY99rFtDdNYafbPqGoDrDE+Fi95H6IP19AaqMHJ2RUISm7RNqaaK3heaaRI4kGWd2ACj1JNYJ1bUNbOzQohDang6lcIdp/65IeX+pwv1pIPDRvJRc69Mt5IDlLVMi3iPsp++f9pvwArd+zRAYCfqau8Ibav8P+D/AFua3hT295/h/wAH8vUo6ZodppkjzjfcXkgxLdztulf2z2HsMD2rTqL7PF/d/U0fZ4v7v6ms5ScndmUpSk7yYP8A6+L8f5VLVZ7eLz4ht9e5qT7PF/d/U0iTK1DQ3a7bUtJmWz1HHzkjMVwB/DIvf/eHI/SpNL1xL2drG7haz1KMZe2kOdw/vI3R19x07gVo/Z4v7v6mqWpaHY6pAEnjZXQ7opo2KyRN/eVuxrVTUlyz+82VRSXLU+/qv81/SNKiuZivptFlS017DQMQsOpLlUb0Eo/gb3+6fbpXQi3iIyF/U1M4OJE6bhvt3JaKi+zxf3f1NH2eL+7+pqCA/wCXof7h/nUtVvs8X2kDbxs9T61J9ni/u/qaAJaKi+zxf3f1NH2eL+7+poAloqL7PF/d/U0fZ4v7v6mgCWiovs8X939TR9ni/u/qaABP+PiX6L/WluP+PaX/AHD/ACqJLeLz5Bt7DuaJ7eIW8pC/wHufSgCyOgooHQUUAFFFFABRRRQAUUUUAFFFFABRRRQBGJ4TOYBKhmA3GPcNwHrikH/H0f8AcH8zXIQyadeeMkiggNqbS6kkMjQP5l1MUZW+bGBGAT35IAAAAz1rBzdHYyj5Bncue/1FAE9FRbZ/+ekf/fs/40bZ/wDnpH/37P8AjQBLRUW2f/npH/37P+NG2f8A56R/9+z/AI0AS0VFtn/56R/9+z/jRtn/AOekf/fs/wCNAEtRR/66b6j+VG2f/npH/wB+z/jUcazedL+8j6j+A+n1oAs1R1O+a0hSOBRJdztsgQ9z3J9gOTUtxM1rbyTzTxJFGpZmMZ4H51Q022up5W1S6KpPMu2ONkP7qPsOvBPU/l2qorqzCrJt+zhu/wAF3/y/4DL2n2K2FoIgxdyS8kjdZHPVjVqots//AD0j/wC/Z/xo2z/89I/+/Z/xpN3d2axioRUY7IloqLbP/wA9I/8Av2f8aNs//PSP/v2f8aRRLUUP/LT/AHzRtn/56R/9+z/jUcKzfPiSP75/gP8AjQBZoqLbP/z0j/79n/GjbP8A89I/+/Z/xoAloqLbP/z0j/79n/GjbP8A89I/+/Z/xoAloqLbP/z0j/79n/GjbP8A89I/+/Z/xoAx/C/7iDUNP6fY76VFHojHzF/Rx+VbFv8A6hfx/nWHbLNa+NL+HzI8XlpHcD5D95CUbv6FK2LdZvIXEkeP9w/41rW1lfvr/XzNq+s+bvZ/5/iWaKi2z/8APSP/AL9n/GjbP/z0j/79n/GsjEloqLbP/wA9I/8Av2f8aRjKiF3miVVGSShAA/76oAmqG7vLaxtnuLueOCFBlnkYKB+NYR1691GQw6BDFdgHDXkiFLdPo2cufZePcVLbeGz9qW91O7Go3inKPNH8kR/2EBwv15PvWvs1H49PLr/wDb2SjrUdvLr/AMD5/cRvqeqa0jDSLf7JaEf8f13GcsP+mcRwT9WwPY06KHxNZxIYrqw1GPaDtnjMD/Tcu4f+Oitp1n8tv3kfQ/8ALM/40kSz+SmJI/uj/lmf8aPaLZJW/rruHtktFFW/rrv91jJ/4SKe141PRNQtQOskSC4j+uY8t+airljr2lam22z1C3lk7xhwHH1U8j8qubZ/+ekf/fs/41SvtGtNTXF9a2dx6GS3yR9DnIovTe6t6f8AB/zDmpS3VvT/ACf+ZpUVzo8Ly2xzpms3tiB0jDGWP/vmQtj8MU5/+Ersx8v9makg74a3kP4ZZT+lHs4v4Zffp/wPxD2cX8Ml89P+B+J0FFc7/wAJM9vxqdjeafjq8lqZI/8AvuNmH54rSsdTttTTfY6lZ3I7+Ud2PrhuKmVOcVdrQmVKcVdrT8PvLdx/x7v9KlqtcLN5D5kjxj+4f8ak2z/89I/+/Z/xqDMB/wAfT/7i/wAzUtQRhxcvvZSdi9Fx3PvU9ABRRRQBieIbjULVtNe0uI4oGvYY5wU3O4aRV2g9AME54J+lZFhrOoT+IFkuHu47R9RnskXbGYW2Bwox98E7N271yMYwa624tobpUWeMOEkWRQezKcg/gRVVdF09NSOoLbAXO4vu3HAYjaWC52hiON2M44zQBYdit0MIz/J/Dj19zTvNf/nhJ+a/40f8vX/AP61LQBF5r/8APCT81/xo81/+eEn5r/jUtFAEXmv/AM8JPzX/ABo81/8AnhJ+a/41LRQBF5r/APPCT81/xo81/wDnhJ+a/wCNS0UAVllf7RJ+4k6L3X396k81/wDnhJ+a/wCNCf8AHxL9F/rUtAEXmv8A88JPzX/GjzX/AOeEn5r/AI1LRQBF5r/88JPzX/GjzX/54Sfmv+NS0UAUb+zttUtjb3unmeInOH28H1BzkH3FZIh1zRSPsQl1OxH/AC73MiieMf7Emfm+jc/7VdJRVxqNK267GkKsorl3XZ/1+Rz9l4r0qa4lheY21yX5t7orDIDgDG1iM9O2a2xMzAFYZCD0IK/41C9rb3gnjubeKeMv92VAw+6OxrNPhHSkJaySfT39bKdoh/3yDt/Sq/dvuvx/yK/dS7r8f8jY81/+eEn5r/jR5r/88JPzX/Gsf+zdetP+PPXEuVHSO/tgx/77j2n9DR/aeu2n/H5oQuFHWSwuVf8A8dfaf1NHsr/C0/w/Owexv8Mk/nb87Gx5r/8APCT81/xo81/+eEn5r/jWQvi7SUYJeSTae5/hvYGhH/fTDafwNa9vdW93EJLaeKaM9GjcMPzFTKnKPxIiVKcNZKwea/8Azwk/Nf8AGjzX/wCeEn5r/jUtFQQVoJXEZ/cSH527r/ePvUnmv/zwk/Nf8aSEhYWZiAA7kk9vmNYL3l14mkaDTJXttKB2y3y8PP6rD6D1f8vWrhBy16GkKblrsl1HXms3moXMum6HEfOjbbc3jBWS39hzhn/2e3f0q/penwaTbGK3t5md23yzSMrSSv3ZmzyauWVlbadaR2tpCsMEYwqKOB/ifep6cpq3LHb8/Uc6ityQ0X5+v+XT8SLzX/54Sfmv+NHmv/zwk/Nf8alorMyIvNf/AJ4Sfmv+NHmv/wA8JPzX/GpaKAK1vK4t4/3Eh49V/wAak81/+eEn5r/jRbf8e0f+7UtAEXmv/wA8JPzX/GjzX/54Sfmv+NS0UARea/8Azwk/Nf8AGkdvMRke1dkYYZW2kEeh5qaigDmf7P1DQn83Q4Xls85fTZXUKvqYmz8v+6fl+laNjrltqtvN9njlEkWVlhkAWSI+jKTkf17Vq1k6vodvqH+lI72t/EpEd3AcOB6Hsy/7JyK151P49+/+f9X9TfnjU0qb9/8APv67+pfjlfy1/cSdB3X/ABoDlrpMxsnyN97HqvoafAGFvGGbcwUZOMZOKRv+PqP/AHG/mtZGBLRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADJv9RJ/un+VKn+rX6Ckm/1En+6f5Uqf6tfoKAHUUUUAFFFFABRRRQBFcf6k/UfzFS1Fcf6k/UfzFS0AFFFFABRRRQAVh6rp1zbXn9s6QgN4FC3FvnC3aDsfRx/C34HjpuUVUJuLui4TcHdFC01G21Wygu7Vy0bPghhhkYdVYdiDwRTtS1Wy0mAS3kwTcdqIAWeRvRVHLH2FZepaNeRaj9u0W5htZbhgtykqFo3OOJAAR84/UdelXNN0G2sJzdyvJeag4w93cHL49F7IvsMVo401719O3X+v6saONJe9fTt1/wAvn+BT8rWNf5uDJpOnH/lijf6TKP8AaYcRj2GT7itix0+00y1W2srdIIV/hQdT6n1Puas0VEqjastF2InVclyrRdgoooqDMKKKKAIn/wBfF+P8qlqJ/wDXxfj/ACqWgAooooAZLFHPE8U0ayRuCrI4yGHoRXPG1vvDR36ekt9pI+9Z53S249YifvL/ALB59D2rpKKuE3HTdGkKjjpuuxWsNQtdTtEurOZZoW6MvY9wR1BHoas1iX+iSpdvqWjSra37cyow/c3PtIB3/wBocj36VPpetxX8r2k8TWmoxDMtpKfmA/vKejL7j8cU5QTXNDb8V/XcqVNNc0NV+K/rv+Rf/wCXof7h/nUtRf8AL0P9w/zqWszEKKKp3uq6dpq7r6+trYf9NZQufzppNuyGouTskXKKwv8AhK7Sb/kH2eoah729swT/AL7fav60fa/Et1/qNMsrFf713cGRv++UGP8Ax6tPYyW+nqa+wmvi09dPw3N2mSzRQRmSaRI0HVnYAD8TWL/Yuq3P/H/4huAveOyiSBfzO5v1p8XhPREkEstkLuUf8tLx2nbPr85NHLBby+5f52DkpreV/Rf52Len6lY6jPcmyu4LkRlVcwuGAPPGRVu4/wCPaX/cP8qZBGkUkiRoqIAuFUYA60+4/wCPaX/cP8qzdr6GUrX93YkHQUUDoKKQgooooAKKKKACiiigAooooAKKKKACoh/x9H/cH8zUtRD/AI+j/uD+ZoAlooooAKKKKACiiigAqKP/AF031H8qlrH1C5me6bTbNitzPgtIP+WMeOX+vYe/0ppXdiKlRQjzMG/4nOo7Oun2j/N6TSjt7qv8/pWxUVtbRWdtHbwLtijXaoqWnJ322JpU3FXl8T3/AMvRBRRRUmoUUUUAFRQ/8tP981LUUP8Ay0/3zQBLRRRQAUUUUAFFFFAGFrP+jeINCveimaS0c+0iZH/j0a/nWxb/AOoX8f51keLlYeG7i5QZks2S7XH/AEzcOf0BFa1oyvaxupBVhkEdxWstYRfqv1/U2nrTi/Vfr+pNRWXqWvWenTLbfvLm9cZS0t13yt74/hHucCqX9m6rrXzavP8AYrQ/8uNpIdzD0klHJ+i4HuaSpu15aL+thRpO3NJ2X9bL+l5k934iiFy9lpkD6lfKcNHCQEiP/TSTov05PtUS6BPqTibxBcrdAHK2UQK26fUdZD7tx7Cti0s7awtktrSCOCFBhUjUKBU9P2ij8Gnn1/4A/aqOlNW8+v8AwPl94iIsaKiKFVRgKBgAUtFFZGI1/wDVt9DSQ/6mP/dH8qV/9W30NJD/AKmP/dH8qAH0UUUAFFFFABWbfeH9I1J/Mu9Pt5Je0oTa4+jDBH51pUU4ycXdOxUZyi7xdjn5NAns0LWGtX8UY6wzuJ0I9PnBYfg1dBUVx/x7v9Klpym5bjnUlP4iIf8AH0/+4v8AM1LUQ/4+n/3F/malqSAooooAKKKKAIv+Xr/gH9alqL/l6/4B/WpaACiiigAooooAKKKKAIk/4+Jfov8AWpaiT/j4l+i/1qWgAooooAKKKKACiiigCKL/AFk/+/8A+yipaii/1k/+/wD+yipaACiiigBGUMpVgCDwQe9ZFx4V0S4lMv8AZ8UMx/5a22YX/wC+kINbFFVGco/C7FxnKHwuxhf2FqFt/wAg/wAQXqD+5dqtwv5kBv8Ax6j7R4ntP9bY6fqC+tvM0L/98uCP/Hq3aKv2rfxJP+vLUv2zfxJP5fqrM5iKy1DxESupwPY6Wjtmz3gyXB3HPmFSQEH90HnvxxXSoiRxrHGqqijCqowAPQUy3/1Z/wB9/wD0I1LUym5abImdRy02S6BRRRUGYUUUUAFFFFAEVt/x7R/7tS1Fbf8AHtH/ALtS0AFFFFABRRRQAUyX/Uv/ALpp9Ml/1L/7poAWP/VJ/uimN/x9R/7jfzWnx/6pP90Uxv8Aj6j/ANxv5rQBLRRRQAUUUUAFFFFABRRRQAUUUUAFFBIAJJwBWQnibSprJ7u3uDcRC4+zKYULmST0QD731HGAT0FAGpN/qJP90/ypU/1a/QVWgvYNQ003Vs5aJ1YDKlSCMggg8ggggg9CKsp/q1+goAdRRRQAUUUUAFFFFAEVx/qT9R/MVLUVx/qT9R/MVLQAUUUUAFFFFABRRRQBFN/yz/3xUtRTf8s/98VLQAUUUUAFFFFABRRRQBE/+vi/H+VS1E/+vi/H+VS0AFFFFABRRRQAVQ1TR7XVokEweOaI7obiI7ZIm9Vb+nQ96v0U4ycXdFRk4u8dzmo73xDZXH2WfSxqMqp8l1DKkSOuerhjlW9QAR6elWNnii7+9NpunIe0aNcOPxO0foa2P+Xof7h/nUtae16qKv8A18vwNPbLdRV/66bfgYX/AAjRuOdR1jU7zPVPP8lD/wABjC8fUmrdl4f0jTm32mm20Un/AD0EYLn6seT+daVFJ1ZtWvoJ1qjVr6fh9wUUUVmZBRRRQBEn/HxL9F/rS3H/AB7S/wC4f5Uif8fEv0X+tLcf8e0v+4f5UASDoKKB0FFABRRRQAUUUUAFFFFABRRRQAUUUUAFRD/j6P8AuD+ZqWoh/wAfR/3B/M0AS0UUUAFFFFABRRRQAVXhijW7uJVRRI+0M2OTgcVYqKP/AF031H8qBNJktFFFAwooooAKKKKACoof+Wn++alqKH/lp/vmgCWiiigAooooAKKKKAIrmBLq1mt5BlJUZGHsRg1y2jWfiK70azsbmRdLt4IlikkiYPPNtGCQfuoD+J+lddUVv/qF/H+daQqOKtY1hVcItJIr6bpNjpMLR2cAQucyOSWeQ+rMeWP1q7RRUNuTuzOUnJ3buwooopCCiiigBr/6tvoaSH/Ux/7o/lSv/q2+hpIf9TH/ALo/lQA+iiigAooooAKKKKAIrj/j3f6VLUVx/wAe7/SpaAIh/wAfT/7i/wAzUtRD/j6f/cX+ZqWgAooooAKKKKAInWQTB0VSNuCGbH9DRun/AOecf/fw/wCFcsuoX39prd/a5drau1h9lwNnlhSOmM7sjfnPt0rrqAIt0/8Azzj/AO/h/wAKN0//ADzj/wC/h/wqWigCLdP/AM84/wDv4f8ACjdP/wA84/8Av4f8KlooAi3T/wDPOP8A7+H/AAo3T/8APOP/AL+H/CpaKAIAJxIz7I/mAGN57fhTt0//ADzj/wC/h/wrItJ78eML62ublHtvskcsMSR7QmXccnJJJwOeB7dzuUARbp/+ecf/AH8P+FG6f/nnH/38P+FS0UARbp/+ecf/AH8P+FG6f/nnH/38P+FS0UARbp/+ecf/AH8P+FG6f/nnH/38P+FS0UAQIJ1ZzsjO5s/fPHAHp7U7dP8A884/+/h/wrn9Ce9k1aQLqM9/ZRwlLieRVVHudw/1QA4UDcDyRnaMkhq6WgCLdP8A884/+/h/wo3T/wDPOP8A7+H/AAqWigCLdP8A884/+/h/wo3T/wDPOP8A7+H/AAqWigCLdP8A884/+/h/wo3T/wDPOP8A7+H/AAqWorpilpMwnWAiNj5zgFY+PvHPYdaAGxidFI2RnLE/fPc59Kdun/55x/8Afw/4Vh6BPeR6xqem3c9xIIUikhNwUZ3VtwLgrxtYocKeRg9AQK6GgCLdP/zzj/7+H/CjdP8A884/+/h/wqWigCLdP/zzj/7+H/CjdP8A884/+/h/wqWigCLdP/zzj/7+H/CjdP8A884/+/h/wqWqOsanHo+lT30iFxGAFQfxMSAoz2GSMnt1oAnjE8capsjOBjO8/wCFO3T/APPOP/v4f8KwvBupy6npNw9xepeTx3c0bSIu1cBzgAdhjGPauioAi3T/APPOP/v4f8KN0/8Azzj/AO/h/wAKlooAi3T/APPOP/v4f8KN0/8Azzj/AO/h/wAKlooAi3T/APPOP/v4f8KR/PZGXy4+Rj/WH/CpqyfEbX/9lrHprhLqWeJA3mrGdu8FsFgRkqGHQnnoaANBfPVQvlx8DH+sP+FKqytMruqKApHDE9ce3tWd4du3utNZZTOZ4Jngm851ch1POGUAEdMHA9+a1qACiiigAooooAKKKKACiiigAooooACAQQRkHqDXLSaNfQS/a4YFlaDVmvY4FcKZIzCYsAngEbiQDjpXU0UAZWiWFxaaRJFchUnnnnnZFbIQySM+3PfG4An1Bq2IJAoG3oP+fh/8KpeILieOOwt4Jng+13iQPKmNyrhmOM9Cdu3Pv60vh25nuLCdLiVpmt7ua3WVgMuqOQCccZxwfcUAXPJk/uf+TD/4UeTJ/c/8mH/wq1RQBV8mT+5/5MP/AIUeTJ/c/wDJh/8ACrVFAFXyZP7n/kw/+FHkyf3P/Jh/8KtUUAU3t5XTbtx0/wCW7n+lO8mT+5/5MP8A4VneL57+18J6ndabcpbTwW0svmNHvICox+XnAOQOTnHpW0OgoAreTJ/c/wDJh/8ACjyZP7n/AJMP/hVqigCr5Mn9z/yYf/CjyZP7n/kw/wDhVqigCr5Mn9z/AMmH/wAKPJk/uf8Akw/+FWqKAKb28rbflxg5/wBe/wDhTvJk/uf+TD/4VkeJ5LiNYxbahcxXMkbpa2lsq75puMMSQflXvngZ57VvQiUQRicqZdo3lehbHOPbNAEHkyf3P/Jh/wDCjyZP7n/kw/8AhVqigCr5Mn9z/wAmH/wo8mT+5/5MP/hVqigCr5Mn9z/yYf8Awo8mT+5/5MP/AIVaooApm3lLq23pn/lu/wDhTvJk/uf+TD/4VheJLm8sZ0vre+m8qGWBZok2bIYy43tID8zblOBjpjIxya6egCr5Mn9z/wAmH/wo8mT+5/5MP/hVqigCr5Mn9z/yYf8Awo8mT+5/5MP/AIVaooAq+TJ/c/8AJh/8KPJk/uf+TD/4VaooAp/Z5fM3be2Mee/+FO8mT+5/5MP/AIVzMniYzeObOwju1itUklt2hK/NNIFzuPooPA9Tk9MV2FAFXyZP7n/kw/8AhR5Mn9z/AMmH/wAKtUUAVfJk/uf+TD/4UeTJ/c/8mH/wq1RQBV8mT+5/5MP/AIUeTJ/c/wDJh/8ACrVFAFMW8odm29cf8t3/AMKV7eV42XbjIIz57n+lc9pF5qUeuoupyTNHey3AtdlxG8QVWJUFVXIOwDnceQc46V1lAAOlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRMsgm3oqsCuPmbH9DUtcjFqF8dThuzdylZdWksDa4GwRqrgY4zuygfOehI6YwAdTun/55x/9/D/hRun/AOecf/fw/wCFS0UARbp/+ecf/fw/4Ubp/wDnnH/38P8AhUtFAEW6f/nnH/38P+FG6f8A55x/9/D/AIVLRQBFun/55x/9/D/hTVE6u7bI/mI/jPp9KnrD0+e//wCEt1a1u7lJYFtreaCNI9ojDPOD3JJIRcn9KANfdP8A884/+/h/wo3T/wDPOP8A7+H/AAqWigCLdP8A884/+/h/wo3T/wDPOP8A7+H/AAqWigCLdP8A884/+/h/wo3T/wDPOP8A7+H/AAqWigCLdP8A884/+/h/wpqCdN3yRnLE/fP+FSuGKMEYKxBwSMgH6Vz3h2S7mvbhlv577TliVBczBQJZwTvaPAHyYx7Z6dDQBvbp/wDnnH/38P8AhRun/wCecf8A38P+FS0UARbp/wDnnH/38P8AhRun/wCecf8A38P+FS0UARbp/wDnnH/38P8AhRun/wCecf8A38P+FS0UARbp/wDnnH/38P8AhTYxPHGF2RnH+2f8KS/3GwnCXYtGKELOQD5ZPGcHj86yfDlzdNcarZ3bzlra4XykuCrSCNkUgll4OW3kdx0NAGzun/55x/8Afw/4Ubp/+ecf/fw/4VLRQBFun/55x/8Afw/4Ubp/+ecf/fw/4VLRQBFun/55x/8Afw/4Ubp/+ecf/fw/4VLRQBCxnZSPLj5GP9Yf8KE89UVfLjOBj/WH/CqWvasuj6YZ/l82RxFFvB2h26FsdFHJP0wOSKq+D9QfU/DNrcS3f2qbLpJNjG4hiOg9sUAbG6f/AJ5x/wDfw/4Ubp/+ecf/AH8P+FS0UARbp/8AnnH/AN/D/hRun/55x/8Afw/4VLRQBFun/wCecf8A38P+FG6f/nnH/wB/D/hUtFAEEgnkjZNkYz33n/Cnbp/+ecf/AH8P+FZHiT+03Sxg0t9skk5MuJ1iYxhGOAWVv4tvRTx+dW9CvFv9EtblTMdykN5xBfcCQckcHkHkcUAXI1k81ncKMqAArZ6Z9h61LRRQAUUUUAFFFFAFIaRp41L+0fssf2vOfM99u3djpu28Z6446VdoooAKKKKACiiigAooooAiFvCLprkRr57IIy/cqCSB+ZP51LRRQAUUUUAFFFFABSEAgg9DWJ4mjuJodOhgluY1kvokmNu7I3l87gSvIHvWHZ3t1pGrQC7mv/7NiuL2BTJ5kueY2iBPJb+MKTn0oA6bTfD+laPJv0+zS3OzZ8hONvBxjPsKuy3EMDwpLKqNM/lxhjje2C2B74Un8K82VNZutDuLmW51eO6t9FtZYAs0inzy824lQfmbCoCDnjGRVrVrU22rR21xNqZ02HVYZBJ500joptZdxD5LBd2M4PGT0oA9EorzKe41X/RhPcXiaR/pP2aWWW4R3AkHl72j+cnbnbu+8OeTit/w1b6jcaq1zqlzfNJBZ22xWd4o2dkbzCY84LdMg5wfSgDrqrWuoWl7LcRW1wkr27+XKEOdjdwT68Vx2pT3g1W/xNqK6st9CNPhjaTyWg/d5O0fIy/6zcW5HtgVf0CyudO8LasLJZ/thu79oFnld8t50mw/OTwflOe+cnJOaAOrqCeW2MiWc7RlrhWCxPz5igfNx3GD+tcH9oUWVv8AY7vXngYwf2o7vKfLXndgn50fONwTAC+lVrpdTmS7fTzfywxw6gumTOXMuDBHtwzfMf3m8KTycDHagD0Cw0qx0sOLK3WLfjcQSSQOgyecDsOgq5XBahqN1q+oSjT7jUFs2XTYy8Qkj5a4cS7TxzsIDEdO/Sn21pfWl9HLHcam/l6y9uqy3Err9nMbHBDEhhuPDHJ6DPAFAHdUV5vbw6pbaJpkgvdXWa80GSW7kdpZ2SceRghScq2Hk4XBxnuK6PwbcTy2l6kolZI5wI5WnkmjkBVc7GlAfAPUEkA5wewAOlooooAKKKKAIoLeG2V1hjVA7tIwHdmOSfxNS0UUAFFFFABRRRQAVXvLK21C3NvdQrLESGwexByCD1BB7irFFAEFpZ29hbLb2sSxRKSQq+pOST6kkkk96noooAKKKKACiiigAooooAKKKKACiiigAooooAgvLO3v7Zre6iWWIkHaexByCD1BBAIIpbS0gsbZLa2iWKFM7VX3OSfqSSc+9TUUAFFFFABRRRQAUUUUARXNvDd2sttcRrJDMhjkRujKRgg/hUtFFABRRRQAUUUUAFFFcLDBqSTWt4txqLXE2sXsDo80hQQf6RsGwnaBlY8Nj05xQB1OoaFpmqXCT3tmk0qKUVySCFJyRwfWr6IscaogwqgAD0ArzeXVdTvdItI7WfUhcRaJtuGCSKy3G+EHJI5kHz+/J9avz2N5ZX1+9tc6qy22p2K2yvdSyL5btEJeCTvBDPnOcc4xQB21vcQ3cImt5VkjJIDKcgkEg/qCKlrzGwN/bWUaaG+oNqoa+M8Exk8pVxKYztb5B+88rBHUFuvNED6rNYzx2t9flHW0WUpJcM6ObhAx3Scq2wvuVeAOoHcA9Oqtd6haWLQLdXCRNcSCKJWPLt6AVjeIIpLHSLCCGW9WyS5jS7ljlkeYQYPO8Ev97Zls5xnmsPTrSW88Q6bcFtQksYL24+xySzSgmHykI3ZOWHmbwC2cqB1FAHfUjMEUsxwoGSfSuQ16Yrrt0L6fVYoltYjp62DODJLufeAB8rP9zh8jB9M1nrNevdRgTak2sNfTrdwM0hhW2/ebflPyBdvl7WHJPckmgDrm03SdVkg1M28VwWRHjlHR1HzIT2bGcjOcZ4rSrzW3v7/T/Dr2Ra+juX0+w+yRokmR8iiTbgcYIO7071fWxvbnUbWSW61UCfWrqCZVupUUW4SZlAAOFG5EwwwecZwcUAd3RXnUNvql3aXC3F1qy/ZtMmMO24lQmVZpQhJBBZtqr1znjOakiu9RXxTaySy3k7yywBoA80RjUxLuITBikjzliSFYHIzkAUAeg0UUUAFFFFAEUlvDLPFM8atLDny2PVcjBx+FS0UUAFFFFABRRRQAUUUUAUbbRtOs7x7u3tI4533ZYdtxy2B0GTycYyetXqKKACiiigAooooAKKKKACiiigAooooAKKKKACqS6Rp66kdRFrGLsnPme+Nu7HTOOM9ccVdooAKKKKACiiigAooooAKiW3hW6kuVjUTyIsbv3KqWKj8CzfmalooAKKKKACiiigAoorC8Rwz3M+i28Ut1HDLf7bg28jITH5EpwWUggbgv4474oA25Y0mieKRdyOpVge4PWqOm6HpmkEmwtEgyoQhScYHQcmuTstQvdLukW9l1A2qpqFvEXEkhZluAIgTyS2wHaTyRnk1RSHV7rSGuZbvVluorXTfK2zyLhm2iUlc4YnJzuBxQB6LJcQxTQwySqskxIjUnlyBk4/Dmpa86vbcW+uJBfTamNNtdUkEcommZkja0Rv8AWAl9u9mGc+3Sqdzc635MAu7i9itfssps5GedJHbzpAhbyxlpPKEJCv1yeCc0Aeo0VzHh22vpdY1K81G4vGljMMccbSOsQzbxFyI87eX3euDn3rKllu31Z0M+pDVjqoQQq8oh+x7wCdo+Tb5WTu67++eKAOzstQtNRWVrO4SZYpDE7IcgMOoz3qzXHaXa32m/DW4TTluRfiGdold2dw+WxtDk89CB0z9apSz2wlgWzvNcbRjOn26Z5ZiF/dyYAc/vF+YJvwcDK9MtQB2tybO5ZtNufKkM8TM0DjO+PgNx3HzAfjSWOnWmmxulpCIw7bnOSWY4xkk8ngAc9hXnkjartkuof7QZIrS7FrMwczGEXEJXJPzE7Q2M8kDvWlcXd1rGtsttcagNOkv7dN8RkiDR+TIX2nghSwAJHf3oA7uivOvI1SzsEnhudVeZpdSgO+eV8Rp5wh4Jxn5Ew3U56nNSXkF/ZQSxRX2ppHNYW00ssjzTYk835+jbkBXhthGByBxQB6DRWB4Qnmn0Z/OSYbJ3RHkmeUSLwdyM4DFeSBuyeDyRg1v0AFFFFABUVvbw2kCwwRrHEucKvQZOT+pqWigAooooAKKKKACiiigCrfabaalGiXcIkCNvQ5IZTgjII5HBI47Gpre3htbeO3t4kihjUKiIMBQOgAqSigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDA8Wa5Jo1hbR2u37dqF1HZ2u4ZCu5+8R3CgE/hUs+q2ehTWGklrm7vroOYYgwaSXaMuxLEAfiR1wKxfiDayeZ4b1UAmDTdWiluP9mNsoWPsCwpfFWqX9p4q0a2+w3zaTNHKZ7qxtmlkEnG2PKglFPcjH1ABoA1odQg8VaA13pNxLDMjusbEFWimQkFXHQjIwRyCPzqTwtryeJfDlpqip5byArLHn7kikqy/gQa5r4aNJpugaxBf2d5ZG31G5mb7VEyjYzFgQx4bjuCau/DCwnsfBEDXCMjXc812qMMFVkcsv6EH8aAMa9Mvh74xWKXF7fPpOuWzxxRSXchjhuF67QWwMj9TxVbwPqYsPiZ4m0C4v725hJ8+wkurmSQBAcSIu4kYVuM+xrb+KmgXmteE1uNKRjq2m3Ed5abBltynkD8D+lYXizwLqQ07wtPpEjDVLSX7LdzoOWjnyJnP/AiT+NAG9oOoWul251Caa+uLjW7uRrC0M7ysYh90IrthRtG4k4A3dela0fjTSjFqZuFura40td93ayQkyxrjIbCbtykd1JFYniPS7rSfF3hbXLO1mn0zTopbO4igjLtCjqArhRyQMDOB0rP1nTrnUNe8SeIbe0uxaNoTafCotpPMuZWycqmNxAyBnHf2oAk8U+L7TxB4C1mXS11a3KaYb2C8CSQI3oFcEZI7jpXTWWuW+n6JoUEvnXF9eW0fkwRANJKQgLHkgADuSQPzrl7iG6b4B/2eun35vv7KFt9l+xy+b5m0DGzbnr3xioXa+0bxF4V8QyabqE+mLpH2C5WK0kaW1f5TuaPG7HGCcdqAItKuJb+5+I6PPqUa24QwpLcyCSBhCxwp3ZA3c8HHpxVPwjqnhiX4cWF5rniW5bUngJmUa5MJy+4gAIJR83TAxV6wkuv7Q+IV22k6qsGoRobRjYyZm/clcBcbs5I4xx3xUvgu6srL4X6do+uaNrBljtyk9sdGumbO4nAIjxnpyDQB1M2u23hRNE0jUWvbh7nZaxXrKCskmP42LcE4zz196W68baZY+HJ9eu4b2GwicoH8nfv527htJ+XPRjgGsbW0uPHXhy10O60u6sW1FWnkkmtn/0NFOUySMCU/Lxnj5vx5vXdV1C7+CWsWOr6dc2moaeqW8jPavFHOFkULJGSACCB0FAHeWvjnSrnXrfR5Ib61uLpC9q91bNGlwAMnYT1OPXFFz430y2tbi+8m8m0y2lMU9/DEGijYHDd9xAPBZVIHrxWJqls3i3WPCwsre6ji02Y3dxczW7xCPCbQgLAZJJHAzwPpWboMN9o3w61TwlfaZeS6lELiCBY7d2S5WQtscOBtA+bnJGMc0AenwzR3EEc0LrJFIoZHU5DA8gin1j+FdKm0PwnpWl3EgkmtbVInYHILAc49q2KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKup6hBpOl3eoXJxBbRNK59lGTXn/ima+m+D2pa7PdXMF/c2q3S+RO8YgUkFUXaRwFOD6nOe2Ou8Y6ZNrPgzWNOt+Z7i0kSMerY4H51zWsxXGv8AwOeHT7eSe5m0yNFhQZYsoUMuPUEEY9qANLSPHely3um6NcRX9rcXUI+zTXVs0cdyQozsY9T9cZq1bam2meM/+Eemdngu7ZruyZ2JKlTiSPJ6jkMPTJHYVh6laHxW/hOCzt7pBp13Fd3M81tJCIgiY2fOBliSBgfjV3ULZ7/4uaNJCMppmnzyTsOgMpCov1OGP4UAbetaD/bd7YNLe3kFrbl2kitbmSAzEgBdzIQcDk4zXn3hLRv7d1vxtp9zqmshLK+8izZdVuQYFKnGPn559c16yzBFLHOAM8DJ/IV5x8OluIfF3jN7jT9Qto73UPOtpLiyliWRACMhmUCgDOvYDbfFrS9K1HWL5bJtFMtwBqU0UbzKdu/hxg1q+BNUvbnxn4isLS/uNS8N2wj+y3U8pm2ykfOiynJcDnqTjFUNf0uLWPjLbfb9GvbrSTpMlpLM1hK0IkZiQN+3HT+IHj1q94Qk1jwbqk3hLU7S/vNJiG/S9SitnlUR/wDPKQqDgjtn/CgC58Sb7Wf7K+w+HZSmoRRnUJCvXyoiDt/4E2B7gGui0PVbXxV4Xs9ShLeRewBiEcqVJ6jIOQQcj8K5/RtNbxJeanrV1LrOnSzTGCOEq9sRAmQmQyjOSWb/AIFWR8PftXhTV9f8NzWOqnSIbg3OnXTWMxRlblkB28kH0684oAy/CHiTVfCWqwWXiK8nutC1ieQaffXEjObeUOy+U7MScHAwSf646C7v4/Cc3jTXGmvLhLFImhgmupHjUtGDgKWIGWIqxo2i2fiz4dvo2rWF3CjvKGS5tnhkjJkZldd4HIyDkVh6F4N12/8AC3i3w14gnLzylLe2vWU4mRYx5b579AD9KAN3wp4efWvDlpq3iK+vrzUb6Nbhtt3LFHAGGQsaowC4BHPU+tZHiO+1jwB4ZmsrbUJ7y+1XVVt9PubuQyvEkgXkk9SuCB+BrU8IeI5dH0Cz0TxHp2o2ep2MYtyUspZo5wowGR41YHIA46+1J450PUfGPhmC50+ze31DT7xLyyiuCFabZ2I/hzzgHnpnHYA0LrwXHHosgtNT1NNWSMsmoNeyM7SAdWBbaVJ/hxjHauJvfHOq618K9K10xXISK/WHW/sJKyeUhIcqRyoPy5wRjNdvd+MRJosn2PStVfVniKpYNZSKyyEdGYjaFB/izjHQ1i+GNPvvh14c0PS7iymvlupJm1F7SFpjDIw3A4XJKjG08UAaXhiDTNQ1K113w1rUt1pDW7xS2rXckqI5KkEK5JRuCCDjrXaV5fouhRQfFsar4Ysriy0eSzcanmB4IZZSflCKwGW7nAwPqTXqFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjMEUsxwoGSfQVy/hvWk1XSbjxVe3Hk2LmT7OrNhIrdGI3H1ZtpYnsMAe/SXUP2i0mgBx5kbJn0yMV5lp2jahqXwKn8P2qbdUtY5LVoicZkjkztP+8APzFAHZReLdPm1Oy06e3vLZ9RRms3ni2rOFGTjBJU45wwU1HpGqvbeKb/wzcyNI0MCXdpI5yzQsSpUnuVYYz3BFQeG/FM+urawnw9qllcRqBcm9tjEkJA5CsfvknpjtycVVt7Z734w3d/GD5FhpKWsjdvMd9+36hQD+IoAz/jLLcWng+C8s7y7tbhb2GMSW1y8RKs2CDtIzXUeI7NE8F6jDFNcxeTZyPHJHcOsisqkg7wd3X3rJ+KOg33iHwPcW2mxeddwzR3McQODJsbJUe+M0688Sxa74duLCxsNSOo3du0H2eaxli8pmXad7MoVQM9c844zQBia/rF9ZJ4S8I6PeTwXWsgGe9eQySxxKoLlWYn5jzz2rd1jwLDPolxDpeo6paaiYiI7oajMWZsfx5Yhge+R9MVleNvDOpRX/AIZ8SaPbte3WhNsmtUIDzQkANtz/ABDnj3ro7fxfZ3sQFlY6pLdHj7O9hLCVPozOoVfqT9M0AcZ4j1uHS/iFa2fi6e7ttCmsUWzmjmkjgFxn5y7IRz6E9OvGc1t3elTab4D8RbdWu7uEpNd2V19sdpVXygVHmA5OCDjk5GKtX2qW17d6toniXRZpdPXYYpRZyTQyKyAkZVThg2eeO2Oa5Tw1pOo6L8NfFVobXUfsE8lwukWjwSPOImUhRsALAE9iPc9aANXwZoL618OtIvv7a1m31Oe1Ehu11GZ/nPco7FGHsRWn8O/FF/4g0/ULPVxH/auk3bWdy8YwspHRwO2fSs7wXrcmi/DzR7B9E1uXU7e1EZtP7Nmj+cdi7qEA9y1afw+8M3ugWGoXmq7BqmrXb3lykbbliLdEB74HegDZvfENvbai+nQW9zfX0cQmkgtVUmND0LFmUDODgZycdKzZ/iF4et9Ah1lridrSScW3y27lo5c4KOMfIQfXH41mWsV14c+Jet315b3Mmm6xDC0NxDC8ojkjG0xsFBIznIPQ/WuT1jQtSt/DGpXI02+Z9U8Rx38VpDaySPHCrr8zKoO0kAnB/nQB2OseJtEv7exfUItdshHqscMA+zywGSXjbk9Chz3Izj2rc1PxPZabdz2ghubu4t7f7TcR2yBjFFzhjkjrg4AyTjpXP/EoTXmlaGLSyvrll1a2uGWC0kcpGpJZmAXK496yvEWo2+j/ABCur2FdTga506OK5kj02S7jkBJ2cIQUZRnr1z04oA2NZ8VeG9W8L2Opzz6qmnzXcJglt4Zoi77htBOB8pJxycH6itjUfGOm6bro0V4b6bUGtzcJFBbM29QccHof5DuRXDeII9PuPhXpmneGINQvoLa9t1CJaStKuyQM5dQuVPfkDrxW7c+c/wAYtPvlsr42a6O8TXH2OXyw5cMFLbcA47UAbEHjnRJ/DY1zzZkt/P8AsxikjKyibdt8sr2bP4e9Ol1q11i21rTQLu0vrKHM0Rfy5EDKSrKyMeDjse1cBp13rejeD9We10bUPMl8RSSSb7BzLHbO4Pmxoy/MQBxwcelX9LeS38aeKLj+zdaFte6ZD9nlntJnaQqrA5yCQckfKcH2oA6X4YzzXXw20Oe4mkmme3y8kjFmY7jySeTWneeJ7O0uL2JYLm4+whDdtAgIh3DIzkgnjngHArL+GMM9r8OtHtbq1uba4gh2SRXELRMp3HswBrA8WabcHWtS1nQP7T0/xDb7I1RLd5LfU02ghWGNp6lc5+XGTQB1N/430yx1ufRhbajc6hDAJzBbWjuWUnHy9Afr0981ynjXxNZ+IPh/DrGi3l3EY9RggdVd4XRvNUOkiAj8jmpxqK2HxmllvY5gz6BEHEELy7W805GFBOM8ZrA1rQtQi8I6xcppl8ZtX1+O+itIbV5JI4ldfmZVB2khS2D6+tAHoN1e6SPiDYWskuoDVjZy+VEN627R5BYnPys3TpmmeEvFk/iW81iOTTJ7aKyvXtkdipHyBchsMfmJJPAxjvWXqfnTfFvw7eR2V+1pFYXEck4s5fLRn2lQzbcA8Hr0707wClxp+seKNPu7K8ikl1aa6jkaBhE8bBdpDkbT9Ac+1AHd0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMmhjuIXhmjWSKRSrowyGB6gimWlstnapbo8jIgwvmNuIHYZ6nHTnmpqKAK19YQajALe5DNAWBeMHAkA7N6j279+KsgAAADAHQUUUAFFFFABRRRQAUUUUAFFFFABWH4u8PN4q8OXGjfbPssdxtEkgi3nAIPHIxyB61uUUAQ2kUsFpFFNKssiKFLomwHHtk4/OpqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqra2EFnNPJAGRZ23vGD8u7uwHYnv69euatUUAFVbOwgsfNMQJkmffLK5y0jepP04A6AdKtUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVVjsIIr+W8iDJJKoEoU/LIR0JHqBxn0+gq1RQAhGVIBIyOo7VXsbC30+AxW6kBmLuzHLOx6sx7k1ZooAKKKKACiiigAooooAKKKKACiiigArl38J30GuX2o6X4ju7KO/cSXFu0Ecy7woXKlhleAOORXUUUAVbCxSwgZBJJNI7b5ZpSC8jdMnAA6ADAAHFWqKKACiiigAooooA5xPDM6eOZfEo1BCZLUWhtvs/AjDbvvbvvZ74x7V0dFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q=="
}
},
{
"id": "/page/7/Caption/1",
"block_type": "Caption",
"html": "<p><span id=\"page-7-2\"></span>Figure 4. Ablation studies on various datasets in which the number of columns is varied and the aggregator is included or not included. The results generally support the use of more columns and an aggregator module.</p>",
"polygon": [
[
48.111328125,
263.935546875
],
[
545.110595703125,
263.935546875
],
[
545.110595703125,
284.431640625
],
[
48.111328125,
284.431640625
]
],
"bbox": [
48.111328125,
263.935546875,
545.110595703125,
284.431640625
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": null
},
{
"id": "/page/7/TableGroup/229",
"block_type": "TableGroup",
"html": "<content-ref src='/page/7/Table/2'></content-ref><content-ref src='/page/7/Caption/3'></content-ref>",
"polygon": [
[
48.93310546875,
301.833984375
],
[
286.3586730957031,
301.833984375
],
[
286.3586730957031,
456.2474060058594
],
[
48.93310546875,
456.2474060058594
]
],
"bbox": [
48.93310546875,
301.833984375,
286.3586730957031,
456.2474060058594
],
"children": [
{
"id": "/page/7/Table/2",
"block_type": "Table",
"html": "<table><tbody><tr><th>Method</th><th>MAE</th></tr><tr><td>AMDCN (without perspective information)</td><td>16.6</td></tr><tr><td>AMDCN (with perspective information)</td><td>14.9</td></tr><tr><td>LBP+RR [28] (with perspective information)</td><td>31.0</td></tr><tr><td>MCNN [28] (with perspective information)</td><td>11.6</td></tr><tr><td>[27] (with perspective information)</td><td>12.9</td></tr></tbody></table>",
"polygon": [
[
66.4892578125,
301.833984375
],
[
270.2900390625,
301.833984375
],
[
270.2900390625,
426.9375
],
[
66.4892578125,
426.9375
]
],
"bbox": [
66.4892578125,
301.833984375,
270.2900390625,
426.9375
],
"children": [
{
"id": "/page/7/TableCell/251",
"block_type": "TableCell",
"html": "<th>Method</th>",
"polygon": [
[
66.4892578125,
301.833984375
],
[
67.4892578125,
301.833984375
],
[
67.4892578125,
302.833984375
],
[
66.4892578125,
302.833984375
]
],
"bbox": [
66.4892578125,
301.833984375,
67.4892578125,
302.833984375
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": {}
},
{
"id": "/page/7/TableCell/252",
"block_type": "TableCell",
"html": "<th>MAE</th>",
"polygon": [
[
67.4892578125,
301.833984375
],
[
68.4892578125,
301.833984375
],
[
68.4892578125,
302.833984375
],
[
67.4892578125,
302.833984375
]
],
"bbox": [
67.4892578125,
301.833984375,
68.4892578125,
302.833984375
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": {}
},
{
"id": "/page/7/TableCell/253",
"block_type": "TableCell",
"html": "<td>AMDCN (without perspective information)</td>",
"polygon": [
[
66.4892578125,
302.833984375
],
[
67.4892578125,
302.833984375
],
[
67.4892578125,
303.833984375
],
[
66.4892578125,
303.833984375
]
],
"bbox": [
66.4892578125,
302.833984375,
67.4892578125,
303.833984375
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": {}
},
{
"id": "/page/7/TableCell/254",
"block_type": "TableCell",
"html": "<td>16.6</td>",
"polygon": [
[
67.4892578125,
302.833984375
],
[
68.4892578125,
302.833984375
],
[
68.4892578125,
303.833984375
],
[
67.4892578125,
303.833984375
]
],
"bbox": [
67.4892578125,
302.833984375,
68.4892578125,
303.833984375
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": {}
},
{
"id": "/page/7/TableCell/255",
"block_type": "TableCell",
"html": "<td>AMDCN (with perspective information)</td>",
"polygon": [
[
66.4892578125,
303.833984375
],
[
67.4892578125,
303.833984375
],
[
67.4892578125,
304.833984375
],
[
66.4892578125,
304.833984375
]
],
"bbox": [
66.4892578125,
303.833984375,
67.4892578125,
304.833984375
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": {}
},
{
"id": "/page/7/TableCell/256",
"block_type": "TableCell",
"html": "<td>14.9</td>",
"polygon": [
[
67.4892578125,
303.833984375
],
[
68.4892578125,
303.833984375
],
[
68.4892578125,
304.833984375
],
[
67.4892578125,
304.833984375
]
],
"bbox": [
67.4892578125,
303.833984375,
68.4892578125,
304.833984375
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": {}
},
{
"id": "/page/7/TableCell/257",
"block_type": "TableCell",
"html": "<td>LBP+RR [28] (with perspective information)</td>",
"polygon": [
[
66.4892578125,
304.833984375
],
[
67.4892578125,
304.833984375
],
[
67.4892578125,
305.833984375
],
[
66.4892578125,
305.833984375
]
],
"bbox": [
66.4892578125,
304.833984375,
67.4892578125,
305.833984375
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": {}
},
{
"id": "/page/7/TableCell/258",
"block_type": "TableCell",
"html": "<td>31.0</td>",
"polygon": [
[
67.4892578125,
304.833984375
],
[
68.4892578125,
304.833984375
],
[
68.4892578125,
305.833984375
],
[
67.4892578125,
305.833984375
]
],
"bbox": [
67.4892578125,
304.833984375,
68.4892578125,
305.833984375
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": {}
},
{
"id": "/page/7/TableCell/259",
"block_type": "TableCell",
"html": "<td>MCNN [28] (with perspective information)</td>",
"polygon": [
[
66.4892578125,
305.833984375
],
[
67.4892578125,
305.833984375
],
[
67.4892578125,
306.833984375
],
[
66.4892578125,
306.833984375
]
],
"bbox": [
66.4892578125,
305.833984375,
67.4892578125,
306.833984375
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": {}
},
{
"id": "/page/7/TableCell/260",
"block_type": "TableCell",
"html": "<td>11.6</td>",
"polygon": [
[
67.4892578125,
305.833984375
],
[
68.4892578125,
305.833984375
],
[
68.4892578125,
306.833984375
],
[
67.4892578125,
306.833984375
]
],
"bbox": [
67.4892578125,
305.833984375,
68.4892578125,
306.833984375
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": {}
},
{
"id": "/page/7/TableCell/261",
"block_type": "TableCell",
"html": "<td>[27] (with perspective information)</td>",
"polygon": [
[
66.4892578125,
306.833984375
],
[
67.4892578125,
306.833984375
],
[
67.4892578125,
307.833984375
],
[
66.4892578125,
307.833984375
]
],
"bbox": [
66.4892578125,
306.833984375,
67.4892578125,
307.833984375
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": {}
},
{
"id": "/page/7/TableCell/262",
"block_type": "TableCell",
"html": "<td>12.9</td>",
"polygon": [
[
67.4892578125,
306.833984375
],
[
68.4892578125,
306.833984375
],
[
68.4892578125,
307.833984375
],
[
67.4892578125,
307.833984375
]
],
"bbox": [
67.4892578125,
306.833984375,
68.4892578125,
307.833984375
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": null
},
{
"id": "/page/7/Caption/3",
"block_type": "Caption",
"html": "<p><span id=\"page-7-1\"></span>Table 4. Mean absolute error of various methods on WorldExpo crowds</p>",
"polygon": [
[
48.93310546875,
436.322998046875
],
[
286.3586730957031,
436.322998046875
],
[
286.3586730957031,
456.2474060058594
],
[
48.93310546875,
456.2474060058594
]
],
"bbox": [
48.93310546875,
436.322998046875,
286.3586730957031,
456.2474060058594
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": null
},
{
"id": "/page/7/Text/4",
"block_type": "Text",
"html": "<p block-type=\"Text\">We obtain superior or comparable results in most of these datasets. The AMDCN is capable of outperforming these approaches completely especially when perspective information is not provided, as in UCF and TRANCOS. These results show that the AMDCN performs surprisingly well and is also robust to scale effects. Further, our ablation study of removing the aggregator network shows that using more columns and an aggregator provides the best accuracy for counting — especially so when there is no perspective information.</p>",
"polygon": [
[
49.53076171875,
479.53125
],
[
286.3651123046875,
479.53125
],
[
286.3651123046875,
597.3380432128906
],
[
49.53076171875,
597.3380432128906
]
],
"bbox": [
49.53076171875,
479.53125,
286.3651123046875,
597.3380432128906
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/6/SectionHeader/7"
},
"images": {}
},
{
"id": "/page/7/SectionHeader/5",
"block_type": "SectionHeader",
"html": "<h2>5.2. Future Work</h2>",
"polygon": [
[
49.306640625,
611.3048095703125
],
[
130.67086791992188,
611.3048095703125
],
[
130.67086791992188,
622.2637023925781
],
[
49.306640625,
622.2637023925781
]
],
"bbox": [
49.306640625,
611.3048095703125,
130.67086791992188,
622.2637023925781
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/7/SectionHeader/5"
},
"images": {}
},
{
"id": "/page/7/Text/6",
"block_type": "Text",
"html": "<p block-type=\"Text\" class=\"has-continuation\">In addition to an analysis of performance on counting, a density regressor can also be used to locate objects in the image. As mentioned previously, if the regressor is accurate and precise enough, the resulting density map can be used to locate the objects in the image. We expect that in order to do this, one must regress each object to a single point rather than a region specified by a Gaussian. Perhaps this might be</p>",
"polygon": [
[
49.38134765625,
631.7134399414062
],
[
286.576171875,
631.7134399414062
],
[
286.576171875,
713.4070510864258
],
[
49.38134765625,
713.4070510864258
]
],
"bbox": [
49.38134765625,
631.7134399414062,
286.576171875,
713.4070510864258
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/7/SectionHeader/5"
},
"images": {}
},
{
"id": "/page/7/Text/7",
"block_type": "Text",
"html": "<p block-type=\"Text\">accomplished by applying non-maxima suppression to the final layer activations.</p>",
"polygon": [
[
307.1953125,
306.11444091796875
],
[
545.1151123046875,
306.11444091796875
],
[
545.1151123046875,
328.130859375
],
[
307.1953125,
328.130859375
]
],
"bbox": [
307.1953125,
306.11444091796875,
545.1151123046875,
328.130859375
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/7/SectionHeader/5"
},
"images": {}
},
{
"id": "/page/7/Text/8",
"block_type": "Text",
"html": "<p block-type=\"Text\">Indeed, the method of applying dilated filters to a multicolumn convolutional network in order to enable extracting features of a large number of scales can be applied to various other dense prediction tasks, such as object segmentation at multiple scales or single image depth map prediction. Though we have only conducted experiments on counting and used 5 columns, the architecture presented can be extended and adapted to a variety of tasks that require information at multiple scales.</p>",
"polygon": [
[
307.79296875,
330.0254211425781
],
[
545.1151733398438,
330.0254211425781
],
[
545.1151733398438,
435.6289367675781
],
[
307.79296875,
435.6289367675781
]
],
"bbox": [
307.79296875,
330.0254211425781,
545.1151733398438,
435.6289367675781
],
"children": null,
"section_hierarchy": {
"1": "/page/6/SectionHeader/6",
"2": "/page/7/SectionHeader/5"
},
"images": {}
},
{
"id": "/page/7/SectionHeader/9",
"block_type": "SectionHeader",
"html": "<h1>Acknowledgment</h1>",
"polygon": [
[
308.86199951171875,
446.23602294921875
],
[
398.0390625,
446.23602294921875
],
[
398.0390625,
458.19122314453125
],
[
308.86199951171875,
458.19122314453125
]
],
"bbox": [
308.86199951171875,
446.23602294921875,
398.0390625,
458.19122314453125
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/7/Text/10",
"block_type": "Text",
"html": "<p block-type=\"Text\">This material is based upon work supported by the National Science Foundation under Grant No. 1359275 and 1659788. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Furthermore, we acknowledge Kyle Yee and Sridhama Prakhya for their helpful conversations and insights during the research process.</p>",
"polygon": [
[
308.091796875,
466.3828125
],
[
545.1151733398438,
466.3828125
],
[
545.1151733398438,
560.7421875
],
[
308.091796875,
560.7421875
]
],
"bbox": [
308.091796875,
466.3828125,
545.1151733398438,
560.7421875
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/9"
},
"images": {}
},
{
"id": "/page/7/SectionHeader/11",
"block_type": "SectionHeader",
"html": "<h1>References</h1>",
"polygon": [
[
308.86199951171875,
571.0409851074219
],
[
365.16796875,
571.0409851074219
],
[
365.16796875,
583.171875
],
[
308.86199951171875,
583.171875
]
],
"bbox": [
308.86199951171875,
571.0409851074219,
365.16796875,
583.171875
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/7/ListGroup/230",
"block_type": "ListGroup",
"html": "<p block-type='ListGroup'><ul><content-ref src='/page/7/ListItem/12'></content-ref><content-ref src='/page/7/ListItem/13'></content-ref><content-ref src='/page/7/ListItem/14'></content-ref></ul></p>",
"polygon": [
[
313.171875,
591.5903015136719
],
[
545.1151123046875,
591.5903015136719
],
[
545.1151123046875,
713.8828125
],
[
313.171875,
713.8828125
]
],
"bbox": [
313.171875,
591.5903015136719,
545.1151123046875,
713.8828125
],
"children": [
{
"id": "/page/7/ListItem/12",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-7-4\"></span>[1] S. An, W. Liu, and S. Venkatesh. Face recognition using kernel ridge regression. In <i>Computer Vision and</i> <i>Pattern Recognition, 2007. CVPR'07. IEEE Confer</i><i>ence on</i>, pages 17. IEEE, 2007.</li>",
"polygon": [
[
313.171875,
591.5903015136719
],
[
545.1150512695312,
591.5903015136719
],
[
545.1150512695312,
637.4188995361328
],
[
313.171875,
637.4188995361328
]
],
"bbox": [
313.171875,
591.5903015136719,
545.1150512695312,
637.4188995361328
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/7/ListItem/13",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-7-3\"></span>[2] C. Arteta, V. Lempitsky, J. A. Noble, and A. Zisserman. Interactive object counting. In <i>European Con</i><i>ference on Computer Vision</i>, pages 504518. Springer, 2014.</li>",
"polygon": [
[
313.470703125,
641.5402984619141
],
[
545.11474609375,
641.5402984619141
],
[
545.11474609375,
687.97265625
],
[
313.470703125,
687.97265625
]
],
"bbox": [
313.470703125,
641.5402984619141,
545.11474609375,
687.97265625
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/7/ListItem/14",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-7-0\"></span>[3] D. Babu Sam, S. Surya, and R. Venkatesh Babu. Switching convolutional neural network for crowd</li>",
"polygon": [
[
313.171875,
691.4893035888672
],
[
545.1151123046875,
691.4893035888672
],
[
545.1151123046875,
713.8828125
],
[
313.171875,
713.8828125
]
],
"bbox": [
313.171875,
691.4893035888672,
545.1151123046875,
713.8828125
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": null
}
],
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": null
},
{
"id": "/page/8/Page/463",
"block_type": "Page",
"html": "<content-ref src='/page/8/Text/0'></content-ref><content-ref src='/page/8/ListGroup/438'></content-ref><content-ref src='/page/8/ListGroup/439'></content-ref>",
"polygon": [
[
0.0,
0.0
],
[
612.0,
0.0
],
[
612.0,
792.0
],
[
0.0,
792.0
]
],
"bbox": [
0.0,
0.0,
612.0,
792.0
],
"children": [
{
"id": "/page/8/Text/0",
"block_type": "Text",
"html": "<p block-type=\"Text\">counting. In <i>Proceedings of the IEEE Conference</i> <i>on Computer Vision and Pattern Recognition</i>, pages 57445752, 2017.</p>",
"polygon": [
[
70.14990234375,
74.23095703125
],
[
286.3601989746094,
74.23095703125
],
[
286.3601989746094,
108.280029296875
],
[
70.14990234375,
108.280029296875
]
],
"bbox": [
70.14990234375,
74.23095703125,
286.3601989746094,
108.280029296875
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListGroup/438",
"block_type": "ListGroup",
"html": "<p block-type='ListGroup' class='has-continuation'><ul><content-ref src='/page/8/ListItem/1'></content-ref><content-ref src='/page/8/ListItem/2'></content-ref><content-ref src='/page/8/ListItem/3'></content-ref><content-ref src='/page/8/ListItem/4'></content-ref><content-ref src='/page/8/ListItem/5'></content-ref><content-ref src='/page/8/ListItem/6'></content-ref><content-ref src='/page/8/ListItem/7'></content-ref><content-ref src='/page/8/ListItem/8'></content-ref><content-ref src='/page/8/ListItem/9'></content-ref><content-ref src='/page/8/ListItem/10'></content-ref><content-ref src='/page/8/ListItem/11'></content-ref></ul></p>",
"polygon": [
[
49.08251953125,
113.116455078125
],
[
286.576171875,
113.116455078125
],
[
286.576171875,
714.26953125
],
[
49.08251953125,
714.26953125
]
],
"bbox": [
49.08251953125,
113.116455078125,
286.576171875,
714.26953125
],
"children": [
{
"id": "/page/8/ListItem/1",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-16\"></span>[4] L. Boominathan, S. S. Kruthiventi, and R. V. Babu. Crowdnet: A deep convolutional network for dense crowd counting. In <i>Proceedings of the 2016 ACM on</i> <i>Multimedia Conference</i>, pages 640644. ACM, 2016.</li>",
"polygon": [
[
54.16259765625,
113.116455078125
],
[
286.3651123046875,
113.116455078125
],
[
286.3651123046875,
158.944091796875
],
[
54.16259765625,
158.944091796875
]
],
"bbox": [
54.16259765625,
113.116455078125,
286.3651123046875,
158.944091796875
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/2",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-17\"></span>[5] A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos. Privacy preserving crowd monitoring: Counting people without people models or tracking. In <i>Computer</i> <i>Vision and Pattern Recognition, 2008. CVPR 2008.</i> <i>IEEE Conference on</i>, pages 17. IEEE, 2008.</li>",
"polygon": [
[
54.685546875,
163.775390625
],
[
286.576171875,
163.775390625
],
[
286.576171875,
221.783203125
],
[
54.685546875,
221.783203125
]
],
"bbox": [
54.685546875,
163.775390625,
286.576171875,
221.783203125
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/3",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-23\"></span>[6] K. Chen, S. Gong, T. Xiang, and C. Change Loy. Cumulative attribute space for age and crowd density estimation. In <i>Proceedings of the IEEE conference on</i> <i>computer vision and pattern recognition</i>, pages 2467 2474, 2013.</li>",
"polygon": [
[
54.685546875,
226.3995361328125
],
[
286.36639404296875,
226.3995361328125
],
[
286.36639404296875,
284.18316650390625
],
[
54.685546875,
284.18316650390625
]
],
"bbox": [
54.685546875,
226.3995361328125,
286.36639404296875,
284.18316650390625
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/4",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-22\"></span>[7] K. Chen, C. C. Loy, S. Gong, and T. Xiang. Feature mining for localised crowd counting.</li>",
"polygon": [
[
54.46142578125,
289.0195617675781
],
[
286.3647766113281,
289.0195617675781
],
[
286.3647766113281,
310.9371643066406
],
[
54.46142578125,
310.9371643066406
]
],
"bbox": [
54.46142578125,
289.0195617675781,
286.3647766113281,
310.9371643066406
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/5",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-13\"></span>[8] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. <i>IEEE Transactions on Pat</i><i>tern Analysis and Machine Intelligence</i>, 2017.</li>",
"polygon": [
[
54.087890625,
315.7735595703125
],
[
286.36614990234375,
315.7735595703125
],
[
286.36614990234375,
373.5561218261719
],
[
54.087890625,
373.5561218261719
]
],
"bbox": [
54.087890625,
315.7735595703125,
286.36614990234375,
373.5561218261719
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/6",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-10\"></span>[9] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. Attention to scale: Scale-aware semantic image segmentation. In <i>Proceedings of the IEEE Conference</i> <i>on Computer Vision and Pattern Recognition</i>, pages 36403649, 2016.</li>",
"polygon": [
[
52.96728515625,
378.39251708984375
],
[
286.36627197265625,
378.39251708984375
],
[
286.36627197265625,
436.17608642578125
],
[
52.96728515625,
436.17608642578125
]
],
"bbox": [
52.96728515625,
378.39251708984375,
286.36627197265625,
436.17608642578125
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/7",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-18\"></span>[10] F. Chollet et al. Keras. <a href=\"https://github.com/fchollet/keras\">https://github.com/</a> <a href=\"https://github.com/fchollet/keras\">fchollet/keras</a>, 2015.</li>",
"polygon": [
[
49.7548828125,
440.5014343261719
],
[
286.3616638183594,
440.5014343261719
],
[
286.3616638183594,
462.9300842285156
],
[
49.7548828125,
462.9300842285156
]
],
"bbox": [
49.7548828125,
440.5014343261719,
286.3616638183594,
462.9300842285156
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/8",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-8\"></span>[11] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. van der Smagt, D. Cremers, and T. Brox. Flownet: Learning optical flow with convolutional networks. In <i>Proceedings of the IEEE Interna</i><i>tional Conference on Computer Vision</i>, pages 2758 2766, 2015.</li>",
"polygon": [
[
49.306640625,
467.7654724121094
],
[
286.3651123046875,
467.7654724121094
],
[
286.3651123046875,
537.5040283203125
],
[
49.306640625,
537.5040283203125
]
],
"bbox": [
49.306640625,
467.7654724121094,
286.3651123046875,
537.5040283203125
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/9",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-11\"></span>[12] C. Farabet, C. Couprie, L. Najman, and Y. Le-Cun. Learning hierarchical features for scene labeling. <i>IEEE transactions on pattern analysis and ma</i><i>chine intelligence</i>, 35(8):19151929, 2013.</li>",
"polygon": [
[
49.08251953125,
542.3404235839844
],
[
286.3651428222656,
542.3404235839844
],
[
286.3651428222656,
588.19921875
],
[
49.08251953125,
588.19921875
]
],
"bbox": [
49.08251953125,
542.3404235839844,
286.3651428222656,
588.19921875
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/10",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-20\"></span>[13] L. Fiaschi, U. Kothe, R. Nair, and F. A. Hamprecht. ¨ Learning to count with regression forest and structured labels. In <i>Pattern Recognition (ICPR), 2012 21st In</i><i>ternational Conference on</i>, pages 26852688. IEEE, 2012.</li>",
"polygon": [
[
49.306640625,
592.9544219970703
],
[
286.3651123046875,
592.9544219970703
],
[
286.3651123046875,
650.84765625
],
[
49.306640625,
650.84765625
]
],
"bbox": [
49.306640625,
592.9544219970703,
286.3651123046875,
650.84765625
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/11",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-1\"></span>[14] R. Guerrero-Gomez-Olmedo, B. Torre-Jim ´ enez, S. M. ´ Lopez-Sastre, Roberto Basc ´ on, and D. O ´ noro Rubio. ˜ Extremely overlapping vehicle counting. In <i>Iberian</i> <i>Conference on Pattern Recognition and Image Analy</i><i>sis (IbPRIA)</i>, 2015.</li>",
"polygon": [
[
49.23193359375,
655.5744323730469
],
[
286.3657531738281,
655.5744323730469
],
[
286.3657531738281,
714.26953125
],
[
49.23193359375,
714.26953125
]
],
"bbox": [
49.23193359375,
655.5744323730469,
286.3657531738281,
714.26953125
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": null
},
{
"id": "/page/8/ListGroup/439",
"block_type": "ListGroup",
"html": "<p block-type='ListGroup'><ul><content-ref src='/page/8/ListItem/12'></content-ref><content-ref src='/page/8/ListItem/13'></content-ref><content-ref src='/page/8/ListItem/14'></content-ref><content-ref src='/page/8/ListItem/15'></content-ref><content-ref src='/page/8/ListItem/16'></content-ref><content-ref src='/page/8/ListItem/17'></content-ref><content-ref src='/page/8/ListItem/18'></content-ref><content-ref src='/page/8/ListItem/19'></content-ref><content-ref src='/page/8/ListItem/20'></content-ref><content-ref src='/page/8/ListItem/21'></content-ref><content-ref src='/page/8/ListItem/22'></content-ref><content-ref src='/page/8/ListItem/23'></content-ref><content-ref src='/page/8/ListItem/24'></content-ref></ul></p>",
"polygon": [
[
308.091796875,
74.4073486328125
],
[
545.958984375,
74.4073486328125
],
[
545.958984375,
713.49609375
],
[
308.091796875,
713.49609375
]
],
"bbox": [
308.091796875,
74.4073486328125,
545.958984375,
713.49609375
],
"children": [
{
"id": "/page/8/ListItem/12",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-3\"></span>[15] V. Lempitsky and A. Zisserman. Learning to count objects in images. In <i>Advances in Neural Information</i> <i>Processing Systems</i>, pages 13241332, 2010.</li>",
"polygon": [
[
308.390625,
74.4073486328125
],
[
545.1150512695312,
74.4073486328125
],
[
545.1150512695312,
108.27996826171875
],
[
308.390625,
108.27996826171875
]
],
"bbox": [
308.390625,
74.4073486328125,
545.1150512695312,
108.27996826171875
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/13",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-12\"></span>[16] G. Lin, C. Shen, A. van den Hengel, and I. Reid. Efficient piecewise training of deep structured models for semantic segmentation. In <i>Proceedings of the IEEE</i> <i>Conference on Computer Vision and Pattern Recogni</i><i>tion</i>, pages 31943203, 2016.</li>",
"polygon": [
[
308.689453125,
113.8753662109375
],
[
545.1151733398438,
113.8753662109375
],
[
545.1151733398438,
171.65899658203125
],
[
308.689453125,
171.65899658203125
]
],
"bbox": [
308.689453125,
113.8753662109375,
545.1151733398438,
171.65899658203125
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/14",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-9\"></span>[17] H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In <i>Proceedings of</i> <i>the IEEE International Conference on Computer Vi</i><i>sion</i>, pages 15201528, 2015.</li>",
"polygon": [
[
308.390625,
177.25439453125
],
[
545.1151123046875,
177.25439453125
],
[
545.1151123046875,
223.08203125
],
[
308.390625,
223.08203125
]
],
"bbox": [
308.390625,
177.25439453125,
545.1151123046875,
223.08203125
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/15",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-4\"></span>[18] D. Onoro-Rubio and R. J. Lopez-Sastre. Towards ´ perspective-free object counting with deep learning. In <i>European Conference on Computer Vision</i>, pages 615629. Springer, 2016.</li>",
"polygon": [
[
308.8620300292969,
228.62841796875
],
[
545.1151123046875,
228.62841796875
],
[
545.1151123046875,
274.50604248046875
],
[
308.8620300292969,
274.50604248046875
]
],
"bbox": [
308.8620300292969,
228.62841796875,
545.1151123046875,
274.50604248046875
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/16",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-21\"></span>[19] V.-Q. Pham, T. Kozakaya, O. Yamaguchi, and R. Okada. Count forest: Co-voting uncertain number of targets using random forest for crowd density estimation. In <i>Proceedings of the IEEE International</i> <i>Conference on Computer Vision</i>, pages 32533261, 2015.</li>",
"polygon": [
[
308.091796875,
280.1014709472656
],
[
545.361328125,
280.1014709472656
],
[
545.361328125,
349.84002685546875
],
[
308.091796875,
349.84002685546875
]
],
"bbox": [
308.091796875,
280.1014709472656,
545.361328125,
349.84002685546875
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/17",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-0\"></span>[20] D. Ryan, S. Denman, C. Fookes, and S. Sridharan. Crowd counting using multiple local features. In <i>Dig</i><i>ital Image Computing: Techniques and Applications,</i> <i>2009. DICTA'09.</i>, pages 8188. IEEE, 2009.</li>",
"polygon": [
[
308.86199951171875,
355.4354248046875
],
[
545.1151123046875,
355.4354248046875
],
[
545.1151123046875,
401.80078125
],
[
308.86199951171875,
401.80078125
]
],
"bbox": [
308.86199951171875,
355.4354248046875,
545.1151123046875,
401.80078125
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/18",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-14\"></span>[21] S. Segu´ı, O. Pujol, and J. Vitria. Learning to count with deep object features. In <i>Proceedings of the IEEE</i> <i>Conference on Computer Vision and Pattern Recogni</i><i>tion Workshops</i>, pages 9096, 2015.</li>",
"polygon": [
[
308.8620300292969,
406.80938720703125
],
[
545.1151123046875,
406.80938720703125
],
[
545.1151123046875,
452.6869812011719
],
[
308.8620300292969,
452.6869812011719
]
],
"bbox": [
308.8620300292969,
406.80938720703125,
545.1151123046875,
452.6869812011719
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/19",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-2\"></span>[22] J. Selinummi, O. Yli-Harja, and J. A. Puhakka. Software for quantification of labeled bacteria from digital microscope images by automated image analysis. <i>Biotechniques</i>, 39(6):859, 2005.</li>",
"polygon": [
[
308.8620300292969,
458.2823791503906
],
[
545.1151733398438,
458.2823791503906
],
[
545.1151733398438,
504.1099548339844
],
[
308.8620300292969,
504.1099548339844
]
],
"bbox": [
308.8620300292969,
458.2823791503906,
545.1151733398438,
504.1099548339844
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/20",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-19\"></span>[23] V. A. Sindagi and V. M. Patel. Generating high-quality crowd density maps using contextual pyramid cnns. In <i>Proceedings of the IEEE Conference on Computer</i> <i>Vision and Pattern Recognition</i>, pages 18611870, 2017.</li>",
"polygon": [
[
308.8620300292969,
509.7053527832031
],
[
545.1151733398438,
509.7053527832031
],
[
545.1151733398438,
567.703125
],
[
308.8620300292969,
567.703125
]
],
"bbox": [
308.8620300292969,
509.7053527832031,
545.1151733398438,
567.703125
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/21",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-15\"></span>[24] E. Walach and L. Wolf. Learning to count with cnn boosting. In <i>European Conference on Computer Vi</i><i>sion</i>, pages 660676. Springer, 2016.</li>",
"polygon": [
[
308.8620300292969,
573.0843658447266
],
[
545.361328125,
573.0843658447266
],
[
545.361328125,
606.9579620361328
],
[
308.8620300292969,
606.9579620361328
]
],
"bbox": [
308.8620300292969,
573.0843658447266,
545.361328125,
606.9579620361328
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/22",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-5\"></span>[25] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. <i>arXiv preprint</i> <i>arXiv:1511.07122</i>, 2015.</li>",
"polygon": [
[
308.8620300292969,
612.5533599853516
],
[
545.361328125,
612.5533599853516
],
[
545.361328125,
646.59375
],
[
308.8620300292969,
646.59375
]
],
"bbox": [
308.8620300292969,
612.5533599853516,
545.361328125,
646.59375
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/23",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-6\"></span>[26] F. Yu, V. Koltun, and T. Funkhouser. Dilated residual networks. <i>arXiv preprint arXiv:1705.09914</i>, 2017.</li>",
"polygon": [
[
308.390625,
652.0078125
],
[
545.1151733398438,
652.0078125
],
[
545.1151733398438,
673.93896484375
],
[
308.390625,
673.93896484375
]
],
"bbox": [
308.390625,
652.0078125,
545.1151733398438,
673.93896484375
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/8/ListItem/24",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-8-7\"></span>[27] C. Zhang, H. Li, X. Wang, and X. Yang. Crossscene crowd counting via deep convolutional neural networks. In <i>Proceedings of the IEEE Conference on</i></li>",
"polygon": [
[
308.8620910644531,
679.5343627929688
],
[
545.958984375,
679.5343627929688
],
[
545.958984375,
713.49609375
],
[
308.8620910644531,
713.49609375
]
],
"bbox": [
308.8620910644531,
679.5343627929688,
545.958984375,
713.49609375
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": null
}
],
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": null
},
{
"id": "/page/9/Page/26",
"block_type": "Page",
"html": "<content-ref src='/page/9/Text/0'></content-ref><content-ref src='/page/9/ListItem/1'></content-ref>",
"polygon": [
[
0.0,
0.0
],
[
612.0,
0.0
],
[
612.0,
792.0
],
[
0.0,
792.0
]
],
"bbox": [
0.0,
0.0,
612.0,
792.0
],
"children": [
{
"id": "/page/9/Text/0",
"block_type": "Text",
"html": "<p block-type=\"Text\"><i>Computer Vision and Pattern Recognition</i>, pages 833 841, 2015.</p>",
"polygon": [
[
71.12109375,
74.23095703125
],
[
287.771484375,
74.23095703125
],
[
287.771484375,
96.32501220703125
],
[
71.12109375,
96.32501220703125
]
],
"bbox": [
71.12109375,
74.23095703125,
287.771484375,
96.32501220703125
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
},
{
"id": "/page/9/ListItem/1",
"block_type": "ListItem",
"html": "<li block-type=\"ListItem\"><span id=\"page-9-0\"></span>[28] Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma. Single-image crowd counting via multi-column convolutional neural network. In <i>Proceedings of the IEEE</i> <i>Conference on Computer Vision and Pattern Recogni</i><i>tion</i>, pages 589597, 2016.</li>",
"polygon": [
[
48.48486328125,
101.306396484375
],
[
286.576171875,
101.306396484375
],
[
286.576171875,
159.08905029296875
],
[
48.48486328125,
159.08905029296875
]
],
"bbox": [
48.48486328125,
101.306396484375,
286.576171875,
159.08905029296875
],
"children": null,
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": {}
}
],
"section_hierarchy": {
"1": "/page/7/SectionHeader/11"
},
"images": null
}
],
"block_type": "Document"
}