You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
200 lines
7.2 KiB
Python
200 lines
7.2 KiB
Python
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# -*- encoding: utf-8 -*-
|
|
import numpy as np
|
|
|
|
from .utils import compute_iou, distance
|
|
|
|
|
|
class TableMatch:
|
|
def __init__(self, filter_ocr_result=True, use_master=False):
|
|
self.filter_ocr_result = filter_ocr_result
|
|
self.use_master = use_master
|
|
|
|
def __call__(self, pred_structures, cell_bboxes, dt_boxes, rec_res):
|
|
if self.filter_ocr_result:
|
|
dt_boxes, rec_res = self._filter_ocr_result(cell_bboxes, dt_boxes, rec_res)
|
|
matched_index = self.match_result(dt_boxes, cell_bboxes)
|
|
pred_html, pred = self.get_pred_html(pred_structures, matched_index, rec_res)
|
|
return pred_html
|
|
|
|
def match_result(self, dt_boxes, cell_bboxes, min_iou=0.1**8):
|
|
matched = {}
|
|
for i, gt_box in enumerate(dt_boxes):
|
|
distances = []
|
|
for j, pred_box in enumerate(cell_bboxes):
|
|
if len(pred_box) == 8:
|
|
pred_box = [
|
|
np.min(pred_box[0::2]),
|
|
np.min(pred_box[1::2]),
|
|
np.max(pred_box[0::2]),
|
|
np.max(pred_box[1::2]),
|
|
]
|
|
distances.append(
|
|
(distance(gt_box, pred_box), 1.0 - compute_iou(gt_box, pred_box))
|
|
) # compute iou and l1 distance
|
|
sorted_distances = distances.copy()
|
|
# select det box by iou and l1 distance
|
|
sorted_distances = sorted(
|
|
sorted_distances, key=lambda item: (item[1], item[0])
|
|
)
|
|
# must > min_iou
|
|
if sorted_distances[0][1] >= 1 - min_iou:
|
|
continue
|
|
|
|
if distances.index(sorted_distances[0]) not in matched:
|
|
matched[distances.index(sorted_distances[0])] = [i]
|
|
else:
|
|
matched[distances.index(sorted_distances[0])].append(i)
|
|
return matched
|
|
|
|
def get_pred_html(self, pred_structures, matched_index, ocr_contents):
|
|
end_html = []
|
|
td_index = 0
|
|
for tag in pred_structures:
|
|
if "</td>" not in tag:
|
|
end_html.append(tag)
|
|
continue
|
|
|
|
if "<td></td>" == tag:
|
|
end_html.extend("<td>")
|
|
|
|
if td_index in matched_index.keys():
|
|
b_with = False
|
|
if (
|
|
"<b>" in ocr_contents[matched_index[td_index][0]]
|
|
and len(matched_index[td_index]) > 1
|
|
):
|
|
b_with = True
|
|
end_html.extend("<b>")
|
|
|
|
for i, td_index_index in enumerate(matched_index[td_index]):
|
|
content = ocr_contents[td_index_index][0]
|
|
if len(matched_index[td_index]) > 1:
|
|
if len(content) == 0:
|
|
continue
|
|
|
|
if content[0] == " ":
|
|
content = content[1:]
|
|
|
|
if "<b>" in content:
|
|
content = content[3:]
|
|
|
|
if "</b>" in content:
|
|
content = content[:-4]
|
|
|
|
if len(content) == 0:
|
|
continue
|
|
|
|
if i != len(matched_index[td_index]) - 1 and " " != content[-1]:
|
|
content += " "
|
|
end_html.extend(content)
|
|
|
|
if b_with:
|
|
end_html.extend("</b>")
|
|
|
|
if "<td></td>" == tag:
|
|
end_html.append("</td>")
|
|
else:
|
|
end_html.append(tag)
|
|
|
|
td_index += 1
|
|
|
|
# Filter <thead></thead><tbody></tbody> elements
|
|
filter_elements = ["<thead>", "</thead>", "<tbody>", "</tbody>"]
|
|
end_html = [v for v in end_html if v not in filter_elements]
|
|
return "".join(end_html), end_html
|
|
|
|
def decode_logic_points(self, pred_structures):
|
|
logic_points = []
|
|
current_row = 0
|
|
current_col = 0
|
|
max_rows = 0
|
|
max_cols = 0
|
|
occupied_cells = {} # 用于记录已经被占用的单元格
|
|
|
|
def is_occupied(row, col):
|
|
return (row, col) in occupied_cells
|
|
|
|
def mark_occupied(row, col, rowspan, colspan):
|
|
for r in range(row, row + rowspan):
|
|
for c in range(col, col + colspan):
|
|
occupied_cells[(r, c)] = True
|
|
|
|
i = 0
|
|
while i < len(pred_structures):
|
|
token = pred_structures[i]
|
|
|
|
if token == "<tr>":
|
|
current_col = 0 # 每次遇到 <tr> 时,重置当前列号
|
|
elif token == "</tr>":
|
|
current_row += 1 # 行结束,行号增加
|
|
elif token.startswith("<td"):
|
|
colspan = 1
|
|
rowspan = 1
|
|
j = i
|
|
if token != "<td></td>":
|
|
j += 1
|
|
# 提取 colspan 和 rowspan 属性
|
|
while j < len(pred_structures) and not pred_structures[
|
|
j
|
|
].startswith(">"):
|
|
if "colspan=" in pred_structures[j]:
|
|
colspan = int(pred_structures[j].split("=")[1].strip("\"'"))
|
|
elif "rowspan=" in pred_structures[j]:
|
|
rowspan = int(pred_structures[j].split("=")[1].strip("\"'"))
|
|
j += 1
|
|
|
|
# 跳过已经处理过的属性 token
|
|
i = j
|
|
|
|
# 找到下一个未被占用的列
|
|
while is_occupied(current_row, current_col):
|
|
current_col += 1
|
|
|
|
# 计算逻辑坐标
|
|
r_start = current_row
|
|
r_end = current_row + rowspan - 1
|
|
col_start = current_col
|
|
col_end = current_col + colspan - 1
|
|
|
|
# 记录逻辑坐标
|
|
logic_points.append([r_start, r_end, col_start, col_end])
|
|
|
|
# 标记占用的单元格
|
|
mark_occupied(r_start, col_start, rowspan, colspan)
|
|
|
|
# 更新当前列号
|
|
current_col += colspan
|
|
|
|
# 更新最大行数和列数
|
|
max_rows = max(max_rows, r_end + 1)
|
|
max_cols = max(max_cols, col_end + 1)
|
|
|
|
i += 1
|
|
|
|
return logic_points
|
|
|
|
def _filter_ocr_result(self, cell_bboxes, dt_boxes, rec_res):
|
|
y1 = cell_bboxes[:, 1::2].min()
|
|
new_dt_boxes = []
|
|
new_rec_res = []
|
|
|
|
for box, rec in zip(dt_boxes, rec_res):
|
|
if np.max(box[1::2]) < y1:
|
|
continue
|
|
new_dt_boxes.append(box)
|
|
new_rec_res.append(rec)
|
|
return new_dt_boxes, new_rec_res
|