from typing import List from .pdf_detection import Pipeline from utils import non_max_suppression, merge_text_and_title_boxes, LayoutBox, PageDetectionResult from tqdm import tqdm """ 0 - Text 1 - Title 2 - Figure 3 - Figure caption 4 - Table 5 - Table caption 6 - Header 7 - Footer 8 - Reference 9 - Equation """ pipeline = Pipeline('./models/PaddleDetection/inference_model/picodet_lcnet_x1_0_fgd_layout_cdla_infer') effective_labels = [0, 1, 2, 4, 5] # nms优先级,索引越低优先级越低,box重叠时优先保留表格 label_scores = [1, 5, 0, 2, 4] expand_pixel = 10 def layout_analysis(image_paths) -> List[PageDetectionResult]: layout_analysis_results = [] for image_path in tqdm(image_paths, '版面分析'): page_detecion_outputs = pipeline(image_path) layout_boxes = [] for i in range(len(page_detecion_outputs)): clsid, box, confidence = page_detecion_outputs[i] if clsid in effective_labels: layout_boxes.append(LayoutBox(clsid, box, confidence)) page_detecion_outputs = PageDetectionResult(layout_boxes, image_path) scores = [] poses = [] for box in page_detecion_outputs.boxes: # 相同的label重叠时,保留面积更大的 area = (box.pos[3] - box.pos[1]) * (box.pos[2] - box.pos[0]) area_score = area / 5000000 scores.append(label_scores.index(box.clsid) + area_score) poses.append(box.pos) indices = non_max_suppression(poses, scores, 0.2) _boxes = [] for i in indices: _boxes.append(page_detecion_outputs.boxes[i]) page_detecion_outputs.boxes = _boxes for i in range(len(page_detecion_outputs.boxes) - 1, -1, -1): box = page_detecion_outputs.boxes[i] if box.clsid in (0, 5): # 移除Table box和Figure box中的Table caption box和Text box (有些扫描件会被识别为Figure) for _box in page_detecion_outputs.boxes: if _box.clsid != 2 and _box.clsid != 4: continue if box.pos[0] > _box.pos[0] and box.pos[1] > _box.pos[1] and box.pos[2] < _box.pos[2] and box.pos[3] < _box.pos[3]: page_detecion_outputs.boxes.remove(box) # 将text和title合并起来,便于转成markdown格式 page_detecion_outputs.boxes = merge_text_and_title_boxes(page_detecion_outputs.boxes, (0, 1)) # 对box进行排序 page_detecion_outputs.boxes.sort(key=lambda x: (x.pos[1], x.pos[0])) layout_analysis_results.append(page_detecion_outputs) return layout_analysis_results