You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

107 lines
4.3 KiB
Python

1 month ago
from typing import List
1 month ago
from .pdf_detection import Pipeline
from utils import non_max_suppression, merge_text_and_title_boxes, LayoutBox, PageDetectionResult
from tqdm import tqdm
from ..constants import PageDetectionEnum as E
from ..image_helper import remove_watermark
1 month ago
"""
0 - Text
1 - Title
2 - Figure
3 - Figure caption
4 - Table
5 - Table caption
6 - Header
7 - Footer
8 - Reference
9 - Equation
使用训练后的权重时id需要+1即TEXT从1开始
1 month ago
"""
pipeline = Pipeline('./models/PaddleDetection/inference_model/picodet_lcnet_x1_0_fgd_layout_cdla_infer_v2')
1 month ago
effective_labels = [E.TEXT.value, E.TITLE.value, E.TABLE.value, E.TABLE_CAPTION.value, E.SCANNED_DOCUMENT.value]
# nms优先级索引越低优先级越低
label_scores = [E.TITLE.value, E.TABLE_CAPTION.value, E.TEXT.value, E.TABLE.value, E.SCANNED_DOCUMENT.value]
1 month ago
expand_pixel = 10
def layout_analysis(images) -> List[PageDetectionResult]:
1 month ago
layout_analysis_results = []
for image in tqdm(images, '版面分析'):
page_detecion_outputs = pipeline(image)
1 month ago
layout_boxes = []
is_scanned_document = False
for o in page_detecion_outputs:
clsid, box, confidence = o
1 month ago
if clsid in effective_labels:
layout_boxes.append(LayoutBox(clsid, box, confidence))
if clsid == E.SCANNED_DOCUMENT.value:
is_scanned_document = True
image = remove_watermark(image)
if is_scanned_document:
# 扫描件需要去水印后重新进行版面分析来识别出标题,因为训练的图片是去水印之后的
_page_detecion_outputs = pipeline(image)
for o in _page_detecion_outputs:
clsid, box, confidence = o
if clsid == E.TABLE_CAPTION.value:
layout_boxes.append(LayoutBox(clsid, box, confidence))
page_detecion_outputs = PageDetectionResult(layout_boxes, image)
1 month ago
scores = []
poses = []
for box in page_detecion_outputs.boxes:
# 相同的label重叠时保留面积更大的
area = (box.pos[3] - box.pos[1]) * (box.pos[2] - box.pos[0])
area_score = area / 5000000
scores.append(label_scores.index(box.clsid) + area_score)
poses.append(box.pos)
indices = non_max_suppression(poses, scores, 0.2)
_boxes = []
for i in indices:
_boxes.append(page_detecion_outputs.boxes[i])
page_detecion_outputs.boxes = _boxes
if not is_scanned_document:
for i in range(len(page_detecion_outputs.boxes) - 1, -1, -1):
1 month ago
# 移除Table box和Figure box中的Table caption box和Text box (有些扫描件会被识别为Figure)
box = page_detecion_outputs.boxes[i]
if box.clsid in (E.TEXT.value, E.TABLE_CAPTION.value):
for _box in page_detecion_outputs.boxes:
if _box.clsid != E.FIGURE.value and _box.clsid != E.TABLE.value:
continue
if box.pos[0] > _box.pos[0] and box.pos[1] > _box.pos[1] and box.pos[2] < _box.pos[2] and box.pos[3] < _box.pos[3]:
page_detecion_outputs.boxes.remove(box)
1 month ago
# 将text和title合并起来便于转成markdown格式
merged_labels = [E.TEXT.value, E.TITLE.value]
other_labels = list(set(effective_labels) - set(merged_labels))
page_detecion_outputs.boxes = merge_text_and_title_boxes(page_detecion_outputs.boxes, merged_labels, other_labels, E.TEXT.value)
1 month ago
# 对box进行排序
page_detecion_outputs.boxes.sort(key=lambda x: (x.pos[1], x.pos[0]))
# box外扩便于后续的ocr
h, w = image.shape[:2]
for layout in page_detecion_outputs.boxes:
if layout.clsid != E.TEXT.value:
continue
layout.pos[0] -= expand_pixel
layout.pos[1] -= expand_pixel
layout.pos[2] += expand_pixel
layout.pos[3] += expand_pixel
layout.pos[0] = max(0, layout.pos[0])
layout.pos[1] = max(0, layout.pos[1])
layout.pos[2] = min(w, layout.pos[2])
layout.pos[3] = min(h, layout.pos[3])
1 month ago
layout_analysis_results.append(page_detecion_outputs)
return layout_analysis_results