You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

341 lines
12 KiB
Python

import os
import click
import fitz
from loguru import logger
import magic_pdf.model as model_config
from magic_pdf.config.enums import SupportedPdfParseMethod
from magic_pdf.config.make_content_config import DropMode, MakeMode
from magic_pdf.data.data_reader_writer import FileBasedDataWriter
from magic_pdf.data.dataset import Dataset, PymuDocDataset
from magic_pdf.libs.draw_bbox import draw_char_bbox
from magic_pdf.model.doc_analyze_by_custom_model import (batch_doc_analyze,
doc_analyze)
# from io import BytesIO
# from pypdf import PdfReader, PdfWriter
def prepare_env(output_dir, pdf_file_name, method):
local_parent_dir = os.path.join(output_dir, pdf_file_name, method)
local_image_dir = os.path.join(str(local_parent_dir), 'images')
local_md_dir = local_parent_dir
os.makedirs(local_image_dir, exist_ok=True)
os.makedirs(local_md_dir, exist_ok=True)
return local_image_dir, local_md_dir
# def convert_pdf_bytes_to_bytes_by_pypdf(pdf_bytes, start_page_id=0, end_page_id=None):
# # 将字节数据包装在 BytesIO 对象中
# pdf_file = BytesIO(pdf_bytes)
# # 读取 PDF 的字节数据
# reader = PdfReader(pdf_file)
# # 创建一个新的 PDF 写入器
# writer = PdfWriter()
# # 将所有页面添加到新的 PDF 写入器中
# end_page_id = end_page_id if end_page_id is not None and end_page_id >= 0 else len(reader.pages) - 1
# if end_page_id > len(reader.pages) - 1:
# logger.warning("end_page_id is out of range, use pdf_docs length")
# end_page_id = len(reader.pages) - 1
# for i, page in enumerate(reader.pages):
# if start_page_id <= i <= end_page_id:
# writer.add_page(page)
# # 创建一个字节缓冲区来存储输出的 PDF 数据
# output_buffer = BytesIO()
# # 将 PDF 写入字节缓冲区
# writer.write(output_buffer)
# # 获取字节缓冲区的内容
# converted_pdf_bytes = output_buffer.getvalue()
# return converted_pdf_bytes
def convert_pdf_bytes_to_bytes_by_pymupdf(pdf_bytes, start_page_id=0, end_page_id=None):
document = fitz.open('pdf', pdf_bytes)
output_document = fitz.open()
end_page_id = (
end_page_id
if end_page_id is not None and end_page_id >= 0
else len(document) - 1
)
if end_page_id > len(document) - 1:
logger.warning('end_page_id is out of range, use pdf_docs length')
end_page_id = len(document) - 1
output_document.insert_pdf(document, from_page=start_page_id, to_page=end_page_id)
output_bytes = output_document.tobytes()
return output_bytes
def _do_parse(
output_dir,
pdf_file_name,
pdf_bytes_or_dataset,
model_list,
parse_method,
debug_able=False,
f_draw_span_bbox=True,
f_draw_layout_bbox=True,
f_dump_md=True,
f_dump_middle_json=True,
f_dump_model_json=True,
f_dump_orig_pdf=True,
f_dump_content_list=True,
f_make_md_mode=MakeMode.MM_MD,
f_draw_model_bbox=False,
f_draw_line_sort_bbox=False,
f_draw_char_bbox=False,
start_page_id=0,
end_page_id=None,
lang=None,
layout_model=None,
formula_enable=None,
table_enable=None,
):
from magic_pdf.operators.models import InferenceResult
if debug_able:
logger.warning('debug mode is on')
f_draw_model_bbox = True
f_draw_line_sort_bbox = True
# f_draw_char_bbox = True
if isinstance(pdf_bytes_or_dataset, bytes):
pdf_bytes = convert_pdf_bytes_to_bytes_by_pymupdf(
pdf_bytes_or_dataset, start_page_id, end_page_id
)
ds = PymuDocDataset(pdf_bytes, lang=lang)
else:
ds = pdf_bytes_or_dataset
pdf_bytes = ds._raw_data
local_image_dir, local_md_dir = prepare_env(output_dir, pdf_file_name, parse_method)
image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(local_md_dir)
image_dir = str(os.path.basename(local_image_dir))
if len(model_list) == 0:
if model_config.__use_inside_model__:
if parse_method == 'auto':
if ds.classify() == SupportedPdfParseMethod.TXT:
infer_result = ds.apply(
doc_analyze,
ocr=False,
lang=ds._lang,
layout_model=layout_model,
formula_enable=formula_enable,
table_enable=table_enable,
)
pipe_result = infer_result.pipe_txt_mode(
image_writer, debug_mode=True, lang=ds._lang
)
else:
infer_result = ds.apply(
doc_analyze,
ocr=True,
lang=ds._lang,
layout_model=layout_model,
formula_enable=formula_enable,
table_enable=table_enable,
)
pipe_result = infer_result.pipe_ocr_mode(
image_writer, debug_mode=True, lang=ds._lang
)
elif parse_method == 'txt':
infer_result = ds.apply(
doc_analyze,
ocr=False,
lang=ds._lang,
layout_model=layout_model,
formula_enable=formula_enable,
table_enable=table_enable,
)
pipe_result = infer_result.pipe_txt_mode(
image_writer, debug_mode=True, lang=ds._lang
)
elif parse_method == 'ocr':
infer_result = ds.apply(
doc_analyze,
ocr=True,
lang=ds._lang,
layout_model=layout_model,
formula_enable=formula_enable,
table_enable=table_enable,
)
pipe_result = infer_result.pipe_ocr_mode(
image_writer, debug_mode=True, lang=ds._lang
)
else:
logger.error('unknown parse method')
exit(1)
else:
logger.error('need model list input')
exit(2)
else:
infer_result = InferenceResult(model_list, ds)
if parse_method == 'ocr':
pipe_result = infer_result.pipe_ocr_mode(
image_writer, debug_mode=True, lang=ds._lang
)
elif parse_method == 'txt':
pipe_result = infer_result.pipe_txt_mode(
image_writer, debug_mode=True, lang=ds._lang
)
else:
if ds.classify() == SupportedPdfParseMethod.TXT:
pipe_result = infer_result.pipe_txt_mode(
image_writer, debug_mode=True, lang=ds._lang
)
else:
pipe_result = infer_result.pipe_ocr_mode(
image_writer, debug_mode=True, lang=ds._lang
)
if f_draw_model_bbox:
infer_result.draw_model(
os.path.join(local_md_dir, f'{pdf_file_name}_model.pdf')
)
if f_draw_layout_bbox:
pipe_result.draw_layout(
os.path.join(local_md_dir, f'{pdf_file_name}_layout.pdf')
)
if f_draw_span_bbox:
pipe_result.draw_span(os.path.join(local_md_dir, f'{pdf_file_name}_spans.pdf'))
if f_draw_line_sort_bbox:
pipe_result.draw_line_sort(
os.path.join(local_md_dir, f'{pdf_file_name}_line_sort.pdf')
)
if f_draw_char_bbox:
draw_char_bbox(pdf_bytes, local_md_dir, f'{pdf_file_name}_char_bbox.pdf')
if f_dump_md:
pipe_result.dump_md(
md_writer,
f'{pdf_file_name}.md',
image_dir,
drop_mode=DropMode.NONE,
md_make_mode=f_make_md_mode,
)
if f_dump_middle_json:
pipe_result.dump_middle_json(md_writer, f'{pdf_file_name}_middle.json')
if f_dump_model_json:
infer_result.dump_model(md_writer, f'{pdf_file_name}_model.json')
if f_dump_orig_pdf:
md_writer.write(
f'{pdf_file_name}_origin.pdf',
pdf_bytes,
)
if f_dump_content_list:
pipe_result.dump_content_list(
md_writer,
f'{pdf_file_name}_content_list.json',
image_dir
)
logger.info(f'local output dir is {local_md_dir}')
def do_parse(
output_dir,
pdf_file_name,
pdf_bytes_or_dataset,
model_list,
parse_method,
debug_able=False,
f_draw_span_bbox=True,
f_draw_layout_bbox=True,
f_dump_md=True,
f_dump_middle_json=True,
f_dump_model_json=True,
f_dump_orig_pdf=True,
f_dump_content_list=True,
f_make_md_mode=MakeMode.MM_MD,
f_draw_model_bbox=False,
f_draw_line_sort_bbox=False,
f_draw_char_bbox=False,
start_page_id=0,
end_page_id=None,
lang=None,
layout_model=None,
formula_enable=None,
table_enable=None,
):
parallel_count = 1
if os.environ.get('MINERU_PARALLEL_INFERENCE_COUNT'):
parallel_count = int(os.environ['MINERU_PARALLEL_INFERENCE_COUNT'])
if parallel_count > 1:
if isinstance(pdf_bytes_or_dataset, bytes):
pdf_bytes = convert_pdf_bytes_to_bytes_by_pymupdf(
pdf_bytes_or_dataset, start_page_id, end_page_id
)
ds = PymuDocDataset(pdf_bytes, lang=lang)
else:
ds = pdf_bytes_or_dataset
batch_do_parse(output_dir, [pdf_file_name], [ds], parse_method, debug_able, f_draw_span_bbox=f_draw_span_bbox, f_draw_layout_bbox=f_draw_layout_bbox, f_dump_md=f_dump_md, f_dump_middle_json=f_dump_middle_json, f_dump_model_json=f_dump_model_json, f_dump_orig_pdf=f_dump_orig_pdf, f_dump_content_list=f_dump_content_list, f_make_md_mode=f_make_md_mode, f_draw_model_bbox=f_draw_model_bbox, f_draw_line_sort_bbox=f_draw_line_sort_bbox, f_draw_char_bbox=f_draw_char_bbox, lang=lang)
else:
_do_parse(output_dir, pdf_file_name, pdf_bytes_or_dataset, model_list, parse_method, debug_able, start_page_id=start_page_id, end_page_id=end_page_id, lang=lang, layout_model=layout_model, formula_enable=formula_enable, table_enable=table_enable, f_draw_span_bbox=f_draw_span_bbox, f_draw_layout_bbox=f_draw_layout_bbox, f_dump_md=f_dump_md, f_dump_middle_json=f_dump_middle_json, f_dump_model_json=f_dump_model_json, f_dump_orig_pdf=f_dump_orig_pdf, f_dump_content_list=f_dump_content_list, f_make_md_mode=f_make_md_mode, f_draw_model_bbox=f_draw_model_bbox, f_draw_line_sort_bbox=f_draw_line_sort_bbox, f_draw_char_bbox=f_draw_char_bbox)
def batch_do_parse(
output_dir,
pdf_file_names: list[str],
pdf_bytes_or_datasets: list[bytes | Dataset],
parse_method,
debug_able=False,
f_draw_span_bbox=True,
f_draw_layout_bbox=True,
f_dump_md=True,
f_dump_middle_json=True,
f_dump_model_json=True,
f_dump_orig_pdf=True,
f_dump_content_list=True,
f_make_md_mode=MakeMode.MM_MD,
f_draw_model_bbox=False,
f_draw_line_sort_bbox=False,
f_draw_char_bbox=False,
lang=None,
layout_model=None,
formula_enable=None,
table_enable=None,
):
dss = []
for v in pdf_bytes_or_datasets:
if isinstance(v, bytes):
dss.append(PymuDocDataset(v, lang=lang))
else:
dss.append(v)
infer_results = batch_doc_analyze(dss, parse_method, lang=lang, layout_model=layout_model, formula_enable=formula_enable, table_enable=table_enable)
for idx, infer_result in enumerate(infer_results):
_do_parse(
output_dir = output_dir,
pdf_file_name = pdf_file_names[idx],
pdf_bytes_or_dataset = dss[idx],
model_list = infer_result.get_infer_res(),
parse_method = parse_method,
debug_able = debug_able,
f_draw_span_bbox = f_draw_span_bbox,
f_draw_layout_bbox = f_draw_layout_bbox,
f_dump_md=f_dump_md,
f_dump_middle_json=f_dump_middle_json,
f_dump_model_json=f_dump_model_json,
f_dump_orig_pdf=f_dump_orig_pdf,
f_dump_content_list=f_dump_content_list,
f_make_md_mode=MakeMode.MM_MD,
f_draw_model_bbox=f_draw_model_bbox,
f_draw_line_sort_bbox=f_draw_line_sort_bbox,
f_draw_char_bbox=f_draw_char_bbox,
lang=lang,
)
parse_pdf_methods = click.Choice(['ocr', 'txt', 'auto'])