You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
82 lines
2.8 KiB
Python
82 lines
2.8 KiB
Python
4 weeks ago
|
import collections
|
||
|
import json
|
||
|
|
||
|
import click
|
||
|
|
||
|
from surya.input.processing import convert_if_not_rgb
|
||
|
from surya.layout import LayoutPredictor
|
||
|
from surya.common.polygon import PolygonBox
|
||
|
from surya.settings import settings
|
||
|
from benchmark.utils.metrics import rank_accuracy
|
||
|
import os
|
||
|
import time
|
||
|
import datasets
|
||
|
|
||
|
|
||
|
@click.command(help="Benchmark surya layout for reading order.")
|
||
|
@click.option("--results_dir", type=str, help="Path to JSON file with benchmark results.", default=os.path.join(settings.RESULT_DIR, "benchmark"))
|
||
|
@click.option("--max_rows", type=int, help="Maximum number of images to run benchmark on.", default=None)
|
||
|
def main(results_dir: str, max_rows: int):
|
||
|
layout_predictor = LayoutPredictor()
|
||
|
pathname = "order_bench"
|
||
|
# These have already been shuffled randomly, so sampling from the start is fine
|
||
|
split = "train"
|
||
|
if max_rows is not None:
|
||
|
split = f"train[:{max_rows}]"
|
||
|
dataset = datasets.load_dataset(settings.ORDER_BENCH_DATASET_NAME, split=split)
|
||
|
images = list(dataset["image"])
|
||
|
images = convert_if_not_rgb(images)
|
||
|
|
||
|
start = time.time()
|
||
|
layout_predictions = layout_predictor(images)
|
||
|
surya_time = time.time() - start
|
||
|
|
||
|
folder_name = os.path.basename(pathname).split(".")[0]
|
||
|
result_path = os.path.join(results_dir, folder_name)
|
||
|
os.makedirs(result_path, exist_ok=True)
|
||
|
|
||
|
page_metrics = collections.OrderedDict()
|
||
|
mean_accuracy = 0
|
||
|
for idx, order_pred in enumerate(layout_predictions):
|
||
|
row = dataset[idx]
|
||
|
labels = row["labels"]
|
||
|
bboxes = row["bboxes"]
|
||
|
pred_positions = []
|
||
|
for label, bbox in zip(labels, bboxes):
|
||
|
max_intersection = 0
|
||
|
matching_idx = 0
|
||
|
for pred_box in order_pred.bboxes:
|
||
|
intersection = pred_box.intersection_pct(PolygonBox(polygon=bbox))
|
||
|
if intersection > max_intersection:
|
||
|
max_intersection = intersection
|
||
|
matching_idx = pred_box.position
|
||
|
pred_positions.append(matching_idx)
|
||
|
accuracy = rank_accuracy(pred_positions, labels)
|
||
|
mean_accuracy += accuracy
|
||
|
page_results = {
|
||
|
"accuracy": accuracy,
|
||
|
"box_count": len(labels)
|
||
|
}
|
||
|
|
||
|
page_metrics[idx] = page_results
|
||
|
|
||
|
mean_accuracy /= len(layout_predictions)
|
||
|
|
||
|
out_data = {
|
||
|
"time": surya_time,
|
||
|
"mean_accuracy": mean_accuracy,
|
||
|
"page_metrics": page_metrics
|
||
|
}
|
||
|
|
||
|
with open(os.path.join(result_path, "results.json"), "w+", encoding="utf-8") as f:
|
||
|
json.dump(out_data, f, indent=4)
|
||
|
|
||
|
print(f"Mean accuracy is {mean_accuracy:.2f}.")
|
||
|
print(f"Took {surya_time / len(images):.2f} seconds per image, and {surya_time:.1f} seconds total.")
|
||
|
print("Mean accuracy is the % of correct ranking pairs.")
|
||
|
print(f"Wrote results to {result_path}")
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|