You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

267 lines
11 KiB
Python

# flake8: noqa
import os
import time
import cv2
import torch
import yaml
from loguru import logger
os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1' # 禁止albumentations检查更新
from magic_pdf.config.constants import *
from magic_pdf.model.model_list import AtomicModel
from magic_pdf.model.sub_modules.model_init import AtomModelSingleton
from magic_pdf.model.sub_modules.model_utils import (
clean_vram, crop_img, get_res_list_from_layout_res)
from magic_pdf.model.sub_modules.ocr.paddleocr2pytorch.ocr_utils import (
get_adjusted_mfdetrec_res, get_ocr_result_list)
class CustomPEKModel:
def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
"""
======== model init ========
"""
# 获取当前文件(即 pdf_extract_kit.py的绝对路径
current_file_path = os.path.abspath(__file__)
# 获取当前文件所在的目录(model)
current_dir = os.path.dirname(current_file_path)
# 上一级目录(magic_pdf)
root_dir = os.path.dirname(current_dir)
# model_config目录
model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
# 构建 model_configs.yaml 文件的完整路径
config_path = os.path.join(model_config_dir, 'model_configs.yaml')
with open(config_path, 'r', encoding='utf-8') as f:
self.configs = yaml.load(f, Loader=yaml.FullLoader)
# 初始化解析配置
# layout config
self.layout_config = kwargs.get('layout_config')
self.layout_model_name = self.layout_config.get(
'model', MODEL_NAME.DocLayout_YOLO
)
# formula config
self.formula_config = kwargs.get('formula_config')
self.mfd_model_name = self.formula_config.get(
'mfd_model', MODEL_NAME.YOLO_V8_MFD
)
self.mfr_model_name = self.formula_config.get(
'mfr_model', MODEL_NAME.UniMerNet_v2_Small
)
self.apply_formula = self.formula_config.get('enable', True)
# table config
self.table_config = kwargs.get('table_config')
self.apply_table = self.table_config.get('enable', False)
self.table_max_time = self.table_config.get('max_time', TABLE_MAX_TIME_VALUE)
self.table_model_name = self.table_config.get('model', MODEL_NAME.RAPID_TABLE)
self.table_sub_model_name = self.table_config.get('sub_model', None)
# ocr config
self.apply_ocr = ocr
self.lang = kwargs.get('lang', None)
logger.info(
'DocAnalysis init, this may take some times, layout_model: {}, apply_formula: {}, apply_ocr: {}, '
'apply_table: {}, table_model: {}, lang: {}'.format(
self.layout_model_name,
self.apply_formula,
self.apply_ocr,
self.apply_table,
self.table_model_name,
self.lang,
)
)
# 初始化解析方案
self.device = kwargs.get('device', 'cpu')
logger.info('using device: {}'.format(self.device))
models_dir = kwargs.get(
'models_dir', os.path.join(root_dir, 'resources', 'models')
)
logger.info('using models_dir: {}'.format(models_dir))
atom_model_manager = AtomModelSingleton()
# 初始化公式识别
if self.apply_formula:
# 初始化公式检测模型
self.mfd_model = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.MFD,
mfd_weights=str(
os.path.join(
models_dir, self.configs['weights'][self.mfd_model_name]
)
),
device=self.device,
)
# 初始化公式解析模型
mfr_weight_dir = str(
os.path.join(models_dir, self.configs['weights'][self.mfr_model_name])
)
mfr_cfg_path = str(os.path.join(model_config_dir, 'UniMERNet', 'demo.yaml'))
self.mfr_model = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.MFR,
mfr_weight_dir=mfr_weight_dir,
mfr_cfg_path=mfr_cfg_path,
device=self.device,
)
# 初始化layout模型
if self.layout_model_name == MODEL_NAME.LAYOUTLMv3:
self.layout_model = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.Layout,
layout_model_name=MODEL_NAME.LAYOUTLMv3,
layout_weights=str(
os.path.join(
models_dir, self.configs['weights'][self.layout_model_name]
)
),
layout_config_file=str(
os.path.join(
model_config_dir, 'layoutlmv3', 'layoutlmv3_base_inference.yaml'
)
),
device='cpu' if str(self.device).startswith("mps") else self.device,
)
elif self.layout_model_name == MODEL_NAME.DocLayout_YOLO:
self.layout_model = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.Layout,
layout_model_name=MODEL_NAME.DocLayout_YOLO,
doclayout_yolo_weights=str(
os.path.join(
models_dir, self.configs['weights'][self.layout_model_name]
)
),
device=self.device,
)
# 初始化ocr
self.ocr_model = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.OCR,
ocr_show_log=show_log,
det_db_box_thresh=0.3,
lang=self.lang
)
# init table model
if self.apply_table:
table_model_dir = self.configs['weights'][self.table_model_name]
self.table_model = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.Table,
table_model_name=self.table_model_name,
table_model_path=str(os.path.join(models_dir, table_model_dir)),
table_max_time=self.table_max_time,
device=self.device,
ocr_engine=self.ocr_model,
table_sub_model_name=self.table_sub_model_name
)
logger.info('DocAnalysis init done!')
def __call__(self, image):
# layout检测
layout_start = time.time()
layout_res = []
if self.layout_model_name == MODEL_NAME.LAYOUTLMv3:
# layoutlmv3
layout_res = self.layout_model(image, ignore_catids=[])
elif self.layout_model_name == MODEL_NAME.DocLayout_YOLO:
layout_res = self.layout_model.predict(image)
layout_cost = round(time.time() - layout_start, 2)
logger.info(f'layout detection time: {layout_cost}')
if self.apply_formula:
# 公式检测
mfd_start = time.time()
mfd_res = self.mfd_model.predict(image)
logger.info(f'mfd time: {round(time.time() - mfd_start, 2)}')
# 公式识别
mfr_start = time.time()
formula_list = self.mfr_model.predict(mfd_res, image)
layout_res.extend(formula_list)
mfr_cost = round(time.time() - mfr_start, 2)
logger.info(f'formula nums: {len(formula_list)}, mfr time: {mfr_cost}')
# 清理显存
clean_vram(self.device, vram_threshold=6)
# 从layout_res中获取ocr区域、表格区域、公式区域
ocr_res_list, table_res_list, single_page_mfdetrec_res = (
get_res_list_from_layout_res(layout_res)
)
# ocr识别
ocr_start = time.time()
# Process each area that requires OCR processing
for res in ocr_res_list:
new_image, useful_list = crop_img(res, image, crop_paste_x=50, crop_paste_y=50)
adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(single_page_mfdetrec_res, useful_list)
# OCR recognition
new_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
if self.apply_ocr:
ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0]
else:
ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res, rec=False)[0]
# Integration results
if ocr_res:
ocr_result_list = get_ocr_result_list(ocr_res, useful_list)
layout_res.extend(ocr_result_list)
ocr_cost = round(time.time() - ocr_start, 2)
if self.apply_ocr:
logger.info(f"ocr time: {ocr_cost}")
else:
logger.info(f"det time: {ocr_cost}")
# 表格识别 table recognition
if self.apply_table:
table_start = time.time()
for res in table_res_list:
new_image, _ = crop_img(res, image)
single_table_start_time = time.time()
html_code = None
if self.table_model_name == MODEL_NAME.STRUCT_EQTABLE:
with torch.no_grad():
table_result = self.table_model.predict(new_image, 'html')
if len(table_result) > 0:
html_code = table_result[0]
elif self.table_model_name == MODEL_NAME.TABLE_MASTER:
html_code = self.table_model.img2html(new_image)
elif self.table_model_name == MODEL_NAME.RAPID_TABLE:
html_code, table_cell_bboxes, logic_points, elapse = self.table_model.predict(
new_image
)
run_time = time.time() - single_table_start_time
if run_time > self.table_max_time:
logger.warning(
f'table recognition processing exceeds max time {self.table_max_time}s'
)
# 判断是否返回正常
if html_code:
expected_ending = html_code.strip().endswith(
'</html>'
) or html_code.strip().endswith('</table>')
if expected_ending:
res['html'] = html_code
else:
logger.warning(
'table recognition processing fails, not found expected HTML table end'
)
else:
logger.warning(
'table recognition processing fails, not get html return'
)
logger.info(f'table time: {round(time.time() - table_start, 2)}')
return layout_res