|
|
import os
|
|
|
gpt_path=os.environ.get("gpt_path","pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
|
|
|
sovits_path=os.environ.get("sovits_path","pretrained_models/s2G488k.pth")
|
|
|
cnhubert_base_path=os.environ.get("cnhubert_base_path","pretrained_models/chinese-hubert-base")
|
|
|
bert_path=os.environ.get("bert_path","pretrained_models/chinese-roberta-wwm-ext-large")
|
|
|
infer_ttswebui=os.environ.get("infer_ttswebui",9872)
|
|
|
infer_ttswebui=int(infer_ttswebui)
|
|
|
if("_CUDA_VISIBLE_DEVICES"in os.environ):
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"]=os.environ["_CUDA_VISIBLE_DEVICES"]
|
|
|
is_half=eval(os.environ.get("is_half","True"))
|
|
|
import gradio as gr
|
|
|
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
|
|
import numpy as np
|
|
|
import librosa,torch
|
|
|
from feature_extractor import cnhubert
|
|
|
cnhubert.cnhubert_base_path=cnhubert_base_path
|
|
|
|
|
|
from module.models import SynthesizerTrn
|
|
|
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
|
|
from text import cleaned_text_to_sequence
|
|
|
from text.cleaner import clean_text
|
|
|
from time import time as ttime
|
|
|
from module.mel_processing import spectrogram_torch
|
|
|
from my_utils import load_audio
|
|
|
|
|
|
device="cuda"
|
|
|
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
|
|
bert_model=AutoModelForMaskedLM.from_pretrained(bert_path)
|
|
|
if(is_half==True):bert_model=bert_model.half().to(device)
|
|
|
else:bert_model=bert_model.to(device)
|
|
|
# bert_model=bert_model.to(device)
|
|
|
def get_bert_feature(text, word2ph):
|
|
|
with torch.no_grad():
|
|
|
inputs = tokenizer(text, return_tensors="pt")
|
|
|
for i in inputs:
|
|
|
inputs[i] = inputs[i].to(device)#####输入是long不用管精度问题,精度随bert_model
|
|
|
res = bert_model(**inputs, output_hidden_states=True)
|
|
|
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
|
|
assert len(word2ph) == len(text)
|
|
|
phone_level_feature = []
|
|
|
for i in range(len(word2ph)):
|
|
|
repeat_feature = res[i].repeat(word2ph[i], 1)
|
|
|
phone_level_feature.append(repeat_feature)
|
|
|
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
|
|
# if(is_half==True):phone_level_feature=phone_level_feature.half()
|
|
|
return phone_level_feature.T
|
|
|
|
|
|
n_semantic = 1024
|
|
|
dict_s2=torch.load(sovits_path,map_location="cpu")
|
|
|
hps=dict_s2["config"]
|
|
|
|
|
|
class DictToAttrRecursive(dict):
|
|
|
def __init__(self, input_dict):
|
|
|
super().__init__(input_dict)
|
|
|
for key, value in input_dict.items():
|
|
|
if isinstance(value, dict):
|
|
|
value = DictToAttrRecursive(value)
|
|
|
self[key] = value
|
|
|
setattr(self, key, value)
|
|
|
|
|
|
def __getattr__(self, item):
|
|
|
try:
|
|
|
return self[item]
|
|
|
except KeyError:
|
|
|
raise AttributeError(f"Attribute {item} not found")
|
|
|
|
|
|
def __setattr__(self, key, value):
|
|
|
if isinstance(value, dict):
|
|
|
value = DictToAttrRecursive(value)
|
|
|
super(DictToAttrRecursive, self).__setitem__(key, value)
|
|
|
super().__setattr__(key, value)
|
|
|
|
|
|
def __delattr__(self, item):
|
|
|
try:
|
|
|
del self[item]
|
|
|
except KeyError:
|
|
|
raise AttributeError(f"Attribute {item} not found")
|
|
|
|
|
|
hps = DictToAttrRecursive(hps)
|
|
|
|
|
|
hps.model.semantic_frame_rate="25hz"
|
|
|
dict_s1=torch.load(gpt_path,map_location="cpu")
|
|
|
config=dict_s1["config"]
|
|
|
ssl_model=cnhubert.get_model()
|
|
|
if(is_half==True):ssl_model=ssl_model.half().to(device)
|
|
|
else:ssl_model=ssl_model.to(device)
|
|
|
|
|
|
vq_model = SynthesizerTrn(
|
|
|
hps.data.filter_length // 2 + 1,
|
|
|
hps.train.segment_size // hps.data.hop_length,
|
|
|
n_speakers=hps.data.n_speakers,
|
|
|
**hps.model)
|
|
|
if(is_half==True):vq_model=vq_model.half().to(device)
|
|
|
else:vq_model=vq_model.to(device)
|
|
|
vq_model.eval()
|
|
|
print(vq_model.load_state_dict(dict_s2["weight"],strict=False))
|
|
|
hz = 50
|
|
|
max_sec = config['data']['max_sec']
|
|
|
# t2s_model = Text2SemanticLightningModule.load_from_checkpoint(checkpoint_path=gpt_path, config=config, map_location="cpu")#########todo
|
|
|
t2s_model = Text2SemanticLightningModule(config,"ojbk",is_train=False)
|
|
|
t2s_model.load_state_dict(dict_s1["weight"])
|
|
|
if(is_half==True):t2s_model=t2s_model.half()
|
|
|
t2s_model=t2s_model.to(device)
|
|
|
t2s_model.eval()
|
|
|
total = sum([param.nelement() for param in t2s_model.parameters()])
|
|
|
print("Number of parameter: %.2fM" % (total / 1e6))
|
|
|
def get_spepc(hps, filename):
|
|
|
audio=load_audio(filename,int(hps.data.sampling_rate))
|
|
|
audio=torch.FloatTensor(audio)
|
|
|
audio_norm = audio
|
|
|
audio_norm = audio_norm.unsqueeze(0)
|
|
|
spec = spectrogram_torch(audio_norm, hps.data.filter_length,hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,center=False)
|
|
|
return spec
|
|
|
|
|
|
dict_language={
|
|
|
"中文":"zh",
|
|
|
"英文":"en",
|
|
|
"日文":"ja"
|
|
|
}
|
|
|
def get_tts_wav(ref_wav_path,prompt_text,prompt_language,text,text_language):
|
|
|
t0 = ttime()
|
|
|
prompt_text=prompt_text.strip("\n")
|
|
|
prompt_language,text=prompt_language,text.strip("\n")
|
|
|
with torch.no_grad():
|
|
|
wav16k, sr = librosa.load(ref_wav_path, sr=16000) # 派蒙
|
|
|
wav16k = torch.from_numpy(wav16k)
|
|
|
if(is_half==True):wav16k=wav16k.half().to(device)
|
|
|
else:wav16k=wav16k.to(device)
|
|
|
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)#.float()
|
|
|
codes = vq_model.extract_latent(ssl_content)
|
|
|
prompt_semantic = codes[0, 0]
|
|
|
t1 = ttime()
|
|
|
prompt_language=dict_language[prompt_language]
|
|
|
text_language=dict_language[text_language]
|
|
|
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
|
|
|
phones1=cleaned_text_to_sequence(phones1)
|
|
|
texts=text.split("\n")
|
|
|
audio_opt = []
|
|
|
zero_wav=np.zeros(int(hps.data.sampling_rate*0.3),dtype=np.float16 if is_half==True else np.float32)
|
|
|
for text in texts:
|
|
|
phones2, word2ph2, norm_text2 = clean_text(text, text_language)
|
|
|
phones2 = cleaned_text_to_sequence(phones2)
|
|
|
if(prompt_language=="zh"):bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
|
|
|
else:bert1 = torch.zeros((1024, len(phones1)),dtype=torch.float16 if is_half==True else torch.float32).to(device)
|
|
|
if(text_language=="zh"):bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
|
|
|
else:bert2 = torch.zeros((1024, len(phones2))).to(bert1)
|
|
|
bert = torch.cat([bert1, bert2], 1)
|
|
|
|
|
|
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
|
|
|
bert = bert.to(device).unsqueeze(0)
|
|
|
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
|
|
prompt = prompt_semantic.unsqueeze(0).to(device)
|
|
|
t2 = ttime()
|
|
|
with torch.no_grad():
|
|
|
# pred_semantic = t2s_model.model.infer(
|
|
|
pred_semantic,idx = t2s_model.model.infer_panel(
|
|
|
all_phoneme_ids,
|
|
|
all_phoneme_len,
|
|
|
prompt,
|
|
|
bert,
|
|
|
# prompt_phone_len=ph_offset,
|
|
|
top_k=config['inference']['top_k'],
|
|
|
early_stop_num=hz * max_sec)
|
|
|
t3 = ttime()
|
|
|
# print(pred_semantic.shape,idx)
|
|
|
pred_semantic = pred_semantic[:,-idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次
|
|
|
refer = get_spepc(hps, ref_wav_path)#.to(device)
|
|
|
if(is_half==True):refer=refer.half().to(device)
|
|
|
else:refer=refer.to(device)
|
|
|
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
|
|
audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer).detach().cpu().numpy()[0, 0]###试试重建不带上prompt部分
|
|
|
audio_opt.append(audio)
|
|
|
audio_opt.append(zero_wav)
|
|
|
t4 = ttime()
|
|
|
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
|
|
yield hps.data.sampling_rate,(np.concatenate(audio_opt,0)*32768).astype(np.int16)
|
|
|
|
|
|
|
|
|
splits={",","。","?","!",",",".","?","!","~",":",":","—","…",}#不考虑省略号
|
|
|
def split(todo_text):
|
|
|
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
|
|
if (todo_text[-1] not in splits): todo_text += "。"
|
|
|
i_split_head = i_split_tail = 0
|
|
|
len_text = len(todo_text)
|
|
|
todo_texts = []
|
|
|
while (1):
|
|
|
if (i_split_head >= len_text): break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
|
|
if (todo_text[i_split_head] in splits):
|
|
|
i_split_head += 1
|
|
|
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
|
|
i_split_tail = i_split_head
|
|
|
else:
|
|
|
i_split_head += 1
|
|
|
return todo_texts
|
|
|
def cut1(inp):
|
|
|
inp=inp.strip("\n")
|
|
|
inps=split(inp)
|
|
|
split_idx=list(range(0,len(inps),5))
|
|
|
split_idx[-1]=None
|
|
|
if(len(split_idx)>1):
|
|
|
opts=[]
|
|
|
for idx in range(len(split_idx)-1):
|
|
|
opts.append("".join(inps[split_idx[idx]:split_idx[idx+1]]))
|
|
|
else:
|
|
|
opts=[inp]
|
|
|
return "\n".join(opts)
|
|
|
|
|
|
def cut2(inp):
|
|
|
inp=inp.strip("\n")
|
|
|
inps=split(inp)
|
|
|
if(len(inps)<2):return [inp]
|
|
|
opts=[]
|
|
|
summ=0
|
|
|
tmp_str=""
|
|
|
for i in range(len(inps)):
|
|
|
summ+=len(inps[i])
|
|
|
tmp_str+=inps[i]
|
|
|
if(summ>50):
|
|
|
summ=0
|
|
|
opts.append(tmp_str)
|
|
|
tmp_str=""
|
|
|
if(tmp_str!=""):opts.append(tmp_str)
|
|
|
if(len(opts[-1])<50):##如果最后一个太短了,和前一个合一起
|
|
|
opts[-2]=opts[-2]+opts[-1]
|
|
|
opts=opts[:-1]
|
|
|
return "\n".join(opts)
|
|
|
|
|
|
def cut3(inp):
|
|
|
inp=inp.strip("\n")
|
|
|
return "\n".join(["%s。"%item for item in inp.strip("。").split("。")])
|
|
|
|
|
|
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
|
|
gr.Markdown(
|
|
|
value=
|
|
|
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>."
|
|
|
)
|
|
|
# with gr.Tabs():
|
|
|
# with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
|
|
|
with gr.Group():
|
|
|
gr.Markdown(
|
|
|
value=
|
|
|
"*请上传并填写参考信息"
|
|
|
)
|
|
|
with gr.Row():
|
|
|
inp_ref = gr.Audio(label="请上传参考音频", type="filepath")
|
|
|
prompt_text= gr.Textbox(label="参考音频的文本",value="")
|
|
|
prompt_language= gr.Dropdown(label="参考音频的语种",choices=["中文","英文","日文"],value="中文")
|
|
|
gr.Markdown(
|
|
|
value=
|
|
|
"*请填写需要合成的目标文本"
|
|
|
)
|
|
|
with gr.Row():
|
|
|
text=gr.Textbox(label="需要合成的文本",value="")
|
|
|
text_language = gr.Dropdown(label="需要合成的语种", choices=["中文", "英文", "日文"],value="中文")
|
|
|
inference_button=gr.Button("合成语音", variant="primary")
|
|
|
output = gr.Audio(label="输出的语音")
|
|
|
inference_button.click(get_tts_wav, [inp_ref, prompt_text,prompt_language, text,text_language], [output])
|
|
|
|
|
|
gr.Markdown(
|
|
|
value=
|
|
|
"文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"
|
|
|
)
|
|
|
with gr.Row():
|
|
|
text_inp=gr.Textbox(label="需要合成的切分前文本",value="")
|
|
|
button1 = gr.Button("凑五句一切", variant="primary")
|
|
|
button2 = gr.Button("凑50字一切", variant="primary")
|
|
|
button3 = gr.Button("按中文句号。切", variant="primary")
|
|
|
text_opt = gr.Textbox(label="切分后文本", value="")
|
|
|
button1.click(cut1,[text_inp],[text_opt])
|
|
|
button2.click(cut2,[text_inp],[text_opt])
|
|
|
button3.click(cut3,[text_inp],[text_opt])
|
|
|
gr.Markdown(
|
|
|
value=
|
|
|
"后续将支持混合语种编码文本输入。"
|
|
|
)
|
|
|
|
|
|
app.queue(concurrency_count=511, max_size=1022).launch(
|
|
|
server_name="0.0.0.0",
|
|
|
inbrowser=True,
|
|
|
server_port=infer_ttswebui,
|
|
|
quiet=True,
|
|
|
)
|