|
|
import argparse
|
|
|
import glob
|
|
|
import json
|
|
|
import logging
|
|
|
import os
|
|
|
import subprocess
|
|
|
import sys
|
|
|
import traceback
|
|
|
|
|
|
import librosa
|
|
|
import numpy as np
|
|
|
import torch
|
|
|
|
|
|
logging.getLogger("numba").setLevel(logging.ERROR)
|
|
|
logging.getLogger("matplotlib").setLevel(logging.ERROR)
|
|
|
|
|
|
MATPLOTLIB_FLAG = False
|
|
|
|
|
|
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
|
|
logger = logging
|
|
|
|
|
|
|
|
|
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
|
|
assert os.path.isfile(checkpoint_path)
|
|
|
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
|
|
iteration = checkpoint_dict["iteration"]
|
|
|
learning_rate = checkpoint_dict["learning_rate"]
|
|
|
if optimizer is not None and not skip_optimizer and checkpoint_dict["optimizer"] is not None:
|
|
|
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
|
|
saved_state_dict = checkpoint_dict["model"]
|
|
|
if hasattr(model, "module"):
|
|
|
state_dict = model.module.state_dict()
|
|
|
else:
|
|
|
state_dict = model.state_dict()
|
|
|
new_state_dict = {}
|
|
|
for k, v in state_dict.items():
|
|
|
try:
|
|
|
# assert "quantizer" not in k
|
|
|
# print("load", k)
|
|
|
new_state_dict[k] = saved_state_dict[k]
|
|
|
assert saved_state_dict[k].shape == v.shape, (
|
|
|
saved_state_dict[k].shape,
|
|
|
v.shape,
|
|
|
)
|
|
|
except:
|
|
|
traceback.print_exc()
|
|
|
print("error, %s is not in the checkpoint" % k) # shape不对也会,比如text_embedding当cleaner修改时
|
|
|
new_state_dict[k] = v
|
|
|
if hasattr(model, "module"):
|
|
|
model.module.load_state_dict(new_state_dict)
|
|
|
else:
|
|
|
model.load_state_dict(new_state_dict)
|
|
|
print("load ")
|
|
|
logger.info(
|
|
|
"Loaded checkpoint '{}' (iteration {})".format(
|
|
|
checkpoint_path,
|
|
|
iteration,
|
|
|
)
|
|
|
)
|
|
|
return model, optimizer, learning_rate, iteration
|
|
|
|
|
|
|
|
|
import shutil
|
|
|
from time import time as ttime
|
|
|
|
|
|
|
|
|
def my_save(fea, path): #####fix issue: torch.save doesn't support chinese path
|
|
|
dir = os.path.dirname(path)
|
|
|
name = os.path.basename(path)
|
|
|
tmp_path = "%s.pth" % (ttime())
|
|
|
torch.save(fea, tmp_path)
|
|
|
shutil.move(tmp_path, "%s/%s" % (dir, name))
|
|
|
|
|
|
|
|
|
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
|
|
logger.info("Saving model and optimizer state at iteration {} to {}".format(iteration, checkpoint_path))
|
|
|
if hasattr(model, "module"):
|
|
|
state_dict = model.module.state_dict()
|
|
|
else:
|
|
|
state_dict = model.state_dict()
|
|
|
# torch.save(
|
|
|
my_save(
|
|
|
{
|
|
|
"model": state_dict,
|
|
|
"iteration": iteration,
|
|
|
"optimizer": optimizer.state_dict(),
|
|
|
"learning_rate": learning_rate,
|
|
|
},
|
|
|
checkpoint_path,
|
|
|
)
|
|
|
|
|
|
|
|
|
def summarize(
|
|
|
writer,
|
|
|
global_step,
|
|
|
scalars={},
|
|
|
histograms={},
|
|
|
images={},
|
|
|
audios={},
|
|
|
audio_sampling_rate=22050,
|
|
|
):
|
|
|
for k, v in scalars.items():
|
|
|
writer.add_scalar(k, v, global_step)
|
|
|
for k, v in histograms.items():
|
|
|
writer.add_histogram(k, v, global_step)
|
|
|
for k, v in images.items():
|
|
|
writer.add_image(k, v, global_step, dataformats="HWC")
|
|
|
for k, v in audios.items():
|
|
|
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
|
|
|
|
|
|
|
|
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
|
|
f_list = glob.glob(os.path.join(dir_path, regex))
|
|
|
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
|
|
x = f_list[-1]
|
|
|
print(x)
|
|
|
return x
|
|
|
|
|
|
|
|
|
def plot_spectrogram_to_numpy(spectrogram):
|
|
|
global MATPLOTLIB_FLAG
|
|
|
if not MATPLOTLIB_FLAG:
|
|
|
import matplotlib
|
|
|
|
|
|
matplotlib.use("Agg")
|
|
|
MATPLOTLIB_FLAG = True
|
|
|
mpl_logger = logging.getLogger("matplotlib")
|
|
|
mpl_logger.setLevel(logging.WARNING)
|
|
|
import matplotlib.pylab as plt
|
|
|
|
|
|
fig, ax = plt.subplots(figsize=(10, 2))
|
|
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
|
|
plt.colorbar(im, ax=ax)
|
|
|
plt.xlabel("Frames")
|
|
|
plt.ylabel("Channels")
|
|
|
plt.tight_layout()
|
|
|
|
|
|
fig.canvas.draw()
|
|
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
|
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
|
plt.close()
|
|
|
return data
|
|
|
|
|
|
|
|
|
def plot_alignment_to_numpy(alignment, info=None):
|
|
|
global MATPLOTLIB_FLAG
|
|
|
if not MATPLOTLIB_FLAG:
|
|
|
import matplotlib
|
|
|
|
|
|
matplotlib.use("Agg")
|
|
|
MATPLOTLIB_FLAG = True
|
|
|
mpl_logger = logging.getLogger("matplotlib")
|
|
|
mpl_logger.setLevel(logging.WARNING)
|
|
|
import matplotlib.pylab as plt
|
|
|
|
|
|
fig, ax = plt.subplots(figsize=(6, 4))
|
|
|
im = ax.imshow(
|
|
|
alignment.transpose(),
|
|
|
aspect="auto",
|
|
|
origin="lower",
|
|
|
interpolation="none",
|
|
|
)
|
|
|
fig.colorbar(im, ax=ax)
|
|
|
xlabel = "Decoder timestep"
|
|
|
if info is not None:
|
|
|
xlabel += "\n\n" + info
|
|
|
plt.xlabel(xlabel)
|
|
|
plt.ylabel("Encoder timestep")
|
|
|
plt.tight_layout()
|
|
|
|
|
|
fig.canvas.draw()
|
|
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
|
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
|
plt.close()
|
|
|
return data
|
|
|
|
|
|
|
|
|
def load_wav_to_torch(full_path):
|
|
|
data, sampling_rate = librosa.load(full_path, sr=None)
|
|
|
return torch.FloatTensor(data), sampling_rate
|
|
|
|
|
|
|
|
|
def load_filepaths_and_text(filename, split="|"):
|
|
|
with open(filename, encoding="utf-8") as f:
|
|
|
filepaths_and_text = [line.strip().split(split) for line in f]
|
|
|
return filepaths_and_text
|
|
|
|
|
|
|
|
|
def get_hparams(init=True, stage=1):
|
|
|
parser = argparse.ArgumentParser()
|
|
|
parser.add_argument(
|
|
|
"-c",
|
|
|
"--config",
|
|
|
type=str,
|
|
|
default="./configs/s2.json",
|
|
|
help="JSON file for configuration",
|
|
|
)
|
|
|
parser.add_argument("-p", "--pretrain", type=str, required=False, default=None, help="pretrain dir")
|
|
|
parser.add_argument(
|
|
|
"-rs",
|
|
|
"--resume_step",
|
|
|
type=int,
|
|
|
required=False,
|
|
|
default=None,
|
|
|
help="resume step",
|
|
|
)
|
|
|
# parser.add_argument('-e', '--exp_dir', type=str, required=False,default=None,help='experiment directory')
|
|
|
# parser.add_argument('-g', '--pretrained_s2G', type=str, required=False,default=None,help='pretrained sovits gererator weights')
|
|
|
# parser.add_argument('-d', '--pretrained_s2D', type=str, required=False,default=None,help='pretrained sovits discriminator weights')
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
config_path = args.config
|
|
|
with open(config_path, "r") as f:
|
|
|
data = f.read()
|
|
|
config = json.loads(data)
|
|
|
|
|
|
hparams = HParams(**config)
|
|
|
hparams.pretrain = args.pretrain
|
|
|
hparams.resume_step = args.resume_step
|
|
|
# hparams.data.exp_dir = args.exp_dir
|
|
|
if stage == 1:
|
|
|
model_dir = hparams.s1_ckpt_dir
|
|
|
else:
|
|
|
model_dir = hparams.s2_ckpt_dir
|
|
|
config_save_path = os.path.join(model_dir, "config.json")
|
|
|
|
|
|
if not os.path.exists(model_dir):
|
|
|
os.makedirs(model_dir)
|
|
|
|
|
|
with open(config_save_path, "w") as f:
|
|
|
f.write(data)
|
|
|
return hparams
|
|
|
|
|
|
|
|
|
def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
|
|
|
"""Freeing up space by deleting saved ckpts
|
|
|
|
|
|
Arguments:
|
|
|
path_to_models -- Path to the model directory
|
|
|
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
|
|
sort_by_time -- True -> chronologically delete ckpts
|
|
|
False -> lexicographically delete ckpts
|
|
|
"""
|
|
|
import re
|
|
|
|
|
|
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
|
|
|
name_key = lambda _f: int(re.compile("._(\d+)\.pth").match(_f).group(1))
|
|
|
time_key = lambda _f: os.path.getmtime(os.path.join(path_to_models, _f))
|
|
|
sort_key = time_key if sort_by_time else name_key
|
|
|
x_sorted = lambda _x: sorted(
|
|
|
[f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")],
|
|
|
key=sort_key,
|
|
|
)
|
|
|
to_del = [
|
|
|
os.path.join(path_to_models, fn) for fn in (x_sorted("G")[:-n_ckpts_to_keep] + x_sorted("D")[:-n_ckpts_to_keep])
|
|
|
]
|
|
|
del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
|
|
|
del_routine = lambda x: [os.remove(x), del_info(x)]
|
|
|
rs = [del_routine(fn) for fn in to_del]
|
|
|
|
|
|
|
|
|
def get_hparams_from_dir(model_dir):
|
|
|
config_save_path = os.path.join(model_dir, "config.json")
|
|
|
with open(config_save_path, "r") as f:
|
|
|
data = f.read()
|
|
|
config = json.loads(data)
|
|
|
|
|
|
hparams = HParams(**config)
|
|
|
hparams.model_dir = model_dir
|
|
|
return hparams
|
|
|
|
|
|
|
|
|
def get_hparams_from_file(config_path):
|
|
|
with open(config_path, "r") as f:
|
|
|
data = f.read()
|
|
|
config = json.loads(data)
|
|
|
|
|
|
hparams = HParams(**config)
|
|
|
return hparams
|
|
|
|
|
|
|
|
|
def check_git_hash(model_dir):
|
|
|
source_dir = os.path.dirname(os.path.realpath(__file__))
|
|
|
if not os.path.exists(os.path.join(source_dir, ".git")):
|
|
|
logger.warn(
|
|
|
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
|
|
source_dir,
|
|
|
)
|
|
|
)
|
|
|
return
|
|
|
|
|
|
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
|
|
|
|
|
path = os.path.join(model_dir, "githash")
|
|
|
if os.path.exists(path):
|
|
|
saved_hash = open(path).read()
|
|
|
if saved_hash != cur_hash:
|
|
|
logger.warn(
|
|
|
"git hash values are different. {}(saved) != {}(current)".format(
|
|
|
saved_hash[:8],
|
|
|
cur_hash[:8],
|
|
|
)
|
|
|
)
|
|
|
else:
|
|
|
open(path, "w").write(cur_hash)
|
|
|
|
|
|
|
|
|
def get_logger(model_dir, filename="train.log"):
|
|
|
global logger
|
|
|
logger = logging.getLogger(os.path.basename(model_dir))
|
|
|
logger.setLevel(logging.INFO)
|
|
|
|
|
|
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
|
|
if not os.path.exists(model_dir):
|
|
|
os.makedirs(model_dir)
|
|
|
h = logging.FileHandler(os.path.join(model_dir, filename))
|
|
|
h.setLevel(logging.INFO)
|
|
|
h.setFormatter(formatter)
|
|
|
logger.addHandler(h)
|
|
|
return logger
|
|
|
|
|
|
|
|
|
class HParams:
|
|
|
def __init__(self, **kwargs):
|
|
|
for k, v in kwargs.items():
|
|
|
if type(v) == dict:
|
|
|
v = HParams(**v)
|
|
|
self[k] = v
|
|
|
|
|
|
def keys(self):
|
|
|
return self.__dict__.keys()
|
|
|
|
|
|
def items(self):
|
|
|
return self.__dict__.items()
|
|
|
|
|
|
def values(self):
|
|
|
return self.__dict__.values()
|
|
|
|
|
|
def __len__(self):
|
|
|
return len(self.__dict__)
|
|
|
|
|
|
def __getitem__(self, key):
|
|
|
return getattr(self, key)
|
|
|
|
|
|
def __setitem__(self, key, value):
|
|
|
return setattr(self, key, value)
|
|
|
|
|
|
def __contains__(self, key):
|
|
|
return key in self.__dict__
|
|
|
|
|
|
def __repr__(self):
|
|
|
return self.__dict__.__repr__()
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
print(
|
|
|
load_wav_to_torch(
|
|
|
"/home/fish/wenetspeech/dataset_vq/Y0000022499_wHFSeHEx9CM/S00261.flac",
|
|
|
)
|
|
|
)
|