|
|
import warnings
|
|
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
import os
|
|
|
|
|
|
import utils
|
|
|
|
|
|
hps = utils.get_hparams(stage=2)
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = hps.train.gpu_numbers.replace("-", ",")
|
|
|
import logging
|
|
|
|
|
|
import torch
|
|
|
import torch.distributed as dist
|
|
|
import torch.multiprocessing as mp
|
|
|
from torch.cuda.amp import GradScaler, autocast
|
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
|
from torch.utils.data import DataLoader
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
logging.getLogger("matplotlib").setLevel(logging.INFO)
|
|
|
logging.getLogger("h5py").setLevel(logging.INFO)
|
|
|
logging.getLogger("numba").setLevel(logging.INFO)
|
|
|
from collections import OrderedDict as od
|
|
|
from random import randint
|
|
|
|
|
|
from module import commons
|
|
|
from module.data_utils import (
|
|
|
DistributedBucketSampler,
|
|
|
TextAudioSpeakerCollateV3,
|
|
|
TextAudioSpeakerLoaderV3,
|
|
|
TextAudioSpeakerCollateV4,
|
|
|
TextAudioSpeakerLoaderV4,
|
|
|
)
|
|
|
from module.models import (
|
|
|
SynthesizerTrnV3 as SynthesizerTrn,
|
|
|
)
|
|
|
from peft import LoraConfig, get_peft_model
|
|
|
from process_ckpt import savee
|
|
|
|
|
|
torch.backends.cudnn.benchmark = False
|
|
|
torch.backends.cudnn.deterministic = False
|
|
|
###反正A100fp32更快,那试试tf32吧
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
torch.backends.cudnn.allow_tf32 = True
|
|
|
torch.set_float32_matmul_precision("medium") # 最低精度但最快(也就快一丁点),对于结果造成不了影响
|
|
|
# from config import pretrained_s2G,pretrained_s2D
|
|
|
global_step = 0
|
|
|
|
|
|
device = "cpu" # cuda以外的设备,等mps优化后加入
|
|
|
|
|
|
|
|
|
def main():
|
|
|
if torch.cuda.is_available():
|
|
|
n_gpus = torch.cuda.device_count()
|
|
|
else:
|
|
|
n_gpus = 1
|
|
|
os.environ["MASTER_ADDR"] = "localhost"
|
|
|
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
|
|
|
|
|
|
mp.spawn(
|
|
|
run,
|
|
|
nprocs=n_gpus,
|
|
|
args=(
|
|
|
n_gpus,
|
|
|
hps,
|
|
|
),
|
|
|
)
|
|
|
|
|
|
|
|
|
def run(rank, n_gpus, hps):
|
|
|
global global_step, no_grad_names, save_root, lora_rank
|
|
|
if rank == 0:
|
|
|
logger = utils.get_logger(hps.data.exp_dir)
|
|
|
logger.info(hps)
|
|
|
# utils.check_git_hash(hps.s2_ckpt_dir)
|
|
|
writer = SummaryWriter(log_dir=hps.s2_ckpt_dir)
|
|
|
writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval"))
|
|
|
|
|
|
dist.init_process_group(
|
|
|
backend="gloo" if os.name == "nt" or not torch.cuda.is_available() else "nccl",
|
|
|
init_method="env://?use_libuv=False",
|
|
|
world_size=n_gpus,
|
|
|
rank=rank,
|
|
|
)
|
|
|
torch.manual_seed(hps.train.seed)
|
|
|
if torch.cuda.is_available():
|
|
|
torch.cuda.set_device(rank)
|
|
|
|
|
|
TextAudioSpeakerLoader = TextAudioSpeakerLoaderV3 if hps.model.version == "v3" else TextAudioSpeakerLoaderV4
|
|
|
TextAudioSpeakerCollate = TextAudioSpeakerCollateV3 if hps.model.version == "v3" else TextAudioSpeakerCollateV4
|
|
|
train_dataset = TextAudioSpeakerLoader(hps.data) ########
|
|
|
train_sampler = DistributedBucketSampler(
|
|
|
train_dataset,
|
|
|
hps.train.batch_size,
|
|
|
[
|
|
|
32,
|
|
|
300,
|
|
|
400,
|
|
|
500,
|
|
|
600,
|
|
|
700,
|
|
|
800,
|
|
|
900,
|
|
|
1000,
|
|
|
# 1100,
|
|
|
# 1200,
|
|
|
# 1300,
|
|
|
# 1400,
|
|
|
# 1500,
|
|
|
# 1600,
|
|
|
# 1700,
|
|
|
# 1800,
|
|
|
# 1900,
|
|
|
],
|
|
|
num_replicas=n_gpus,
|
|
|
rank=rank,
|
|
|
shuffle=True,
|
|
|
)
|
|
|
collate_fn = TextAudioSpeakerCollate()
|
|
|
train_loader = DataLoader(
|
|
|
train_dataset,
|
|
|
num_workers=6,
|
|
|
shuffle=False,
|
|
|
pin_memory=True,
|
|
|
collate_fn=collate_fn,
|
|
|
batch_sampler=train_sampler,
|
|
|
persistent_workers=True,
|
|
|
prefetch_factor=4,
|
|
|
)
|
|
|
save_root = "%s/logs_s2_%s_lora_%s" % (hps.data.exp_dir, hps.model.version, hps.train.lora_rank)
|
|
|
os.makedirs(save_root, exist_ok=True)
|
|
|
lora_rank = int(hps.train.lora_rank)
|
|
|
lora_config = LoraConfig(
|
|
|
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
|
|
r=lora_rank,
|
|
|
lora_alpha=lora_rank,
|
|
|
init_lora_weights=True,
|
|
|
)
|
|
|
|
|
|
def get_model(hps):
|
|
|
return SynthesizerTrn(
|
|
|
hps.data.filter_length // 2 + 1,
|
|
|
hps.train.segment_size // hps.data.hop_length,
|
|
|
n_speakers=hps.data.n_speakers,
|
|
|
**hps.model,
|
|
|
)
|
|
|
|
|
|
def get_optim(net_g):
|
|
|
return torch.optim.AdamW(
|
|
|
filter(lambda p: p.requires_grad, net_g.parameters()), ###默认所有层lr一致
|
|
|
hps.train.learning_rate,
|
|
|
betas=hps.train.betas,
|
|
|
eps=hps.train.eps,
|
|
|
)
|
|
|
|
|
|
def model2cuda(net_g, rank):
|
|
|
if torch.cuda.is_available():
|
|
|
net_g = DDP(net_g.cuda(rank), device_ids=[rank], find_unused_parameters=True)
|
|
|
else:
|
|
|
net_g = net_g.to(device)
|
|
|
return net_g
|
|
|
|
|
|
try: # 如果能加载自动resume
|
|
|
net_g = get_model(hps)
|
|
|
net_g.cfm = get_peft_model(net_g.cfm, lora_config)
|
|
|
net_g = model2cuda(net_g, rank)
|
|
|
optim_g = get_optim(net_g)
|
|
|
# _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0)
|
|
|
_, _, _, epoch_str = utils.load_checkpoint(
|
|
|
utils.latest_checkpoint_path(save_root, "G_*.pth"),
|
|
|
net_g,
|
|
|
optim_g,
|
|
|
)
|
|
|
epoch_str += 1
|
|
|
global_step = (epoch_str - 1) * len(train_loader)
|
|
|
except: # 如果首次不能加载,加载pretrain
|
|
|
# traceback.print_exc()
|
|
|
epoch_str = 1
|
|
|
global_step = 0
|
|
|
net_g = get_model(hps)
|
|
|
if (
|
|
|
hps.train.pretrained_s2G != ""
|
|
|
and hps.train.pretrained_s2G != None
|
|
|
and os.path.exists(hps.train.pretrained_s2G)
|
|
|
):
|
|
|
if rank == 0:
|
|
|
logger.info("loaded pretrained %s" % hps.train.pretrained_s2G)
|
|
|
print(
|
|
|
"loaded pretrained %s" % hps.train.pretrained_s2G,
|
|
|
net_g.load_state_dict(
|
|
|
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
|
|
|
strict=False,
|
|
|
),
|
|
|
)
|
|
|
net_g.cfm = get_peft_model(net_g.cfm, lora_config)
|
|
|
net_g = model2cuda(net_g, rank)
|
|
|
optim_g = get_optim(net_g)
|
|
|
|
|
|
no_grad_names = set()
|
|
|
for name, param in net_g.named_parameters():
|
|
|
if not param.requires_grad:
|
|
|
no_grad_names.add(name.replace("module.", ""))
|
|
|
# print(name, "not requires_grad")
|
|
|
# print(no_grad_names)
|
|
|
# os._exit(233333)
|
|
|
|
|
|
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=-1)
|
|
|
for _ in range(epoch_str):
|
|
|
scheduler_g.step()
|
|
|
|
|
|
scaler = GradScaler(enabled=hps.train.fp16_run)
|
|
|
|
|
|
net_d = optim_d = scheduler_d = None
|
|
|
print("start training from epoch %s" % epoch_str)
|
|
|
for epoch in range(epoch_str, hps.train.epochs + 1):
|
|
|
if rank == 0:
|
|
|
train_and_evaluate(
|
|
|
rank,
|
|
|
epoch,
|
|
|
hps,
|
|
|
[net_g, net_d],
|
|
|
[optim_g, optim_d],
|
|
|
[scheduler_g, scheduler_d],
|
|
|
scaler,
|
|
|
# [train_loader, eval_loader], logger, [writer, writer_eval])
|
|
|
[train_loader, None],
|
|
|
logger,
|
|
|
[writer, writer_eval],
|
|
|
)
|
|
|
else:
|
|
|
train_and_evaluate(
|
|
|
rank,
|
|
|
epoch,
|
|
|
hps,
|
|
|
[net_g, net_d],
|
|
|
[optim_g, optim_d],
|
|
|
[scheduler_g, scheduler_d],
|
|
|
scaler,
|
|
|
[train_loader, None],
|
|
|
None,
|
|
|
None,
|
|
|
)
|
|
|
scheduler_g.step()
|
|
|
print("training done")
|
|
|
|
|
|
|
|
|
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
|
|
|
net_g, net_d = nets
|
|
|
optim_g, optim_d = optims
|
|
|
# scheduler_g, scheduler_d = schedulers
|
|
|
train_loader, eval_loader = loaders
|
|
|
if writers is not None:
|
|
|
writer, writer_eval = writers
|
|
|
|
|
|
train_loader.batch_sampler.set_epoch(epoch)
|
|
|
global global_step
|
|
|
|
|
|
net_g.train()
|
|
|
for batch_idx, (ssl, spec, mel, ssl_lengths, spec_lengths, text, text_lengths, mel_lengths) in enumerate(
|
|
|
tqdm(train_loader)
|
|
|
):
|
|
|
if torch.cuda.is_available():
|
|
|
spec, spec_lengths = (
|
|
|
spec.cuda(
|
|
|
rank,
|
|
|
non_blocking=True,
|
|
|
),
|
|
|
spec_lengths.cuda(
|
|
|
rank,
|
|
|
non_blocking=True,
|
|
|
),
|
|
|
)
|
|
|
mel, mel_lengths = mel.cuda(rank, non_blocking=True), mel_lengths.cuda(rank, non_blocking=True)
|
|
|
ssl = ssl.cuda(rank, non_blocking=True)
|
|
|
ssl.requires_grad = False
|
|
|
text, text_lengths = (
|
|
|
text.cuda(
|
|
|
rank,
|
|
|
non_blocking=True,
|
|
|
),
|
|
|
text_lengths.cuda(
|
|
|
rank,
|
|
|
non_blocking=True,
|
|
|
),
|
|
|
)
|
|
|
else:
|
|
|
spec, spec_lengths = spec.to(device), spec_lengths.to(device)
|
|
|
mel, mel_lengths = mel.to(device), mel_lengths.to(device)
|
|
|
ssl = ssl.to(device)
|
|
|
ssl.requires_grad = False
|
|
|
text, text_lengths = text.to(device), text_lengths.to(device)
|
|
|
|
|
|
with autocast(enabled=hps.train.fp16_run):
|
|
|
cfm_loss = net_g(
|
|
|
ssl,
|
|
|
spec,
|
|
|
mel,
|
|
|
ssl_lengths,
|
|
|
spec_lengths,
|
|
|
text,
|
|
|
text_lengths,
|
|
|
mel_lengths,
|
|
|
use_grad_ckpt=hps.train.grad_ckpt,
|
|
|
)
|
|
|
loss_gen_all = cfm_loss
|
|
|
optim_g.zero_grad()
|
|
|
scaler.scale(loss_gen_all).backward()
|
|
|
scaler.unscale_(optim_g)
|
|
|
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
|
|
scaler.step(optim_g)
|
|
|
scaler.update()
|
|
|
|
|
|
if rank == 0:
|
|
|
if global_step % hps.train.log_interval == 0:
|
|
|
lr = optim_g.param_groups[0]["lr"]
|
|
|
losses = [cfm_loss]
|
|
|
logger.info("Train Epoch: {} [{:.0f}%]".format(epoch, 100.0 * batch_idx / len(train_loader)))
|
|
|
logger.info([x.item() for x in losses] + [global_step, lr])
|
|
|
|
|
|
scalar_dict = {"loss/g/total": loss_gen_all, "learning_rate": lr, "grad_norm_g": grad_norm_g}
|
|
|
utils.summarize(
|
|
|
writer=writer,
|
|
|
global_step=global_step,
|
|
|
scalars=scalar_dict,
|
|
|
)
|
|
|
|
|
|
global_step += 1
|
|
|
if epoch % hps.train.save_every_epoch == 0 and rank == 0:
|
|
|
if hps.train.if_save_latest == 0:
|
|
|
utils.save_checkpoint(
|
|
|
net_g,
|
|
|
optim_g,
|
|
|
hps.train.learning_rate,
|
|
|
epoch,
|
|
|
os.path.join(save_root, "G_{}.pth".format(global_step)),
|
|
|
)
|
|
|
else:
|
|
|
utils.save_checkpoint(
|
|
|
net_g,
|
|
|
optim_g,
|
|
|
hps.train.learning_rate,
|
|
|
epoch,
|
|
|
os.path.join(save_root, "G_{}.pth".format(233333333333)),
|
|
|
)
|
|
|
if rank == 0 and hps.train.if_save_every_weights == True:
|
|
|
if hasattr(net_g, "module"):
|
|
|
ckpt = net_g.module.state_dict()
|
|
|
else:
|
|
|
ckpt = net_g.state_dict()
|
|
|
sim_ckpt = od()
|
|
|
for key in ckpt:
|
|
|
# if "cfm"not in key:
|
|
|
# print(key)
|
|
|
if key not in no_grad_names:
|
|
|
sim_ckpt[key] = ckpt[key].half().cpu()
|
|
|
logger.info(
|
|
|
"saving ckpt %s_e%s:%s"
|
|
|
% (
|
|
|
hps.name,
|
|
|
epoch,
|
|
|
savee(
|
|
|
sim_ckpt,
|
|
|
hps.name + "_e%s_s%s_l%s" % (epoch, global_step, lora_rank),
|
|
|
epoch,
|
|
|
global_step,
|
|
|
hps,
|
|
|
cfm_version=hps.model.version,
|
|
|
lora_rank=lora_rank,
|
|
|
),
|
|
|
)
|
|
|
)
|
|
|
|
|
|
if rank == 0:
|
|
|
logger.info("====> Epoch: {}".format(epoch))
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
main()
|