|
|
import warnings
|
|
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
import os
|
|
|
|
|
|
import utils
|
|
|
|
|
|
hps = utils.get_hparams(stage=2)
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = hps.train.gpu_numbers.replace("-", ",")
|
|
|
import logging
|
|
|
|
|
|
import torch
|
|
|
import torch.distributed as dist
|
|
|
import torch.multiprocessing as mp
|
|
|
from torch.cuda.amp import GradScaler, autocast
|
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
|
from torch.utils.data import DataLoader
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
logging.getLogger("matplotlib").setLevel(logging.INFO)
|
|
|
logging.getLogger("h5py").setLevel(logging.INFO)
|
|
|
logging.getLogger("numba").setLevel(logging.INFO)
|
|
|
from random import randint
|
|
|
|
|
|
from module import commons
|
|
|
from module.data_utils import (
|
|
|
DistributedBucketSampler,
|
|
|
)
|
|
|
from module.data_utils import (
|
|
|
TextAudioSpeakerCollateV3 as TextAudioSpeakerCollate,
|
|
|
)
|
|
|
from module.data_utils import (
|
|
|
TextAudioSpeakerLoaderV3 as TextAudioSpeakerLoader,
|
|
|
)
|
|
|
from module.models import (
|
|
|
SynthesizerTrnV3 as SynthesizerTrn,
|
|
|
)
|
|
|
from process_ckpt import savee
|
|
|
|
|
|
torch.backends.cudnn.benchmark = False
|
|
|
torch.backends.cudnn.deterministic = False
|
|
|
###反正A100fp32更快,那试试tf32吧
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
torch.backends.cudnn.allow_tf32 = True
|
|
|
torch.set_float32_matmul_precision("medium") # 最低精度但最快(也就快一丁点),对于结果造成不了影响
|
|
|
# from config import pretrained_s2G,pretrained_s2D
|
|
|
global_step = 0
|
|
|
|
|
|
device = "cpu" # cuda以外的设备,等mps优化后加入
|
|
|
|
|
|
|
|
|
def main():
|
|
|
if torch.cuda.is_available():
|
|
|
n_gpus = torch.cuda.device_count()
|
|
|
else:
|
|
|
n_gpus = 1
|
|
|
os.environ["MASTER_ADDR"] = "localhost"
|
|
|
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
|
|
|
|
|
|
mp.spawn(
|
|
|
run,
|
|
|
nprocs=n_gpus,
|
|
|
args=(
|
|
|
n_gpus,
|
|
|
hps,
|
|
|
),
|
|
|
)
|
|
|
|
|
|
|
|
|
def run(rank, n_gpus, hps):
|
|
|
global global_step
|
|
|
if rank == 0:
|
|
|
logger = utils.get_logger(hps.data.exp_dir)
|
|
|
logger.info(hps)
|
|
|
# utils.check_git_hash(hps.s2_ckpt_dir)
|
|
|
writer = SummaryWriter(log_dir=hps.s2_ckpt_dir)
|
|
|
writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval"))
|
|
|
|
|
|
dist.init_process_group(
|
|
|
backend="gloo" if os.name == "nt" or not torch.cuda.is_available() else "nccl",
|
|
|
init_method="env://?use_libuv=False",
|
|
|
world_size=n_gpus,
|
|
|
rank=rank,
|
|
|
)
|
|
|
torch.manual_seed(hps.train.seed)
|
|
|
if torch.cuda.is_available():
|
|
|
torch.cuda.set_device(rank)
|
|
|
|
|
|
train_dataset = TextAudioSpeakerLoader(hps.data) ########
|
|
|
train_sampler = DistributedBucketSampler(
|
|
|
train_dataset,
|
|
|
hps.train.batch_size,
|
|
|
[
|
|
|
32,
|
|
|
300,
|
|
|
400,
|
|
|
500,
|
|
|
600,
|
|
|
700,
|
|
|
800,
|
|
|
900,
|
|
|
1000,
|
|
|
# 1100,
|
|
|
# 1200,
|
|
|
# 1300,
|
|
|
# 1400,
|
|
|
# 1500,
|
|
|
# 1600,
|
|
|
# 1700,
|
|
|
# 1800,
|
|
|
# 1900,
|
|
|
],
|
|
|
num_replicas=n_gpus,
|
|
|
rank=rank,
|
|
|
shuffle=True,
|
|
|
)
|
|
|
collate_fn = TextAudioSpeakerCollate()
|
|
|
train_loader = DataLoader(
|
|
|
train_dataset,
|
|
|
num_workers=6,
|
|
|
shuffle=False,
|
|
|
pin_memory=True,
|
|
|
collate_fn=collate_fn,
|
|
|
batch_sampler=train_sampler,
|
|
|
persistent_workers=True,
|
|
|
prefetch_factor=4,
|
|
|
)
|
|
|
# if rank == 0:
|
|
|
# eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data, val=True)
|
|
|
# eval_loader = DataLoader(eval_dataset, num_workers=0, shuffle=False,
|
|
|
# batch_size=1, pin_memory=True,
|
|
|
# drop_last=False, collate_fn=collate_fn)
|
|
|
|
|
|
net_g = (
|
|
|
SynthesizerTrn(
|
|
|
hps.data.filter_length // 2 + 1,
|
|
|
hps.train.segment_size // hps.data.hop_length,
|
|
|
n_speakers=hps.data.n_speakers,
|
|
|
**hps.model,
|
|
|
).cuda(rank)
|
|
|
if torch.cuda.is_available()
|
|
|
else SynthesizerTrn(
|
|
|
hps.data.filter_length // 2 + 1,
|
|
|
hps.train.segment_size // hps.data.hop_length,
|
|
|
n_speakers=hps.data.n_speakers,
|
|
|
**hps.model,
|
|
|
).to(device)
|
|
|
)
|
|
|
|
|
|
# net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) if torch.cuda.is_available() else MultiPeriodDiscriminator(hps.model.use_spectral_norm).to(device)
|
|
|
# for name, param in net_g.named_parameters():
|
|
|
# if not param.requires_grad:
|
|
|
# print(name, "not requires_grad")
|
|
|
|
|
|
optim_g = torch.optim.AdamW(
|
|
|
filter(lambda p: p.requires_grad, net_g.parameters()), ###默认所有层lr一致
|
|
|
hps.train.learning_rate,
|
|
|
betas=hps.train.betas,
|
|
|
eps=hps.train.eps,
|
|
|
)
|
|
|
# optim_d = torch.optim.AdamW(
|
|
|
# net_d.parameters(),
|
|
|
# hps.train.learning_rate,
|
|
|
# betas=hps.train.betas,
|
|
|
# eps=hps.train.eps,
|
|
|
# )
|
|
|
if torch.cuda.is_available():
|
|
|
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
|
|
|
# net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
|
|
|
else:
|
|
|
net_g = net_g.to(device)
|
|
|
# net_d = net_d.to(device)
|
|
|
|
|
|
try: # 如果能加载自动resume
|
|
|
# _, _, _, epoch_str = utils.load_checkpoint(
|
|
|
# utils.latest_checkpoint_path("%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "D_*.pth"),
|
|
|
# net_d,
|
|
|
# optim_d,
|
|
|
# ) # D多半加载没事
|
|
|
# if rank == 0:
|
|
|
# logger.info("loaded D")
|
|
|
# _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0)
|
|
|
_, _, _, epoch_str = utils.load_checkpoint(
|
|
|
utils.latest_checkpoint_path("%s/logs_s2_%s" % (hps.data.exp_dir, hps.model.version), "G_*.pth"),
|
|
|
net_g,
|
|
|
optim_g,
|
|
|
)
|
|
|
epoch_str += 1
|
|
|
global_step = (epoch_str - 1) * len(train_loader)
|
|
|
# epoch_str = 1
|
|
|
# global_step = 0
|
|
|
except: # 如果首次不能加载,加载pretrain
|
|
|
# traceback.print_exc()
|
|
|
epoch_str = 1
|
|
|
global_step = 0
|
|
|
if (
|
|
|
hps.train.pretrained_s2G != ""
|
|
|
and hps.train.pretrained_s2G != None
|
|
|
and os.path.exists(hps.train.pretrained_s2G)
|
|
|
):
|
|
|
if rank == 0:
|
|
|
logger.info("loaded pretrained %s" % hps.train.pretrained_s2G)
|
|
|
print(
|
|
|
"loaded pretrained %s" % hps.train.pretrained_s2G,
|
|
|
net_g.module.load_state_dict(
|
|
|
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
|
|
|
strict=False,
|
|
|
)
|
|
|
if torch.cuda.is_available()
|
|
|
else net_g.load_state_dict(
|
|
|
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
|
|
|
strict=False,
|
|
|
),
|
|
|
) ##测试不加载优化器
|
|
|
# if hps.train.pretrained_s2D != ""and hps.train.pretrained_s2D != None and os.path.exists(hps.train.pretrained_s2D):
|
|
|
# if rank == 0:
|
|
|
# logger.info("loaded pretrained %s" % hps.train.pretrained_s2D)
|
|
|
# print(
|
|
|
# net_d.module.load_state_dict(
|
|
|
# torch.load(hps.train.pretrained_s2D, map_location="cpu")["weight"]
|
|
|
# ) if torch.cuda.is_available() else net_d.load_state_dict(
|
|
|
# torch.load(hps.train.pretrained_s2D, map_location="cpu")["weight"]
|
|
|
# )
|
|
|
# )
|
|
|
|
|
|
# scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
|
|
# scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
|
|
|
|
|
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=-1)
|
|
|
# scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
|
|
|
# optim_d, gamma=hps.train.lr_decay, last_epoch=-1
|
|
|
# )
|
|
|
for _ in range(epoch_str):
|
|
|
scheduler_g.step()
|
|
|
# scheduler_d.step()
|
|
|
|
|
|
scaler = GradScaler(enabled=hps.train.fp16_run)
|
|
|
|
|
|
net_d = optim_d = scheduler_d = None
|
|
|
print("start training from epoch %s" % epoch_str)
|
|
|
for epoch in range(epoch_str, hps.train.epochs + 1):
|
|
|
if rank == 0:
|
|
|
train_and_evaluate(
|
|
|
rank,
|
|
|
epoch,
|
|
|
hps,
|
|
|
[net_g, net_d],
|
|
|
[optim_g, optim_d],
|
|
|
[scheduler_g, scheduler_d],
|
|
|
scaler,
|
|
|
# [train_loader, eval_loader], logger, [writer, writer_eval])
|
|
|
[train_loader, None],
|
|
|
logger,
|
|
|
[writer, writer_eval],
|
|
|
)
|
|
|
else:
|
|
|
train_and_evaluate(
|
|
|
rank,
|
|
|
epoch,
|
|
|
hps,
|
|
|
[net_g, net_d],
|
|
|
[optim_g, optim_d],
|
|
|
[scheduler_g, scheduler_d],
|
|
|
scaler,
|
|
|
[train_loader, None],
|
|
|
None,
|
|
|
None,
|
|
|
)
|
|
|
scheduler_g.step()
|
|
|
# scheduler_d.step()
|
|
|
print("training done")
|
|
|
|
|
|
|
|
|
def train_and_evaluate(
|
|
|
rank,
|
|
|
epoch,
|
|
|
hps,
|
|
|
nets,
|
|
|
optims,
|
|
|
schedulers,
|
|
|
scaler,
|
|
|
loaders,
|
|
|
logger,
|
|
|
writers,
|
|
|
):
|
|
|
net_g, net_d = nets
|
|
|
optim_g, optim_d = optims
|
|
|
# scheduler_g, scheduler_d = schedulers
|
|
|
train_loader, eval_loader = loaders
|
|
|
if writers is not None:
|
|
|
writer, writer_eval = writers
|
|
|
|
|
|
train_loader.batch_sampler.set_epoch(epoch)
|
|
|
global global_step
|
|
|
|
|
|
net_g.train()
|
|
|
# net_d.train()
|
|
|
# for batch_idx, (
|
|
|
# ssl,
|
|
|
# ssl_lengths,
|
|
|
# spec,
|
|
|
# spec_lengths,
|
|
|
# y,
|
|
|
# y_lengths,
|
|
|
# text,
|
|
|
# text_lengths,
|
|
|
# ) in enumerate(tqdm(train_loader)):
|
|
|
for batch_idx, (ssl, spec, mel, ssl_lengths, spec_lengths, text, text_lengths, mel_lengths) in enumerate(
|
|
|
tqdm(train_loader)
|
|
|
):
|
|
|
if torch.cuda.is_available():
|
|
|
spec, spec_lengths = (
|
|
|
spec.cuda(
|
|
|
rank,
|
|
|
non_blocking=True,
|
|
|
),
|
|
|
spec_lengths.cuda(
|
|
|
rank,
|
|
|
non_blocking=True,
|
|
|
),
|
|
|
)
|
|
|
mel, mel_lengths = mel.cuda(rank, non_blocking=True), mel_lengths.cuda(rank, non_blocking=True)
|
|
|
ssl = ssl.cuda(rank, non_blocking=True)
|
|
|
ssl.requires_grad = False
|
|
|
# ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True)
|
|
|
text, text_lengths = (
|
|
|
text.cuda(
|
|
|
rank,
|
|
|
non_blocking=True,
|
|
|
),
|
|
|
text_lengths.cuda(
|
|
|
rank,
|
|
|
non_blocking=True,
|
|
|
),
|
|
|
)
|
|
|
else:
|
|
|
spec, spec_lengths = spec.to(device), spec_lengths.to(device)
|
|
|
mel, mel_lengths = mel.to(device), mel_lengths.to(device)
|
|
|
ssl = ssl.to(device)
|
|
|
ssl.requires_grad = False
|
|
|
# ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True)
|
|
|
text, text_lengths = text.to(device), text_lengths.to(device)
|
|
|
|
|
|
with autocast(enabled=hps.train.fp16_run):
|
|
|
cfm_loss = net_g(
|
|
|
ssl,
|
|
|
spec,
|
|
|
mel,
|
|
|
ssl_lengths,
|
|
|
spec_lengths,
|
|
|
text,
|
|
|
text_lengths,
|
|
|
mel_lengths,
|
|
|
use_grad_ckpt=hps.train.grad_ckpt,
|
|
|
)
|
|
|
loss_gen_all = cfm_loss
|
|
|
optim_g.zero_grad()
|
|
|
scaler.scale(loss_gen_all).backward()
|
|
|
scaler.unscale_(optim_g)
|
|
|
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
|
|
scaler.step(optim_g)
|
|
|
scaler.update()
|
|
|
|
|
|
if rank == 0:
|
|
|
if global_step % hps.train.log_interval == 0:
|
|
|
lr = optim_g.param_groups[0]["lr"]
|
|
|
# losses = [commit_loss,cfm_loss,mel_loss,loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
|
|
|
losses = [cfm_loss]
|
|
|
logger.info(
|
|
|
"Train Epoch: {} [{:.0f}%]".format(
|
|
|
epoch,
|
|
|
100.0 * batch_idx / len(train_loader),
|
|
|
)
|
|
|
)
|
|
|
logger.info([x.item() for x in losses] + [global_step, lr])
|
|
|
|
|
|
scalar_dict = {"loss/g/total": loss_gen_all, "learning_rate": lr, "grad_norm_g": grad_norm_g}
|
|
|
# image_dict = {
|
|
|
# "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
|
|
|
# "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
|
|
|
# "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
|
|
|
# "all/stats_ssl": utils.plot_spectrogram_to_numpy(stats_ssl[0].data.cpu().numpy()),
|
|
|
# }
|
|
|
utils.summarize(
|
|
|
writer=writer,
|
|
|
global_step=global_step,
|
|
|
# images=image_dict,
|
|
|
scalars=scalar_dict,
|
|
|
)
|
|
|
|
|
|
# if global_step % hps.train.eval_interval == 0:
|
|
|
# # evaluate(hps, net_g, eval_loader, writer_eval)
|
|
|
# utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,os.path.join(hps.s2_ckpt_dir, "G_{}.pth".format(global_step)),scaler)
|
|
|
# # utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,os.path.join(hps.s2_ckpt_dir, "D_{}.pth".format(global_step)),scaler)
|
|
|
# # keep_ckpts = getattr(hps.train, 'keep_ckpts', 3)
|
|
|
# # if keep_ckpts > 0:
|
|
|
# # utils.clean_checkpoints(path_to_models=hps.s2_ckpt_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True)
|
|
|
|
|
|
global_step += 1
|
|
|
if epoch % hps.train.save_every_epoch == 0 and rank == 0:
|
|
|
if hps.train.if_save_latest == 0:
|
|
|
utils.save_checkpoint(
|
|
|
net_g,
|
|
|
optim_g,
|
|
|
hps.train.learning_rate,
|
|
|
epoch,
|
|
|
os.path.join(
|
|
|
"%s/logs_s2_%s" % (hps.data.exp_dir, hps.model.version),
|
|
|
"G_{}.pth".format(global_step),
|
|
|
),
|
|
|
)
|
|
|
# utils.save_checkpoint(
|
|
|
# net_d,
|
|
|
# optim_d,
|
|
|
# hps.train.learning_rate,
|
|
|
# epoch,
|
|
|
# os.path.join(
|
|
|
# "%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "D_{}.pth".format(global_step)
|
|
|
# ),
|
|
|
# )
|
|
|
else:
|
|
|
utils.save_checkpoint(
|
|
|
net_g,
|
|
|
optim_g,
|
|
|
hps.train.learning_rate,
|
|
|
epoch,
|
|
|
os.path.join(
|
|
|
"%s/logs_s2_%s" % (hps.data.exp_dir, hps.model.version),
|
|
|
"G_{}.pth".format(233333333333),
|
|
|
),
|
|
|
)
|
|
|
# utils.save_checkpoint(
|
|
|
# net_d,
|
|
|
# optim_d,
|
|
|
# hps.train.learning_rate,
|
|
|
# epoch,
|
|
|
# os.path.join(
|
|
|
# "%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "D_{}.pth".format(233333333333)
|
|
|
# ),
|
|
|
# )
|
|
|
if rank == 0 and hps.train.if_save_every_weights == True:
|
|
|
if hasattr(net_g, "module"):
|
|
|
ckpt = net_g.module.state_dict()
|
|
|
else:
|
|
|
ckpt = net_g.state_dict()
|
|
|
logger.info(
|
|
|
"saving ckpt %s_e%s:%s"
|
|
|
% (
|
|
|
hps.name,
|
|
|
epoch,
|
|
|
savee(
|
|
|
ckpt,
|
|
|
hps.name + "_e%s_s%s" % (epoch, global_step),
|
|
|
epoch,
|
|
|
global_step,
|
|
|
hps,
|
|
|
),
|
|
|
)
|
|
|
)
|
|
|
|
|
|
if rank == 0:
|
|
|
logger.info("====> Epoch: {}".format(epoch))
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
main()
|