|
|
'''
|
|
|
按中英混合识别
|
|
|
按日英混合识别
|
|
|
多语种启动切分识别语种
|
|
|
全部按中文识别
|
|
|
全部按英文识别
|
|
|
全部按日文识别
|
|
|
'''
|
|
|
import logging
|
|
|
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
|
|
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
|
|
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
|
|
logging.getLogger("httpx").setLevel(logging.ERROR)
|
|
|
logging.getLogger("asyncio").setLevel(logging.ERROR)
|
|
|
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
|
|
|
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
|
|
|
import LangSegment, os, re, sys
|
|
|
import pdb
|
|
|
import torch
|
|
|
|
|
|
version=os.environ.get("version","v1")
|
|
|
language=os.environ.get("language","auto")
|
|
|
version="v2"if sys.argv[0]=="v2" else version
|
|
|
language=sys.argv[-1] if sys.argv[-1]!='v2' and sys.argv[-1]!='v1' else language
|
|
|
pretrained_sovits_name="GPT_SoVITS/pretrained_models/s2G488k.pth"if version=="v1"else"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth"
|
|
|
pretrained_gpt_name="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"if version=="v1"else "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt"
|
|
|
|
|
|
if os.path.exists("./gweight.txt"):
|
|
|
with open("./gweight.txt", 'r', encoding="utf-8") as file:
|
|
|
gweight_data = file.read()
|
|
|
gpt_path = os.environ.get(
|
|
|
"gpt_path", gweight_data)
|
|
|
else:
|
|
|
gpt_path = os.environ.get(
|
|
|
"gpt_path", pretrained_gpt_name)
|
|
|
|
|
|
if os.path.exists("./sweight.txt"):
|
|
|
with open("./sweight.txt", 'r', encoding="utf-8") as file:
|
|
|
sweight_data = file.read()
|
|
|
sovits_path = os.environ.get("sovits_path", sweight_data)
|
|
|
else:
|
|
|
sovits_path = os.environ.get("sovits_path", pretrained_sovits_name)
|
|
|
# gpt_path = os.environ.get(
|
|
|
# "gpt_path", pretrained_gpt_name
|
|
|
# )
|
|
|
# sovits_path = os.environ.get("sovits_path", pretrained_sovits_name)
|
|
|
cnhubert_base_path = os.environ.get(
|
|
|
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
|
|
|
)
|
|
|
bert_path = os.environ.get(
|
|
|
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
|
|
)
|
|
|
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
|
|
infer_ttswebui = int(infer_ttswebui)
|
|
|
is_share = os.environ.get("is_share", "False")
|
|
|
is_share = eval(is_share)
|
|
|
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
|
|
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
|
|
punctuation = set(['!', '?', '…', ',', '.', '-'," "])
|
|
|
import gradio as gr
|
|
|
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
|
|
import numpy as np
|
|
|
import librosa
|
|
|
from feature_extractor import cnhubert
|
|
|
|
|
|
cnhubert.cnhubert_base_path = cnhubert_base_path
|
|
|
|
|
|
from module.models import SynthesizerTrn
|
|
|
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
|
|
from text import cleaned_text_to_sequence
|
|
|
from text.cleaner import clean_text
|
|
|
from time import time as ttime
|
|
|
from module.mel_processing import spectrogram_torch
|
|
|
from tools.my_utils import load_audio
|
|
|
from tools.i18n.i18n import I18nAuto
|
|
|
|
|
|
if language != 'auto':
|
|
|
i18n = I18nAuto(language=language)
|
|
|
else:
|
|
|
i18n = I18nAuto()
|
|
|
|
|
|
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
device = "cuda"
|
|
|
else:
|
|
|
device = "cpu"
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
|
|
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
|
|
if is_half == True:
|
|
|
bert_model = bert_model.half().to(device)
|
|
|
else:
|
|
|
bert_model = bert_model.to(device)
|
|
|
|
|
|
|
|
|
def get_bert_feature(text, word2ph):
|
|
|
with torch.no_grad():
|
|
|
inputs = tokenizer(text, return_tensors="pt")
|
|
|
for i in inputs:
|
|
|
inputs[i] = inputs[i].to(device)
|
|
|
res = bert_model(**inputs, output_hidden_states=True)
|
|
|
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
|
|
assert len(word2ph) == len(text)
|
|
|
phone_level_feature = []
|
|
|
for i in range(len(word2ph)):
|
|
|
repeat_feature = res[i].repeat(word2ph[i], 1)
|
|
|
phone_level_feature.append(repeat_feature)
|
|
|
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
|
|
return phone_level_feature.T
|
|
|
|
|
|
|
|
|
class DictToAttrRecursive(dict):
|
|
|
def __init__(self, input_dict):
|
|
|
super().__init__(input_dict)
|
|
|
for key, value in input_dict.items():
|
|
|
if isinstance(value, dict):
|
|
|
value = DictToAttrRecursive(value)
|
|
|
self[key] = value
|
|
|
setattr(self, key, value)
|
|
|
|
|
|
def __getattr__(self, item):
|
|
|
try:
|
|
|
return self[item]
|
|
|
except KeyError:
|
|
|
raise AttributeError(f"Attribute {item} not found")
|
|
|
|
|
|
def __setattr__(self, key, value):
|
|
|
if isinstance(value, dict):
|
|
|
value = DictToAttrRecursive(value)
|
|
|
super(DictToAttrRecursive, self).__setitem__(key, value)
|
|
|
super().__setattr__(key, value)
|
|
|
|
|
|
def __delattr__(self, item):
|
|
|
try:
|
|
|
del self[item]
|
|
|
except KeyError:
|
|
|
raise AttributeError(f"Attribute {item} not found")
|
|
|
|
|
|
|
|
|
ssl_model = cnhubert.get_model()
|
|
|
if is_half == True:
|
|
|
ssl_model = ssl_model.half().to(device)
|
|
|
else:
|
|
|
ssl_model = ssl_model.to(device)
|
|
|
|
|
|
|
|
|
def change_sovits_weights(sovits_path):
|
|
|
global vq_model, hps
|
|
|
dict_s2 = torch.load(sovits_path, map_location="cpu")
|
|
|
hps = dict_s2["config"]
|
|
|
hps = DictToAttrRecursive(hps)
|
|
|
hps.model.semantic_frame_rate = "25hz"
|
|
|
vq_model = SynthesizerTrn(
|
|
|
hps.data.filter_length // 2 + 1,
|
|
|
hps.train.segment_size // hps.data.hop_length,
|
|
|
n_speakers=hps.data.n_speakers,
|
|
|
**hps.model
|
|
|
)
|
|
|
if ("pretrained" not in sovits_path):
|
|
|
del vq_model.enc_q
|
|
|
if is_half == True:
|
|
|
vq_model = vq_model.half().to(device)
|
|
|
else:
|
|
|
vq_model = vq_model.to(device)
|
|
|
vq_model.eval()
|
|
|
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
|
|
with open("./sweight.txt", "w", encoding="utf-8") as f:
|
|
|
f.write(sovits_path)
|
|
|
|
|
|
|
|
|
change_sovits_weights(sovits_path)
|
|
|
|
|
|
|
|
|
def change_gpt_weights(gpt_path):
|
|
|
global hz, max_sec, t2s_model, config
|
|
|
hz = 50
|
|
|
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
|
|
config = dict_s1["config"]
|
|
|
max_sec = config["data"]["max_sec"]
|
|
|
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
|
|
t2s_model.load_state_dict(dict_s1["weight"])
|
|
|
if is_half == True:
|
|
|
t2s_model = t2s_model.half()
|
|
|
t2s_model = t2s_model.to(device)
|
|
|
t2s_model.eval()
|
|
|
total = sum([param.nelement() for param in t2s_model.parameters()])
|
|
|
print("Number of parameter: %.2fM" % (total / 1e6))
|
|
|
with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path)
|
|
|
|
|
|
|
|
|
change_gpt_weights(gpt_path)
|
|
|
|
|
|
|
|
|
def get_spepc(hps, filename):
|
|
|
audio = load_audio(filename, int(hps.data.sampling_rate))
|
|
|
audio = torch.FloatTensor(audio)
|
|
|
audio_norm = audio
|
|
|
audio_norm = audio_norm.unsqueeze(0)
|
|
|
spec = spectrogram_torch(
|
|
|
audio_norm,
|
|
|
hps.data.filter_length,
|
|
|
hps.data.sampling_rate,
|
|
|
hps.data.hop_length,
|
|
|
hps.data.win_length,
|
|
|
center=False,
|
|
|
)
|
|
|
return spec
|
|
|
|
|
|
|
|
|
dict_language = {
|
|
|
i18n("中文"): "all_zh",#全部按中文识别
|
|
|
i18n("粤语"): "all_yue",#全部按中文识别
|
|
|
i18n("英文"): "en",#全部按英文识别#######不变
|
|
|
i18n("日文"): "all_ja",#全部按日文识别
|
|
|
i18n("韩文"): "all_ko",#全部按韩文识别
|
|
|
i18n("中英混合"): "zh",#按中英混合识别####不变
|
|
|
i18n("粤英混合"): "yue",#按粤英混合识别####不变
|
|
|
i18n("日英混合"): "ja",#按日英混合识别####不变
|
|
|
i18n("韩英混合"): "ko",#按韩英混合识别####不变
|
|
|
i18n("多语种混合"): "auto",#多语种启动切分识别语种
|
|
|
i18n("多语种混合(粤语)"): "auto_yue",#多语种启动切分识别语种
|
|
|
}
|
|
|
|
|
|
|
|
|
def clean_text_inf(text, language):
|
|
|
phones, word2ph, norm_text = clean_text(text, language)
|
|
|
phones = cleaned_text_to_sequence(phones)
|
|
|
return phones, word2ph, norm_text
|
|
|
|
|
|
dtype=torch.float16 if is_half == True else torch.float32
|
|
|
def get_bert_inf(phones, word2ph, norm_text, language):
|
|
|
language=language.replace("all_","")
|
|
|
if language == "zh":
|
|
|
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
|
|
|
else:
|
|
|
bert = torch.zeros(
|
|
|
(1024, len(phones)),
|
|
|
dtype=torch.float16 if is_half == True else torch.float32,
|
|
|
).to(device)
|
|
|
|
|
|
return bert
|
|
|
|
|
|
|
|
|
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
|
|
|
|
|
|
|
|
def get_first(text):
|
|
|
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
|
|
text = re.split(pattern, text)[0].strip()
|
|
|
return text
|
|
|
|
|
|
from text import chinese
|
|
|
def get_phones_and_bert(text,language):
|
|
|
if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
|
|
|
language = language.replace("all_","")
|
|
|
if language == "en":
|
|
|
LangSegment.setfilters(["en"])
|
|
|
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
|
|
|
else:
|
|
|
# 因无法区别中日韩文汉字,以用户输入为准
|
|
|
formattext = text
|
|
|
while " " in formattext:
|
|
|
formattext = formattext.replace(" ", " ")
|
|
|
if language == "zh":
|
|
|
if re.search(r'[A-Za-z]', formattext):
|
|
|
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
|
|
formattext = chinese.text_normalize(formattext)
|
|
|
return get_phones_and_bert(formattext,"zh")
|
|
|
else:
|
|
|
phones, word2ph, norm_text = clean_text_inf(formattext, language)
|
|
|
bert = get_bert_feature(norm_text, word2ph).to(device)
|
|
|
elif language == "yue" and re.search(r'[A-Za-z]', formattext):
|
|
|
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
|
|
formattext = chinese.text_normalize(formattext)
|
|
|
return get_phones_and_bert(formattext,"yue")
|
|
|
else:
|
|
|
phones, word2ph, norm_text = clean_text_inf(formattext, language)
|
|
|
bert = torch.zeros(
|
|
|
(1024, len(phones)),
|
|
|
dtype=torch.float16 if is_half == True else torch.float32,
|
|
|
).to(device)
|
|
|
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
|
|
|
textlist=[]
|
|
|
langlist=[]
|
|
|
LangSegment.setfilters(["zh","ja","en","ko"])
|
|
|
if language == "auto":
|
|
|
for tmp in LangSegment.getTexts(text):
|
|
|
langlist.append(tmp["lang"])
|
|
|
textlist.append(tmp["text"])
|
|
|
elif language == "auto_yue":
|
|
|
for tmp in LangSegment.getTexts(text):
|
|
|
if tmp["lang"] == "zh":
|
|
|
tmp["lang"] = "yue"
|
|
|
langlist.append(tmp["lang"])
|
|
|
textlist.append(tmp["text"])
|
|
|
else:
|
|
|
for tmp in LangSegment.getTexts(text):
|
|
|
if tmp["lang"] == "en":
|
|
|
langlist.append(tmp["lang"])
|
|
|
else:
|
|
|
# 因无法区别中日韩文汉字,以用户输入为准
|
|
|
langlist.append(language)
|
|
|
textlist.append(tmp["text"])
|
|
|
print(textlist)
|
|
|
print(langlist)
|
|
|
phones_list = []
|
|
|
bert_list = []
|
|
|
norm_text_list = []
|
|
|
for i in range(len(textlist)):
|
|
|
lang = langlist[i]
|
|
|
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
|
|
|
bert = get_bert_inf(phones, word2ph, norm_text, lang)
|
|
|
phones_list.append(phones)
|
|
|
norm_text_list.append(norm_text)
|
|
|
bert_list.append(bert)
|
|
|
bert = torch.cat(bert_list, dim=1)
|
|
|
phones = sum(phones_list, [])
|
|
|
norm_text = ''.join(norm_text_list)
|
|
|
|
|
|
return phones,bert.to(dtype),norm_text
|
|
|
|
|
|
|
|
|
def merge_short_text_in_array(texts, threshold):
|
|
|
if (len(texts)) < 2:
|
|
|
return texts
|
|
|
result = []
|
|
|
text = ""
|
|
|
for ele in texts:
|
|
|
text += ele
|
|
|
if len(text) >= threshold:
|
|
|
result.append(text)
|
|
|
text = ""
|
|
|
if (len(text) > 0):
|
|
|
if len(result) == 0:
|
|
|
result.append(text)
|
|
|
else:
|
|
|
result[len(result) - 1] += text
|
|
|
return result
|
|
|
|
|
|
##ref_wav_path+prompt_text+prompt_language+text(单个)+text_language+top_k+top_p+temperature
|
|
|
# cache_tokens={}#暂未实现清理机制
|
|
|
cache= {}
|
|
|
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False,speed=1,if_freeze=False):
|
|
|
global cache
|
|
|
t = []
|
|
|
if prompt_text is None or len(prompt_text) == 0:
|
|
|
ref_free = True
|
|
|
t0 = ttime()
|
|
|
prompt_language = dict_language[prompt_language]
|
|
|
text_language = dict_language[text_language]
|
|
|
if not ref_free:
|
|
|
prompt_text = prompt_text.strip("\n")
|
|
|
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
|
|
|
print(i18n("实际输入的参考文本:"), prompt_text)
|
|
|
text = text.strip("\n")
|
|
|
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
|
|
|
|
|
|
print(i18n("实际输入的目标文本:"), text)
|
|
|
zero_wav = np.zeros(
|
|
|
int(hps.data.sampling_rate * 0.3),
|
|
|
dtype=np.float16 if is_half == True else np.float32,
|
|
|
)
|
|
|
if not ref_free:
|
|
|
with torch.no_grad():
|
|
|
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
|
|
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
|
|
|
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
|
|
|
wav16k = torch.from_numpy(wav16k)
|
|
|
zero_wav_torch = torch.from_numpy(zero_wav)
|
|
|
if is_half == True:
|
|
|
wav16k = wav16k.half().to(device)
|
|
|
zero_wav_torch = zero_wav_torch.half().to(device)
|
|
|
else:
|
|
|
wav16k = wav16k.to(device)
|
|
|
zero_wav_torch = zero_wav_torch.to(device)
|
|
|
wav16k = torch.cat([wav16k, zero_wav_torch])
|
|
|
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
|
|
"last_hidden_state"
|
|
|
].transpose(
|
|
|
1, 2
|
|
|
) # .float()
|
|
|
codes = vq_model.extract_latent(ssl_content)
|
|
|
prompt_semantic = codes[0, 0]
|
|
|
prompt = prompt_semantic.unsqueeze(0).to(device)
|
|
|
|
|
|
t1 = ttime()
|
|
|
t.append(t1-t0)
|
|
|
|
|
|
if (how_to_cut == i18n("凑四句一切")):
|
|
|
text = cut1(text)
|
|
|
elif (how_to_cut == i18n("凑50字一切")):
|
|
|
text = cut2(text)
|
|
|
elif (how_to_cut == i18n("按中文句号。切")):
|
|
|
text = cut3(text)
|
|
|
elif (how_to_cut == i18n("按英文句号.切")):
|
|
|
text = cut4(text)
|
|
|
elif (how_to_cut == i18n("按标点符号切")):
|
|
|
text = cut5(text)
|
|
|
while "\n\n" in text:
|
|
|
text = text.replace("\n\n", "\n")
|
|
|
print(i18n("实际输入的目标文本(切句后):"), text)
|
|
|
texts = text.split("\n")
|
|
|
texts = process_text(texts)
|
|
|
texts = merge_short_text_in_array(texts, 5)
|
|
|
audio_opt = []
|
|
|
if not ref_free:
|
|
|
phones1,bert1,norm_text1=get_phones_and_bert(prompt_text, prompt_language)
|
|
|
|
|
|
for i_text,text in enumerate(texts):
|
|
|
# 解决输入目标文本的空行导致报错的问题
|
|
|
if (len(text.strip()) == 0):
|
|
|
continue
|
|
|
if (text[-1] not in splits): text += "。" if text_language != "en" else "."
|
|
|
print(i18n("实际输入的目标文本(每句):"), text)
|
|
|
phones2,bert2,norm_text2=get_phones_and_bert(text, text_language)
|
|
|
print(i18n("前端处理后的文本(每句):"), norm_text2)
|
|
|
if not ref_free:
|
|
|
bert = torch.cat([bert1, bert2], 1)
|
|
|
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
|
|
|
else:
|
|
|
bert = bert2
|
|
|
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
|
|
|
|
|
|
bert = bert.to(device).unsqueeze(0)
|
|
|
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
|
|
|
|
|
t2 = ttime()
|
|
|
# cache_key="%s-%s-%s-%s-%s-%s-%s-%s"%(ref_wav_path,prompt_text,prompt_language,text,text_language,top_k,top_p,temperature)
|
|
|
# print(cache.keys(),if_freeze)
|
|
|
if(i_text in cache and if_freeze==True):pred_semantic=cache[i_text]
|
|
|
else:
|
|
|
with torch.no_grad():
|
|
|
pred_semantic, idx = t2s_model.model.infer_panel(
|
|
|
all_phoneme_ids,
|
|
|
all_phoneme_len,
|
|
|
None if ref_free else prompt,
|
|
|
bert,
|
|
|
# prompt_phone_len=ph_offset,
|
|
|
top_k=top_k,
|
|
|
top_p=top_p,
|
|
|
temperature=temperature,
|
|
|
early_stop_num=hz * max_sec,
|
|
|
)
|
|
|
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
|
|
|
cache[i_text]=pred_semantic
|
|
|
t3 = ttime()
|
|
|
refer = get_spepc(hps, ref_wav_path) # .to(device)
|
|
|
if is_half == True:
|
|
|
refer = refer.half().to(device)
|
|
|
else:
|
|
|
refer = refer.to(device)
|
|
|
audio = (vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer,speed=speed).detach().cpu().numpy()[0, 0])
|
|
|
max_audio=np.abs(audio).max()#简单防止16bit爆音
|
|
|
if max_audio>1:audio/=max_audio
|
|
|
audio_opt.append(audio)
|
|
|
audio_opt.append(zero_wav)
|
|
|
t4 = ttime()
|
|
|
t.extend([t2 - t1,t3 - t2, t4 - t3])
|
|
|
t1 = ttime()
|
|
|
print("%.3f\t%.3f\t%.3f\t%.3f" %
|
|
|
(t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3]))
|
|
|
)
|
|
|
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
|
|
|
np.int16
|
|
|
)
|
|
|
|
|
|
|
|
|
def split(todo_text):
|
|
|
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
|
|
if todo_text[-1] not in splits:
|
|
|
todo_text += "。"
|
|
|
i_split_head = i_split_tail = 0
|
|
|
len_text = len(todo_text)
|
|
|
todo_texts = []
|
|
|
while 1:
|
|
|
if i_split_head >= len_text:
|
|
|
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
|
|
if todo_text[i_split_head] in splits:
|
|
|
i_split_head += 1
|
|
|
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
|
|
i_split_tail = i_split_head
|
|
|
else:
|
|
|
i_split_head += 1
|
|
|
return todo_texts
|
|
|
|
|
|
|
|
|
def cut1(inp):
|
|
|
inp = inp.strip("\n")
|
|
|
inps = split(inp)
|
|
|
split_idx = list(range(0, len(inps), 4))
|
|
|
split_idx[-1] = None
|
|
|
if len(split_idx) > 1:
|
|
|
opts = []
|
|
|
for idx in range(len(split_idx) - 1):
|
|
|
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
|
|
|
else:
|
|
|
opts = [inp]
|
|
|
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
|
|
return "\n".join(opts)
|
|
|
|
|
|
|
|
|
def cut2(inp):
|
|
|
inp = inp.strip("\n")
|
|
|
inps = split(inp)
|
|
|
if len(inps) < 2:
|
|
|
return inp
|
|
|
opts = []
|
|
|
summ = 0
|
|
|
tmp_str = ""
|
|
|
for i in range(len(inps)):
|
|
|
summ += len(inps[i])
|
|
|
tmp_str += inps[i]
|
|
|
if summ > 50:
|
|
|
summ = 0
|
|
|
opts.append(tmp_str)
|
|
|
tmp_str = ""
|
|
|
if tmp_str != "":
|
|
|
opts.append(tmp_str)
|
|
|
# print(opts)
|
|
|
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
|
|
opts[-2] = opts[-2] + opts[-1]
|
|
|
opts = opts[:-1]
|
|
|
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
|
|
return "\n".join(opts)
|
|
|
|
|
|
|
|
|
def cut3(inp):
|
|
|
inp = inp.strip("\n")
|
|
|
opts = ["%s" % item for item in inp.strip("。").split("。")]
|
|
|
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
|
|
return "\n".join(opts)
|
|
|
|
|
|
def cut4(inp):
|
|
|
inp = inp.strip("\n")
|
|
|
opts = ["%s" % item for item in inp.strip(".").split(".")]
|
|
|
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
|
|
return "\n".join(opts)
|
|
|
|
|
|
|
|
|
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
|
|
|
def cut5(inp):
|
|
|
inp = inp.strip("\n")
|
|
|
punds = {',', '.', ';', '?', '!', '、', ',', '。', '?', '!', ';', ':', '…'}
|
|
|
mergeitems = []
|
|
|
items = []
|
|
|
|
|
|
for i, char in enumerate(inp):
|
|
|
if char in punds:
|
|
|
if char == '.' and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit():
|
|
|
items.append(char)
|
|
|
else:
|
|
|
items.append(char)
|
|
|
mergeitems.append("".join(items))
|
|
|
items = []
|
|
|
else:
|
|
|
items.append(char)
|
|
|
|
|
|
if items:
|
|
|
mergeitems.append("".join(items))
|
|
|
|
|
|
opt = [item for item in mergeitems if not set(item).issubset(punds)]
|
|
|
return "\n".join(opt)
|
|
|
|
|
|
|
|
|
def custom_sort_key(s):
|
|
|
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
|
|
parts = re.split('(\d+)', s)
|
|
|
# 将数字部分转换为整数,非数字部分保持不变
|
|
|
parts = [int(part) if part.isdigit() else part for part in parts]
|
|
|
return parts
|
|
|
|
|
|
def process_text(texts):
|
|
|
_text=[]
|
|
|
if all(text in [None, " ", "\n",""] for text in texts):
|
|
|
raise ValueError(i18n("请输入有效文本"))
|
|
|
for text in texts:
|
|
|
if text in [None, " ", ""]:
|
|
|
pass
|
|
|
else:
|
|
|
_text.append(text)
|
|
|
return _text
|
|
|
|
|
|
|
|
|
def change_choices():
|
|
|
SoVITS_names, GPT_names = get_weights_names()
|
|
|
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
|
|
|
|
|
|
|
|
|
SoVITS_weight_root = "SoVITS_weights"
|
|
|
GPT_weight_root = "GPT_weights"
|
|
|
os.makedirs(SoVITS_weight_root, exist_ok=True)
|
|
|
os.makedirs(GPT_weight_root, exist_ok=True)
|
|
|
|
|
|
|
|
|
def get_weights_names():
|
|
|
SoVITS_names = [pretrained_sovits_name]
|
|
|
for name in os.listdir(SoVITS_weight_root):
|
|
|
if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name))
|
|
|
GPT_names = [pretrained_gpt_name]
|
|
|
for name in os.listdir(GPT_weight_root):
|
|
|
if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name))
|
|
|
return SoVITS_names, GPT_names
|
|
|
|
|
|
|
|
|
SoVITS_names, GPT_names = get_weights_names()
|
|
|
|
|
|
def html_center(text, label='p'):
|
|
|
return f"""<div style="text-align: center; margin: 100; padding: 50;">
|
|
|
<{label} style="margin: 0; padding: 0;">{text}</{label}>
|
|
|
</div>"""
|
|
|
|
|
|
def html_left(text, label='p'):
|
|
|
return f"""<div style="text-align: left; margin: 0; padding: 0;">
|
|
|
<{label} style="margin: 0; padding: 0;">{text}</{label}>
|
|
|
</div>"""
|
|
|
|
|
|
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
|
|
gr.Markdown(
|
|
|
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
|
|
|
)
|
|
|
with gr.Group():
|
|
|
gr.Markdown(html_center(i18n("模型切换"),'h3'))
|
|
|
with gr.Row():
|
|
|
GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True,scale=13)
|
|
|
SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True,scale=13)
|
|
|
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary",scale=13)
|
|
|
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
|
|
|
SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown], [])
|
|
|
GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])
|
|
|
gr.Markdown(html_center(i18n("*请上传并填写参考信息"),'h3'))
|
|
|
with gr.Row():
|
|
|
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath",scale=13)
|
|
|
with gr.Column(scale=13):
|
|
|
ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True)
|
|
|
gr.Markdown(html_left(i18n("使用无参考文本模式时建议使用微调的GPT,听不清参考音频说的啥(不晓得写啥)可以开。<br>开启后无视填写的参考文本。")))
|
|
|
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="", lines=3, max_lines=3)
|
|
|
prompt_language = gr.Dropdown(
|
|
|
label=i18n("参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文"),scale=14
|
|
|
)
|
|
|
gr.Markdown(html_center(i18n("*请填写需要合成的目标文本和语种模式"),'h3'))
|
|
|
with gr.Row():
|
|
|
with gr.Column(scale=13):
|
|
|
text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=26, max_lines=26)
|
|
|
with gr.Column(scale=7):
|
|
|
text_language = gr.Dropdown(
|
|
|
label=i18n("需要合成的语种"), choices=list(dict_language.keys()), value=i18n("中文"), scale=1
|
|
|
)
|
|
|
how_to_cut = gr.Dropdown(
|
|
|
label=i18n("怎么切"),
|
|
|
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
|
|
|
value=i18n("凑四句一切"),
|
|
|
interactive=True, scale=1
|
|
|
)
|
|
|
gr.Markdown(value=html_center(i18n("语速调整,高为更快")))
|
|
|
if_freeze=gr.Checkbox(label=i18n("是否直接对上次合成结果调整语速。防止随机性。"), value=False, interactive=True,show_label=True, scale=1)
|
|
|
speed = gr.Slider(minimum=0.6,maximum=1.65,step=0.05,label=i18n("语速"),value=1,interactive=True, scale=1)
|
|
|
gr.Markdown(html_center(i18n("GPT采样参数(无参考文本时不要太低。不懂就用默认):")))
|
|
|
top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=10,interactive=True, scale=1)
|
|
|
top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True, scale=1)
|
|
|
temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True, scale=1)
|
|
|
# with gr.Column():
|
|
|
# gr.Markdown(value=i18n("手工调整音素。当音素框不为空时使用手工音素输入推理,无视目标文本框。"))
|
|
|
# phoneme=gr.Textbox(label=i18n("音素框"), value="")
|
|
|
# get_phoneme_button = gr.Button(i18n("目标文本转音素"), variant="primary")
|
|
|
with gr.Row():
|
|
|
inference_button = gr.Button(i18n("合成语音"), variant="primary", size='lg', scale=25)
|
|
|
output = gr.Audio(label=i18n("输出的语音"),scale=14)
|
|
|
|
|
|
inference_button.click(
|
|
|
get_tts_wav,
|
|
|
[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, ref_text_free,speed,if_freeze],
|
|
|
[output],
|
|
|
)
|
|
|
|
|
|
# gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
|
|
|
# with gr.Row():
|
|
|
# text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="")
|
|
|
# button1 = gr.Button(i18n("凑四句一切"), variant="primary")
|
|
|
# button2 = gr.Button(i18n("凑50字一切"), variant="primary")
|
|
|
# button3 = gr.Button(i18n("按中文句号。切"), variant="primary")
|
|
|
# button4 = gr.Button(i18n("按英文句号.切"), variant="primary")
|
|
|
# button5 = gr.Button(i18n("按标点符号切"), variant="primary")
|
|
|
# text_opt = gr.Textbox(label=i18n("切分后文本"), value="")
|
|
|
# button1.click(cut1, [text_inp], [text_opt])
|
|
|
# button2.click(cut2, [text_inp], [text_opt])
|
|
|
# button3.click(cut3, [text_inp], [text_opt])
|
|
|
# button4.click(cut4, [text_inp], [text_opt])
|
|
|
# button5.click(cut5, [text_inp], [text_opt])
|
|
|
# gr.Markdown(html_center(i18n("后续将支持转音素、手工修改音素、语音合成分步执行。")))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
app.queue(concurrency_count=511, max_size=1022).launch(
|
|
|
server_name="0.0.0.0",
|
|
|
inbrowser=True,
|
|
|
share=is_share,
|
|
|
server_port=infer_ttswebui,
|
|
|
quiet=True,
|
|
|
)
|