You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

171 lines
5.3 KiB
Python

import argparse
import os
import time
import traceback
import torch
from faster_whisper import WhisperModel
from huggingface_hub import snapshot_download
from huggingface_hub.errors import LocalEntryNotFoundError
from tqdm import tqdm
from tools.asr.config import get_models
from tools.asr.funasr_asr import only_asr
from tools.my_utils import load_cudnn
# fmt: off
language_code_list = [
"af", "am", "ar", "as", "az",
"ba", "be", "bg", "bn", "bo",
"br", "bs", "ca", "cs", "cy",
"da", "de", "el", "en", "es",
"et", "eu", "fa", "fi", "fo",
"fr", "gl", "gu", "ha", "haw",
"he", "hi", "hr", "ht", "hu",
"hy", "id", "is", "it", "ja",
"jw", "ka", "kk", "km", "kn",
"ko", "la", "lb", "ln", "lo",
"lt", "lv", "mg", "mi", "mk",
"ml", "mn", "mr", "ms", "mt",
"my", "ne", "nl", "nn", "no",
"oc", "pa", "pl", "ps", "pt",
"ro", "ru", "sa", "sd", "si",
"sk", "sl", "sn", "so", "sq",
"sr", "su", "sv", "sw", "ta",
"te", "tg", "th", "tk", "tl",
"tr", "tt", "uk", "ur", "uz",
"vi", "yi", "yo", "zh", "yue",
"auto"]
# fmt: on
def download_model(model_size: str):
if "distil" in model_size:
repo_id = "Systran/faster-{}-whisper-{}".format(*model_size.split("-", maxsplit=1))
else:
repo_id = f"Systran/faster-whisper-{model_size}"
model_path = f"tools/asr/models/{repo_id.strip('Systran/')}"
files: list[str] = [
"config.json",
"model.bin",
"tokenizer.json",
"vocabulary.txt",
]
if model_size == "large-v3" or "distil" in model_size:
files.append("preprocessor_config.json")
files.append("vocabulary.json")
files.remove("vocabulary.txt")
for attempt in range(2):
try:
snapshot_download(
repo_id=repo_id,
allow_patterns=files,
local_dir=model_path,
)
break
except LocalEntryNotFoundError:
if attempt < 1:
time.sleep(2)
else:
print("[ERROR] LocalEntryNotFoundError and no fallback.")
traceback.print_exc()
exit(1)
except Exception as e:
print(f"[ERROR] Unexpected error on attempt {attempt + 1}: {e}")
traceback.print_exc()
exit(1)
return model_path
def execute_asr(input_folder, output_folder, model_path, language, precision):
if language == "auto":
language = None # 不设置语种由模型自动输出概率最高的语种
print("loading faster whisper model:", model_path, model_path)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = WhisperModel(model_path, device=device, compute_type=precision)
input_file_names = os.listdir(input_folder)
input_file_names.sort()
output = []
output_file_name = os.path.basename(input_folder)
for file_name in tqdm(input_file_names):
try:
file_path = os.path.join(input_folder, file_name)
segments, info = model.transcribe(
audio=file_path,
beam_size=5,
vad_filter=True,
vad_parameters=dict(min_silence_duration_ms=700),
language=language,
)
text = ""
if info.language == "zh":
print("检测为中文文本, 转 FunASR 处理")
text = only_asr(file_path, language=info.language.lower())
if text == "":
for segment in segments:
text += segment.text
output.append(f"{file_path}|{output_file_name}|{info.language.upper()}|{text}")
except Exception as e:
print(e)
traceback.print_exc()
output_folder = output_folder or "output/asr_opt"
os.makedirs(output_folder, exist_ok=True)
output_file_path = os.path.abspath(f"{output_folder}/{output_file_name}.list")
with open(output_file_path, "w", encoding="utf-8") as f:
f.write("\n".join(output))
print(f"ASR 任务完成->标注文件路径: {output_file_path}\n")
return output_file_path
load_cudnn()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-i", "--input_folder", type=str, required=True, help="Path to the folder containing WAV files."
)
parser.add_argument("-o", "--output_folder", type=str, required=True, help="Output folder to store transcriptions.")
parser.add_argument(
"-s",
"--model_size",
type=str,
default="large-v3",
choices=get_models(),
help="Model Size of Faster Whisper",
)
parser.add_argument(
"-l", "--language", type=str, default="ja", choices=language_code_list, help="Language of the audio files."
)
parser.add_argument(
"-p",
"--precision",
type=str,
default="float16",
choices=["float16", "float32", "int8"],
help="fp16, int8 or fp32",
)
cmd = parser.parse_args()
model_size = cmd.model_size
if model_size == "large":
model_size = "large-v3"
model_path = download_model(model_size)
output_file_path = execute_asr(
input_folder=cmd.input_folder,
output_folder=cmd.output_folder,
model_path=model_path,
language=cmd.language,
precision=cmd.precision,
)