|
|
@ -1099,17 +1099,15 @@ class CFM(torch.nn.Module):
|
|
|
|
return x
|
|
|
|
return x
|
|
|
|
def forward(self, x1, x_lens, prompt_lens, mu, use_grad_ckpt):
|
|
|
|
def forward(self, x1, x_lens, prompt_lens, mu, use_grad_ckpt):
|
|
|
|
b, _, t = x1.shape
|
|
|
|
b, _, t = x1.shape
|
|
|
|
|
|
|
|
|
|
|
|
# random timestep
|
|
|
|
|
|
|
|
t = torch.rand([b], device=mu.device, dtype=x1.dtype)
|
|
|
|
t = torch.rand([b], device=mu.device, dtype=x1.dtype)
|
|
|
|
x0 = torch.randn_like(x1,device=mu.device)
|
|
|
|
x0 = torch.randn_like(x1,device=mu.device)
|
|
|
|
vt = x1 - x0
|
|
|
|
vt = x1 - x0
|
|
|
|
xt = x0 + t[:, None, None] * vt
|
|
|
|
xt = x0 + t[:, None, None] * vt
|
|
|
|
dt = torch.zeros_like(t,device=mu.device)
|
|
|
|
dt = torch.zeros_like(t,device=mu.device)
|
|
|
|
prompt = torch.zeros_like(x1)
|
|
|
|
prompt = torch.zeros_like(x1)
|
|
|
|
for bib in range(b):
|
|
|
|
for i in range(b):
|
|
|
|
prompt[bib, :, :prompt_lens[bib]] = x1[bib, :, :prompt_lens[bib]]
|
|
|
|
prompt[i, :, :prompt_lens[i]] = x1[i, :, :prompt_lens[i]]
|
|
|
|
xt[bib, :, :prompt_lens[bib]] = 0
|
|
|
|
xt[i, :, :prompt_lens[i]] = 0
|
|
|
|
gailv=0.3# if ttime()>1736250488 else 0.1
|
|
|
|
gailv=0.3# if ttime()>1736250488 else 0.1
|
|
|
|
if random.random() < gailv:
|
|
|
|
if random.random() < gailv:
|
|
|
|
base = torch.randint(2, 8, (t.shape[0],), device=mu.device)
|
|
|
|
base = torch.randint(2, 8, (t.shape[0],), device=mu.device)
|
|
|
@ -1128,14 +1126,15 @@ class CFM(torch.nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
vt_pred = self.estimator(xt, prompt, x_lens, t,dt, mu, use_grad_ckpt).transpose(2,1)
|
|
|
|
vt_pred = self.estimator(xt, prompt, x_lens, t,dt, mu, use_grad_ckpt).transpose(2,1)
|
|
|
|
loss = 0
|
|
|
|
loss = 0
|
|
|
|
|
|
|
|
for i in range(b):
|
|
|
|
# print(45555555,estimator_out.shape,u.shape,x_lens,prompt_lens)#45555555 torch.Size([7, 465, 100]) torch.Size([7, 100, 465]) tensor([461, 461, 451, 451, 442, 442, 442], device='cuda:0') tensor([ 96, 93, 185, 59, 244, 262, 294], device='cuda:0')
|
|
|
|
loss += self.criterion(vt_pred[i, :, prompt_lens[i]:x_lens[i]], vt[i, :, prompt_lens[i]:x_lens[i]])
|
|
|
|
for bib in range(b):
|
|
|
|
|
|
|
|
loss += self.criterion(vt_pred[bib, :, prompt_lens[bib]:x_lens[bib]], vt[bib, :, prompt_lens[bib]:x_lens[bib]])
|
|
|
|
|
|
|
|
loss /= b
|
|
|
|
loss /= b
|
|
|
|
|
|
|
|
|
|
|
|
return loss#, estimator_out + (1 - self.sigma_min) * z
|
|
|
|
return loss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def set_no_grad(net_g):
|
|
|
|
|
|
|
|
for name, param in net_g.named_parameters():
|
|
|
|
|
|
|
|
param.requires_grad=False
|
|
|
|
|
|
|
|
|
|
|
|
class SynthesizerTrnV3(nn.Module):
|
|
|
|
class SynthesizerTrnV3(nn.Module):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
@ -1210,7 +1209,6 @@ class SynthesizerTrnV3(nn.Module):
|
|
|
|
bins=1024
|
|
|
|
bins=1024
|
|
|
|
)
|
|
|
|
)
|
|
|
|
self.freeze_quantizer=freeze_quantizer
|
|
|
|
self.freeze_quantizer=freeze_quantizer
|
|
|
|
|
|
|
|
|
|
|
|
inter_channels2=512
|
|
|
|
inter_channels2=512
|
|
|
|
self.bridge=nn.Sequential(
|
|
|
|
self.bridge=nn.Sequential(
|
|
|
|
nn.Conv1d(inter_channels, inter_channels2, 1, stride=1),
|
|
|
|
nn.Conv1d(inter_channels, inter_channels2, 1, stride=1),
|
|
|
@ -1219,6 +1217,10 @@ class SynthesizerTrnV3(nn.Module):
|
|
|
|
self.wns1=Encoder(inter_channels2, inter_channels2, inter_channels2, 5, 1, 8,gin_channels=gin_channels)
|
|
|
|
self.wns1=Encoder(inter_channels2, inter_channels2, inter_channels2, 5, 1, 8,gin_channels=gin_channels)
|
|
|
|
self.linear_mel=nn.Conv1d(inter_channels2,100,1,stride=1)
|
|
|
|
self.linear_mel=nn.Conv1d(inter_channels2,100,1,stride=1)
|
|
|
|
self.cfm = CFM(100,DiT(**dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=inter_channels2, conv_layers=4)),)#text_dim is condition feature dim
|
|
|
|
self.cfm = CFM(100,DiT(**dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=inter_channels2, conv_layers=4)),)#text_dim is condition feature dim
|
|
|
|
|
|
|
|
if self.freeze_quantizer==True:
|
|
|
|
|
|
|
|
set_no_grad(self.ssl_proj)
|
|
|
|
|
|
|
|
set_no_grad(self.quantizer)
|
|
|
|
|
|
|
|
set_no_grad(self.enc_p)
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, ssl, y, mel,ssl_lengths,y_lengths, text, text_lengths,mel_lengths, use_grad_ckpt):#ssl_lengths no need now
|
|
|
|
def forward(self, ssl, y, mel,ssl_lengths,y_lengths, text, text_lengths,mel_lengths, use_grad_ckpt):#ssl_lengths no need now
|
|
|
|
with autocast(enabled=False):
|
|
|
|
with autocast(enabled=False):
|
|
|
@ -1229,11 +1231,11 @@ class SynthesizerTrnV3(nn.Module):
|
|
|
|
if self.freeze_quantizer:
|
|
|
|
if self.freeze_quantizer:
|
|
|
|
self.ssl_proj.eval()#
|
|
|
|
self.ssl_proj.eval()#
|
|
|
|
self.quantizer.eval()
|
|
|
|
self.quantizer.eval()
|
|
|
|
|
|
|
|
self.enc_p.eval()
|
|
|
|
ssl = self.ssl_proj(ssl)
|
|
|
|
ssl = self.ssl_proj(ssl)
|
|
|
|
quantized, codes, commit_loss, quantized_list = self.quantizer(
|
|
|
|
quantized, codes, commit_loss, quantized_list = self.quantizer(
|
|
|
|
ssl, layers=[0]
|
|
|
|
ssl, layers=[0]
|
|
|
|
)
|
|
|
|
)
|
|
|
|
with maybe_no_grad:
|
|
|
|
|
|
|
|
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
|
|
|
|
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
|
|
|
|
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
|
|
|
|
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
|
|
|
|
fea=self.bridge(x)
|
|
|
|
fea=self.bridge(x)
|
|
|
@ -1274,3 +1276,148 @@ class SynthesizerTrnV3(nn.Module):
|
|
|
|
ssl = self.ssl_proj(x)
|
|
|
|
ssl = self.ssl_proj(x)
|
|
|
|
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
|
|
|
|
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
|
|
|
|
return codes.transpose(0,1)
|
|
|
|
return codes.transpose(0,1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SynthesizerTrnV3b(nn.Module):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
Synthesizer for Training
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
|
|
|
|
spec_channels,
|
|
|
|
|
|
|
|
segment_size,
|
|
|
|
|
|
|
|
inter_channels,
|
|
|
|
|
|
|
|
hidden_channels,
|
|
|
|
|
|
|
|
filter_channels,
|
|
|
|
|
|
|
|
n_heads,
|
|
|
|
|
|
|
|
n_layers,
|
|
|
|
|
|
|
|
kernel_size,
|
|
|
|
|
|
|
|
p_dropout,
|
|
|
|
|
|
|
|
resblock,
|
|
|
|
|
|
|
|
resblock_kernel_sizes,
|
|
|
|
|
|
|
|
resblock_dilation_sizes,
|
|
|
|
|
|
|
|
upsample_rates,
|
|
|
|
|
|
|
|
upsample_initial_channel,
|
|
|
|
|
|
|
|
upsample_kernel_sizes,
|
|
|
|
|
|
|
|
n_speakers=0,
|
|
|
|
|
|
|
|
gin_channels=0,
|
|
|
|
|
|
|
|
use_sdp=True,
|
|
|
|
|
|
|
|
semantic_frame_rate=None,
|
|
|
|
|
|
|
|
freeze_quantizer=None,
|
|
|
|
|
|
|
|
**kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.spec_channels = spec_channels
|
|
|
|
|
|
|
|
self.inter_channels = inter_channels
|
|
|
|
|
|
|
|
self.hidden_channels = hidden_channels
|
|
|
|
|
|
|
|
self.filter_channels = filter_channels
|
|
|
|
|
|
|
|
self.n_heads = n_heads
|
|
|
|
|
|
|
|
self.n_layers = n_layers
|
|
|
|
|
|
|
|
self.kernel_size = kernel_size
|
|
|
|
|
|
|
|
self.p_dropout = p_dropout
|
|
|
|
|
|
|
|
self.resblock = resblock
|
|
|
|
|
|
|
|
self.resblock_kernel_sizes = resblock_kernel_sizes
|
|
|
|
|
|
|
|
self.resblock_dilation_sizes = resblock_dilation_sizes
|
|
|
|
|
|
|
|
self.upsample_rates = upsample_rates
|
|
|
|
|
|
|
|
self.upsample_initial_channel = upsample_initial_channel
|
|
|
|
|
|
|
|
self.upsample_kernel_sizes = upsample_kernel_sizes
|
|
|
|
|
|
|
|
self.segment_size = segment_size
|
|
|
|
|
|
|
|
self.n_speakers = n_speakers
|
|
|
|
|
|
|
|
self.gin_channels = gin_channels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.model_dim=512
|
|
|
|
|
|
|
|
self.use_sdp = use_sdp
|
|
|
|
|
|
|
|
self.enc_p = TextEncoder(inter_channels,hidden_channels,filter_channels,n_heads,n_layers,kernel_size,p_dropout)
|
|
|
|
|
|
|
|
# self.ref_enc = modules.MelStyleEncoder(spec_channels, style_vector_dim=gin_channels)###Rollback
|
|
|
|
|
|
|
|
self.ref_enc = modules.MelStyleEncoder(704, style_vector_dim=gin_channels)###Rollback
|
|
|
|
|
|
|
|
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
|
|
|
|
|
|
|
upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
|
|
|
|
|
|
|
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
|
|
|
|
|
|
|
|
gin_channels=gin_channels)
|
|
|
|
|
|
|
|
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ssl_dim = 768
|
|
|
|
|
|
|
|
assert semantic_frame_rate in ['25hz', "50hz"]
|
|
|
|
|
|
|
|
self.semantic_frame_rate = semantic_frame_rate
|
|
|
|
|
|
|
|
if semantic_frame_rate == '25hz':
|
|
|
|
|
|
|
|
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 2, stride=2)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.quantizer = ResidualVectorQuantizer(
|
|
|
|
|
|
|
|
dimension=ssl_dim,
|
|
|
|
|
|
|
|
n_q=1,
|
|
|
|
|
|
|
|
bins=1024
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
self.freeze_quantizer=freeze_quantizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inter_channels2=512
|
|
|
|
|
|
|
|
self.bridge=nn.Sequential(
|
|
|
|
|
|
|
|
nn.Conv1d(inter_channels, inter_channels2, 1, stride=1),
|
|
|
|
|
|
|
|
nn.LeakyReLU()
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
self.wns1=Encoder(inter_channels2, inter_channels2, inter_channels2, 5, 1, 8,gin_channels=gin_channels)
|
|
|
|
|
|
|
|
self.linear_mel=nn.Conv1d(inter_channels2,100,1,stride=1)
|
|
|
|
|
|
|
|
self.cfm = CFM(100,DiT(**dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=inter_channels2, conv_layers=4)),)#text_dim is condition feature dim
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, ssl, y, mel,ssl_lengths,y_lengths, text, text_lengths,mel_lengths):#ssl_lengths no need now
|
|
|
|
|
|
|
|
with autocast(enabled=False):
|
|
|
|
|
|
|
|
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(y.dtype)
|
|
|
|
|
|
|
|
ge = self.ref_enc(y[:,:704] * y_mask, y_mask)
|
|
|
|
|
|
|
|
# ge = self.ref_enc(y * y_mask, y_mask)#change back, new spec setting is whole 24k
|
|
|
|
|
|
|
|
# ge=None
|
|
|
|
|
|
|
|
maybe_no_grad = torch.no_grad() if self.freeze_quantizer else contextlib.nullcontext()
|
|
|
|
|
|
|
|
with maybe_no_grad:
|
|
|
|
|
|
|
|
if self.freeze_quantizer:
|
|
|
|
|
|
|
|
self.ssl_proj.eval()
|
|
|
|
|
|
|
|
self.quantizer.eval()
|
|
|
|
|
|
|
|
ssl = self.ssl_proj(ssl)
|
|
|
|
|
|
|
|
quantized, codes, commit_loss, quantized_list = self.quantizer(
|
|
|
|
|
|
|
|
ssl, layers=[0]
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
|
|
|
|
|
|
|
|
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
|
|
|
|
|
|
|
|
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=ge)
|
|
|
|
|
|
|
|
z_p = self.flow(z, y_mask, g=ge)
|
|
|
|
|
|
|
|
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
|
|
|
|
|
|
|
|
o = self.dec(z_slice, g=ge)
|
|
|
|
|
|
|
|
fea=self.bridge(x)
|
|
|
|
|
|
|
|
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
|
|
|
|
|
|
|
|
fea, y_mask_ = self.wns1(fea, mel_lengths, ge)
|
|
|
|
|
|
|
|
learned_mel = self.linear_mel(fea)
|
|
|
|
|
|
|
|
B=ssl.shape[0]
|
|
|
|
|
|
|
|
prompt_len_max = mel_lengths*2/3
|
|
|
|
|
|
|
|
prompt_len = (torch.rand([B], device=fea.device) * prompt_len_max).floor().to(dtype=torch.long)#
|
|
|
|
|
|
|
|
minn=min(mel.shape[-1],fea.shape[-1])
|
|
|
|
|
|
|
|
mel=mel[:,:,:minn]
|
|
|
|
|
|
|
|
fea=fea[:,:,:minn]
|
|
|
|
|
|
|
|
cfm_loss= self.cfm(mel, mel_lengths, prompt_len, fea)#fea==cond,y_lengths==target_mel_lengths#ge not need
|
|
|
|
|
|
|
|
return commit_loss,cfm_loss,F.mse_loss(learned_mel, mel),o, ids_slice, y_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q), quantized
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
|
|
|
|
def decode_encp(self, codes,text, refer,ge=None):
|
|
|
|
|
|
|
|
# print(2333333,refer.shape)
|
|
|
|
|
|
|
|
# ge=None
|
|
|
|
|
|
|
|
if(ge==None):
|
|
|
|
|
|
|
|
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
|
|
|
|
|
|
|
|
refer_mask = torch.unsqueeze(commons.sequence_mask(refer_lengths, refer.size(2)), 1).to(refer.dtype)
|
|
|
|
|
|
|
|
ge = self.ref_enc(refer[:,:704] * refer_mask, refer_mask)
|
|
|
|
|
|
|
|
y_lengths = torch.LongTensor([int(codes.size(2)*2)]).to(codes.device)
|
|
|
|
|
|
|
|
y_lengths1 = torch.LongTensor([int(codes.size(2)*2.5*1.5)]).to(codes.device)
|
|
|
|
|
|
|
|
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
quantized = self.quantizer.decode(codes)
|
|
|
|
|
|
|
|
if self.semantic_frame_rate == '25hz':
|
|
|
|
|
|
|
|
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
|
|
|
|
|
|
|
|
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
|
|
|
|
|
|
|
|
fea=self.bridge(x)
|
|
|
|
|
|
|
|
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
|
|
|
|
|
|
|
|
####more wn paramter to learn mel
|
|
|
|
|
|
|
|
fea, y_mask_ = self.wns1(fea, y_lengths1, ge)
|
|
|
|
|
|
|
|
return fea,ge
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def extract_latent(self, x):
|
|
|
|
|
|
|
|
ssl = self.ssl_proj(x)
|
|
|
|
|
|
|
|
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
|
|
|
|
|
|
|
|
return codes.transpose(0,1)
|
|
|
|