|
|
|
@ -1,178 +0,0 @@
|
|
|
|
|
import os
|
|
|
|
|
import traceback,gradio as gr
|
|
|
|
|
import logging
|
|
|
|
|
from tools.i18n.i18n import I18nAuto
|
|
|
|
|
i18n = I18nAuto()
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
import librosa,ffmpeg
|
|
|
|
|
import soundfile as sf
|
|
|
|
|
import torch
|
|
|
|
|
import sys
|
|
|
|
|
from mdxnet import MDXNetDereverb
|
|
|
|
|
from vr import AudioPre, AudioPreDeEcho
|
|
|
|
|
|
|
|
|
|
weight_uvr5_root = "tools/uvr5/uvr5_weights"
|
|
|
|
|
uvr5_names = []
|
|
|
|
|
for name in os.listdir(weight_uvr5_root):
|
|
|
|
|
if name.endswith(".pth") or "onnx" in name:
|
|
|
|
|
uvr5_names.append(name.replace(".pth", ""))
|
|
|
|
|
|
|
|
|
|
device=sys.argv[1]
|
|
|
|
|
is_half=sys.argv[2]
|
|
|
|
|
webui_port_uvr5=int(sys.argv[3])
|
|
|
|
|
is_share=eval(sys.argv[4])
|
|
|
|
|
|
|
|
|
|
def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0):
|
|
|
|
|
infos = []
|
|
|
|
|
try:
|
|
|
|
|
inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
|
|
|
save_root_vocal = (
|
|
|
|
|
save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
|
|
|
)
|
|
|
|
|
save_root_ins = (
|
|
|
|
|
save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
|
|
|
)
|
|
|
|
|
if model_name == "onnx_dereverb_By_FoxJoy":
|
|
|
|
|
from MDXNet import MDXNetDereverb
|
|
|
|
|
|
|
|
|
|
pre_fun = MDXNetDereverb(15)
|
|
|
|
|
else:
|
|
|
|
|
func = AudioPre if "DeEcho" not in model_name else AudioPreDeEcho
|
|
|
|
|
pre_fun = func(
|
|
|
|
|
agg=int(agg),
|
|
|
|
|
model_path=os.path.join(weight_uvr5_root, model_name + ".pth"),
|
|
|
|
|
device=device,
|
|
|
|
|
is_half=is_half,
|
|
|
|
|
)
|
|
|
|
|
if inp_root != "":
|
|
|
|
|
paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)]
|
|
|
|
|
else:
|
|
|
|
|
paths = [path.name for path in paths]
|
|
|
|
|
for path in paths:
|
|
|
|
|
inp_path = os.path.join(inp_root, path)
|
|
|
|
|
if(os.path.isfile(inp_path)==False):continue
|
|
|
|
|
need_reformat = 1
|
|
|
|
|
done = 0
|
|
|
|
|
try:
|
|
|
|
|
info = ffmpeg.probe(inp_path, cmd="ffprobe")
|
|
|
|
|
if (
|
|
|
|
|
info["streams"][0]["channels"] == 2
|
|
|
|
|
and info["streams"][0]["sample_rate"] == "44100"
|
|
|
|
|
):
|
|
|
|
|
need_reformat = 0
|
|
|
|
|
pre_fun._path_audio_(
|
|
|
|
|
inp_path, save_root_ins, save_root_vocal, format0
|
|
|
|
|
)
|
|
|
|
|
done = 1
|
|
|
|
|
except:
|
|
|
|
|
need_reformat = 1
|
|
|
|
|
traceback.print_exc()
|
|
|
|
|
if need_reformat == 1:
|
|
|
|
|
tmp_path = "%s/%s.reformatted.wav" % (
|
|
|
|
|
os.path.join(os.environ["TEMP"]),
|
|
|
|
|
os.path.basename(inp_path),
|
|
|
|
|
)
|
|
|
|
|
os.system(
|
|
|
|
|
"ffmpeg -i %s -vn -acodec pcm_s16le -ac 2 -ar 44100 %s -y"
|
|
|
|
|
% (inp_path, tmp_path)
|
|
|
|
|
)
|
|
|
|
|
inp_path = tmp_path
|
|
|
|
|
try:
|
|
|
|
|
if done == 0:
|
|
|
|
|
pre_fun._path_audio_(
|
|
|
|
|
inp_path, save_root_ins, save_root_vocal, format0
|
|
|
|
|
)
|
|
|
|
|
infos.append("%s->Success" % (os.path.basename(inp_path)))
|
|
|
|
|
yield "\n".join(infos)
|
|
|
|
|
except:
|
|
|
|
|
infos.append(
|
|
|
|
|
"%s->%s" % (os.path.basename(inp_path), traceback.format_exc())
|
|
|
|
|
)
|
|
|
|
|
yield "\n".join(infos)
|
|
|
|
|
except:
|
|
|
|
|
infos.append(traceback.format_exc())
|
|
|
|
|
yield "\n".join(infos)
|
|
|
|
|
finally:
|
|
|
|
|
try:
|
|
|
|
|
if model_name == "onnx_dereverb_By_FoxJoy":
|
|
|
|
|
del pre_fun.pred.model
|
|
|
|
|
del pre_fun.pred.model_
|
|
|
|
|
else:
|
|
|
|
|
del pre_fun.model
|
|
|
|
|
del pre_fun
|
|
|
|
|
except:
|
|
|
|
|
traceback.print_exc()
|
|
|
|
|
print("clean_empty_cache")
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
yield "\n".join(infos)
|
|
|
|
|
|
|
|
|
|
with gr.Blocks(title="UVR5 WebUI") as app:
|
|
|
|
|
gr.Markdown(
|
|
|
|
|
value=
|
|
|
|
|
i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
|
|
|
|
|
)
|
|
|
|
|
with gr.Tabs():
|
|
|
|
|
with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
|
|
|
|
|
with gr.Group():
|
|
|
|
|
gr.Markdown(
|
|
|
|
|
value=i18n(
|
|
|
|
|
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点; <br>2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型; <br> 3、去混响、去延迟模型(by FoxJoy):<br> (1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br> (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;<br>2、MDX-Net-Dereverb模型挺慢的;<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。"
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
with gr.Row():
|
|
|
|
|
with gr.Column():
|
|
|
|
|
dir_wav_input = gr.Textbox(
|
|
|
|
|
label=i18n("输入待处理音频文件夹路径"),
|
|
|
|
|
placeholder="C:\\Users\\Desktop\\todo-songs",
|
|
|
|
|
)
|
|
|
|
|
wav_inputs = gr.File(
|
|
|
|
|
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
|
|
|
|
)
|
|
|
|
|
with gr.Column():
|
|
|
|
|
model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names)
|
|
|
|
|
agg = gr.Slider(
|
|
|
|
|
minimum=0,
|
|
|
|
|
maximum=20,
|
|
|
|
|
step=1,
|
|
|
|
|
label=i18n("人声提取激进程度"),
|
|
|
|
|
value=10,
|
|
|
|
|
interactive=True,
|
|
|
|
|
visible=False, # 先不开放调整
|
|
|
|
|
)
|
|
|
|
|
opt_vocal_root = gr.Textbox(
|
|
|
|
|
label=i18n("指定输出主人声文件夹"), value="output/uvr5_opt"
|
|
|
|
|
)
|
|
|
|
|
opt_ins_root = gr.Textbox(
|
|
|
|
|
label=i18n("指定输出非主人声文件夹"), value="output/uvr5_opt"
|
|
|
|
|
)
|
|
|
|
|
format0 = gr.Radio(
|
|
|
|
|
label=i18n("导出文件格式"),
|
|
|
|
|
choices=["wav", "flac", "mp3", "m4a"],
|
|
|
|
|
value="flac",
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
but2 = gr.Button(i18n("转换"), variant="primary")
|
|
|
|
|
vc_output4 = gr.Textbox(label=i18n("输出信息"))
|
|
|
|
|
but2.click(
|
|
|
|
|
uvr,
|
|
|
|
|
[
|
|
|
|
|
model_choose,
|
|
|
|
|
dir_wav_input,
|
|
|
|
|
opt_vocal_root,
|
|
|
|
|
wav_inputs,
|
|
|
|
|
opt_ins_root,
|
|
|
|
|
agg,
|
|
|
|
|
format0,
|
|
|
|
|
],
|
|
|
|
|
[vc_output4],
|
|
|
|
|
api_name="uvr_convert",
|
|
|
|
|
)
|
|
|
|
|
app.queue(concurrency_count=511, max_size=1022).launch(
|
|
|
|
|
server_name="0.0.0.0",
|
|
|
|
|
inbrowser=True,
|
|
|
|
|
share=is_share,
|
|
|
|
|
server_port=webui_port_uvr5,
|
|
|
|
|
quiet=True,
|
|
|
|
|
)
|