|
|
|
@ -641,7 +641,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
|
|
|
|
if(len(refers)==0):refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)]
|
|
|
|
|
audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers,speed=speed)[0][0]#.cpu().detach().numpy()
|
|
|
|
|
else:
|
|
|
|
|
refer = get_spepc(hps, ref_wav_path).to(device).to(dtype)#######这里要重采样切到32k,因为src是24k的,没有单独的32k的src,所以不能改成2个路径
|
|
|
|
|
refer = get_spepc(hps, ref_wav_path).to(device).to(dtype)
|
|
|
|
|
phoneme_ids0=torch.LongTensor(phones1).to(device).unsqueeze(0)
|
|
|
|
|
phoneme_ids1=torch.LongTensor(phones2).to(device).unsqueeze(0)
|
|
|
|
|
# print(11111111, phoneme_ids0, phoneme_ids1)
|
|
|
|
@ -666,7 +666,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
|
|
|
|
# print("fea_ref",fea_ref,fea_ref.shape)
|
|
|
|
|
# print("mel2",mel2)
|
|
|
|
|
mel2=mel2.to(dtype)
|
|
|
|
|
fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge)
|
|
|
|
|
fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge,speed)
|
|
|
|
|
# print("fea_todo",fea_todo)
|
|
|
|
|
# print("ge",ge.abs().mean())
|
|
|
|
|
cfm_resss = []
|
|
|
|
|