|
|
|
@ -1,10 +1,6 @@
|
|
|
|
|
import os
|
|
|
|
|
import sys
|
|
|
|
|
|
|
|
|
|
if len(sys.argv) == 1:
|
|
|
|
|
sys.argv.append("v2")
|
|
|
|
|
version = "v1" if sys.argv[1] == "v1" else "v2"
|
|
|
|
|
os.environ["version"] = version
|
|
|
|
|
os.environ["version"] = version="v2Pro"
|
|
|
|
|
now_dir = os.getcwd()
|
|
|
|
|
sys.path.insert(0, now_dir)
|
|
|
|
|
import warnings
|
|
|
|
@ -63,7 +59,11 @@ for site_packages_root in site_packages_roots:
|
|
|
|
|
import shutil
|
|
|
|
|
import subprocess
|
|
|
|
|
from subprocess import Popen
|
|
|
|
|
from tools.i18n.i18n import I18nAuto, scan_language_list
|
|
|
|
|
|
|
|
|
|
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else "Auto"
|
|
|
|
|
os.environ["language"] = language
|
|
|
|
|
i18n = I18nAuto(language=language)
|
|
|
|
|
from config import (
|
|
|
|
|
exp_root,
|
|
|
|
|
infer_device,
|
|
|
|
@ -76,11 +76,6 @@ from config import (
|
|
|
|
|
webui_port_uvr5,
|
|
|
|
|
)
|
|
|
|
|
from tools import my_utils
|
|
|
|
|
from tools.i18n.i18n import I18nAuto, scan_language_list
|
|
|
|
|
|
|
|
|
|
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else "Auto"
|
|
|
|
|
os.environ["language"] = language
|
|
|
|
|
i18n = I18nAuto(language=language)
|
|
|
|
|
from multiprocessing import cpu_count
|
|
|
|
|
|
|
|
|
|
from tools.my_utils import check_details, check_for_existance
|
|
|
|
@ -232,86 +227,32 @@ def fix_gpu_numbers(inputs):
|
|
|
|
|
return inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pretrained_sovits_name = [
|
|
|
|
|
"GPT_SoVITS/pretrained_models/s2G488k.pth",
|
|
|
|
|
"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
|
|
|
|
|
"GPT_SoVITS/pretrained_models/s2Gv3.pth",
|
|
|
|
|
"GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
|
|
|
|
|
]
|
|
|
|
|
pretrained_gpt_name = [
|
|
|
|
|
"GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
|
|
|
|
"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
|
|
|
|
"GPT_SoVITS/pretrained_models/s1v3.ckpt",
|
|
|
|
|
"GPT_SoVITS/pretrained_models/s1v3.ckpt",
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
pretrained_model_list = (
|
|
|
|
|
pretrained_sovits_name[int(version[-1]) - 1],
|
|
|
|
|
pretrained_sovits_name[int(version[-1]) - 1].replace("s2G", "s2D"),
|
|
|
|
|
pretrained_gpt_name[int(version[-1]) - 1],
|
|
|
|
|
"GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
|
|
|
|
|
"GPT_SoVITS/pretrained_models/chinese-hubert-base",
|
|
|
|
|
)
|
|
|
|
|
from config import pretrained_sovits_name,pretrained_gpt_name
|
|
|
|
|
|
|
|
|
|
_ = ""
|
|
|
|
|
for i in pretrained_model_list:
|
|
|
|
|
if "s2Dv3" not in i and os.path.exists(i) == False:
|
|
|
|
|
_ += f"\n {i}"
|
|
|
|
|
if _:
|
|
|
|
|
print("warning: ", i18n("以下模型不存在:") + _)
|
|
|
|
|
|
|
|
|
|
_ = [[], []]
|
|
|
|
|
for i in range(4):
|
|
|
|
|
if os.path.exists(pretrained_gpt_name[i]):
|
|
|
|
|
_[0].append(pretrained_gpt_name[i])
|
|
|
|
|
else:
|
|
|
|
|
_[0].append("") ##没有下pretrained模型的,说不定他们是想自己从零训底模呢
|
|
|
|
|
if os.path.exists(pretrained_sovits_name[i]):
|
|
|
|
|
_[-1].append(pretrained_sovits_name[i])
|
|
|
|
|
else:
|
|
|
|
|
_[-1].append("")
|
|
|
|
|
pretrained_gpt_name, pretrained_sovits_name = _
|
|
|
|
|
|
|
|
|
|
SoVITS_weight_root = ["SoVITS_weights", "SoVITS_weights_v2", "SoVITS_weights_v3", "SoVITS_weights_v4"]
|
|
|
|
|
GPT_weight_root = ["GPT_weights", "GPT_weights_v2", "GPT_weights_v3", "GPT_weights_v4"]
|
|
|
|
|
def check_pretrained_is_exist(version):
|
|
|
|
|
pretrained_model_list = (
|
|
|
|
|
pretrained_sovits_name[version],
|
|
|
|
|
pretrained_sovits_name[version].replace("s2G", "s2D"),
|
|
|
|
|
pretrained_gpt_name[version],
|
|
|
|
|
"GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
|
|
|
|
|
"GPT_SoVITS/pretrained_models/chinese-hubert-base",
|
|
|
|
|
)
|
|
|
|
|
_ = ""
|
|
|
|
|
for i in pretrained_model_list:
|
|
|
|
|
if "s2Dv3" not in i and "s2Dv4" not in i and os.path.exists(i) == False:
|
|
|
|
|
_ += f"\n {i}"
|
|
|
|
|
if _:
|
|
|
|
|
print("warning: ", i18n("以下模型不存在:") + _)
|
|
|
|
|
check_pretrained_is_exist(version)
|
|
|
|
|
for key in pretrained_sovits_name.keys():
|
|
|
|
|
if os.path.exists(pretrained_sovits_name[key])==False:pretrained_sovits_name[key]=""
|
|
|
|
|
for key in pretrained_gpt_name.keys():
|
|
|
|
|
if os.path.exists(pretrained_gpt_name[key])==False:pretrained_gpt_name[key]=""
|
|
|
|
|
|
|
|
|
|
from config import SoVITS_weight_root,GPT_weight_root,get_weights_names,change_choices,SoVITS_weight_version2root,GPT_weight_version2root
|
|
|
|
|
for root in SoVITS_weight_root + GPT_weight_root:
|
|
|
|
|
os.makedirs(root, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_weights_names():
|
|
|
|
|
SoVITS_names = [name for name in pretrained_sovits_name if name != ""]
|
|
|
|
|
for path in SoVITS_weight_root:
|
|
|
|
|
for name in os.listdir(path):
|
|
|
|
|
if name.endswith(".pth"):
|
|
|
|
|
SoVITS_names.append("%s/%s" % (path, name))
|
|
|
|
|
GPT_names = [name for name in pretrained_gpt_name if name != ""]
|
|
|
|
|
for path in GPT_weight_root:
|
|
|
|
|
for name in os.listdir(path):
|
|
|
|
|
if name.endswith(".ckpt"):
|
|
|
|
|
GPT_names.append("%s/%s" % (path, name))
|
|
|
|
|
return SoVITS_names, GPT_names
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SoVITS_names, GPT_names = get_weights_names()
|
|
|
|
|
for path in SoVITS_weight_root + GPT_weight_root:
|
|
|
|
|
os.makedirs(path, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def custom_sort_key(s):
|
|
|
|
|
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
|
|
|
|
parts = re.split("(\d+)", s)
|
|
|
|
|
# 将数字部分转换为整数,非数字部分保持不变
|
|
|
|
|
parts = [int(part) if part.isdigit() else part for part in parts]
|
|
|
|
|
return parts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def change_choices():
|
|
|
|
|
SoVITS_names, GPT_names = get_weights_names()
|
|
|
|
|
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {
|
|
|
|
|
"choices": sorted(GPT_names, key=custom_sort_key),
|
|
|
|
|
"__type__": "update",
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p_label = None
|
|
|
|
|
p_uvr5 = None
|
|
|
|
@ -450,8 +391,8 @@ def change_tts_inference(bert_path, cnhubert_base_path, gpu_number, gpt_path, so
|
|
|
|
|
# if version=="v3":
|
|
|
|
|
# cmd = '"%s" GPT_SoVITS/inference_webui.py "%s"'%(python_exec, language)
|
|
|
|
|
if p_tts_inference is None:
|
|
|
|
|
os.environ["gpt_path"] = gpt_path if "/" in gpt_path else "%s/%s" % (GPT_weight_root, gpt_path)
|
|
|
|
|
os.environ["sovits_path"] = sovits_path if "/" in sovits_path else "%s/%s" % (SoVITS_weight_root, sovits_path)
|
|
|
|
|
os.environ["gpt_path"] = gpt_path
|
|
|
|
|
os.environ["sovits_path"] = sovits_path
|
|
|
|
|
os.environ["cnhubert_base_path"] = cnhubert_base_path
|
|
|
|
|
os.environ["bert_path"] = bert_path
|
|
|
|
|
os.environ["_CUDA_VISIBLE_DEVICES"] = fix_gpu_number(gpu_number)
|
|
|
|
@ -599,6 +540,7 @@ process_name_sovits = i18n("SoVITS训练")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def open1Ba(
|
|
|
|
|
version,
|
|
|
|
|
batch_size,
|
|
|
|
|
total_epoch,
|
|
|
|
|
exp_name,
|
|
|
|
@ -614,7 +556,8 @@ def open1Ba(
|
|
|
|
|
):
|
|
|
|
|
global p_train_SoVITS
|
|
|
|
|
if p_train_SoVITS == None:
|
|
|
|
|
with open("GPT_SoVITS/configs/s2.json") as f:
|
|
|
|
|
config_file="GPT_SoVITS/configs/s2.json" if version not in {"v2Pro","v2ProPlus"}else f"GPT_SoVITS/configs/s2{version}.json"
|
|
|
|
|
with open(config_file) as f:
|
|
|
|
|
data = f.read()
|
|
|
|
|
data = json.loads(data)
|
|
|
|
|
s2_dir = "%s/%s" % (exp_root, exp_name)
|
|
|
|
@ -637,13 +580,13 @@ def open1Ba(
|
|
|
|
|
data["train"]["lora_rank"] = lora_rank
|
|
|
|
|
data["model"]["version"] = version
|
|
|
|
|
data["data"]["exp_dir"] = data["s2_ckpt_dir"] = s2_dir
|
|
|
|
|
data["save_weight_dir"] = SoVITS_weight_root[int(version[-1]) - 1]
|
|
|
|
|
data["save_weight_dir"] = SoVITS_weight_version2root[version]
|
|
|
|
|
data["name"] = exp_name
|
|
|
|
|
data["version"] = version
|
|
|
|
|
tmp_config_path = "%s/tmp_s2.json" % tmp
|
|
|
|
|
with open(tmp_config_path, "w") as f:
|
|
|
|
|
f.write(json.dumps(data))
|
|
|
|
|
if version in ["v1", "v2"]:
|
|
|
|
|
if version in ["v1", "v2","v2Pro","v2ProPlus"]:
|
|
|
|
|
cmd = '"%s" -s GPT_SoVITS/s2_train.py --config "%s"' % (python_exec, tmp_config_path)
|
|
|
|
|
else:
|
|
|
|
|
cmd = '"%s" -s GPT_SoVITS/s2_train_v3_lora.py --config "%s"' % (python_exec, tmp_config_path)
|
|
|
|
@ -724,7 +667,7 @@ def open1Bb(
|
|
|
|
|
data["train"]["if_save_every_weights"] = if_save_every_weights
|
|
|
|
|
data["train"]["if_save_latest"] = if_save_latest
|
|
|
|
|
data["train"]["if_dpo"] = if_dpo
|
|
|
|
|
data["train"]["half_weights_save_dir"] = GPT_weight_root[int(version[-1]) - 1]
|
|
|
|
|
data["train"]["half_weights_save_dir"] = GPT_weight_version2root[version]
|
|
|
|
|
data["train"]["exp_name"] = exp_name
|
|
|
|
|
data["train_semantic_path"] = "%s/6-name2semantic.tsv" % s1_dir
|
|
|
|
|
data["train_phoneme_path"] = "%s/2-name2text.txt" % s1_dir
|
|
|
|
@ -964,12 +907,10 @@ def close1a():
|
|
|
|
|
{"__type__": "update", "visible": False},
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sv_path="GPT_SoVITS\pretrained_models\sv\pretrained_eres2netv2w24s4ep4.ckpt"
|
|
|
|
|
ps1b = []
|
|
|
|
|
process_name_1b = i18n("语音自监督特征提取")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def open1b(inp_text, inp_wav_dir, exp_name, gpu_numbers, ssl_pretrained_dir):
|
|
|
|
|
def open1b(version,inp_text, inp_wav_dir, exp_name, gpu_numbers, ssl_pretrained_dir):
|
|
|
|
|
global ps1b
|
|
|
|
|
inp_text = my_utils.clean_path(inp_text)
|
|
|
|
|
inp_wav_dir = my_utils.clean_path(inp_wav_dir)
|
|
|
|
@ -982,6 +923,7 @@ def open1b(inp_text, inp_wav_dir, exp_name, gpu_numbers, ssl_pretrained_dir):
|
|
|
|
|
"exp_name": exp_name,
|
|
|
|
|
"opt_dir": "%s/%s" % (exp_root, exp_name),
|
|
|
|
|
"cnhubert_base_dir": ssl_pretrained_dir,
|
|
|
|
|
"sv_path": sv_path,
|
|
|
|
|
"is_half": str(is_half),
|
|
|
|
|
}
|
|
|
|
|
gpu_names = gpu_numbers.split("-")
|
|
|
|
@ -1007,6 +949,23 @@ def open1b(inp_text, inp_wav_dir, exp_name, gpu_numbers, ssl_pretrained_dir):
|
|
|
|
|
for p in ps1b:
|
|
|
|
|
p.wait()
|
|
|
|
|
ps1b = []
|
|
|
|
|
if "Pro"in version:
|
|
|
|
|
for i_part in range(all_parts):
|
|
|
|
|
config.update(
|
|
|
|
|
{
|
|
|
|
|
"i_part": str(i_part),
|
|
|
|
|
"all_parts": str(all_parts),
|
|
|
|
|
"_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]),
|
|
|
|
|
}
|
|
|
|
|
)
|
|
|
|
|
os.environ.update(config)
|
|
|
|
|
cmd = '"%s" -s GPT_SoVITS/prepare_datasets/2-get-sv.py' % python_exec
|
|
|
|
|
print(cmd)
|
|
|
|
|
p = Popen(cmd, shell=True)
|
|
|
|
|
ps1b.append(p)
|
|
|
|
|
for p in ps1b:
|
|
|
|
|
p.wait()
|
|
|
|
|
ps1b = []
|
|
|
|
|
yield (
|
|
|
|
|
process_info(process_name_1b, "finish"),
|
|
|
|
|
{"__type__": "update", "visible": True},
|
|
|
|
@ -1040,19 +999,20 @@ ps1c = []
|
|
|
|
|
process_name_1c = i18n("语义Token提取")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def open1c(inp_text, exp_name, gpu_numbers, pretrained_s2G_path):
|
|
|
|
|
def open1c(version,inp_text,inp_wav_dir, exp_name, gpu_numbers, pretrained_s2G_path):
|
|
|
|
|
global ps1c
|
|
|
|
|
inp_text = my_utils.clean_path(inp_text)
|
|
|
|
|
if check_for_existance([inp_text, ""], is_dataset_processing=True):
|
|
|
|
|
check_details([inp_text, ""], is_dataset_processing=True)
|
|
|
|
|
if check_for_existance([inp_text, inp_wav_dir], is_dataset_processing=True):
|
|
|
|
|
check_details([inp_text, inp_wav_dir], is_dataset_processing=True)
|
|
|
|
|
if ps1c == []:
|
|
|
|
|
opt_dir = "%s/%s" % (exp_root, exp_name)
|
|
|
|
|
config_file="GPT_SoVITS/configs/s2.json" if version not in {"v2Pro","v2ProPlus"}else f"GPT_SoVITS/configs/s2{version}.json"
|
|
|
|
|
config = {
|
|
|
|
|
"inp_text": inp_text,
|
|
|
|
|
"exp_name": exp_name,
|
|
|
|
|
"opt_dir": opt_dir,
|
|
|
|
|
"pretrained_s2G": pretrained_s2G_path,
|
|
|
|
|
"s2config_path": "GPT_SoVITS/configs/s2.json",
|
|
|
|
|
"s2config_path": config_file,
|
|
|
|
|
"is_half": str(is_half),
|
|
|
|
|
}
|
|
|
|
|
gpu_names = gpu_numbers.split("-")
|
|
|
|
@ -1121,6 +1081,7 @@ process_name_1abc = i18n("训练集格式化一键三连")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def open1abc(
|
|
|
|
|
version,
|
|
|
|
|
inp_text,
|
|
|
|
|
inp_wav_dir,
|
|
|
|
|
exp_name,
|
|
|
|
@ -1198,6 +1159,7 @@ def open1abc(
|
|
|
|
|
"exp_name": exp_name,
|
|
|
|
|
"opt_dir": opt_dir,
|
|
|
|
|
"cnhubert_base_dir": ssl_pretrained_dir,
|
|
|
|
|
"sv_path": sv_path,
|
|
|
|
|
}
|
|
|
|
|
gpu_names = gpu_numbers1Ba.split("-")
|
|
|
|
|
all_parts = len(gpu_names)
|
|
|
|
@ -1221,23 +1183,41 @@ def open1abc(
|
|
|
|
|
)
|
|
|
|
|
for p in ps1abc:
|
|
|
|
|
p.wait()
|
|
|
|
|
ps1abc=[]
|
|
|
|
|
if "Pro" in version:
|
|
|
|
|
for i_part in range(all_parts):
|
|
|
|
|
config.update(
|
|
|
|
|
{
|
|
|
|
|
"i_part": str(i_part),
|
|
|
|
|
"all_parts": str(all_parts),
|
|
|
|
|
"_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]),
|
|
|
|
|
}
|
|
|
|
|
)
|
|
|
|
|
os.environ.update(config)
|
|
|
|
|
cmd = '"%s" -s GPT_SoVITS/prepare_datasets/2-get-sv.py' % python_exec
|
|
|
|
|
print(cmd)
|
|
|
|
|
p = Popen(cmd, shell=True)
|
|
|
|
|
ps1abc.append(p)
|
|
|
|
|
for p in ps1abc:
|
|
|
|
|
p.wait()
|
|
|
|
|
ps1abc = []
|
|
|
|
|
yield (
|
|
|
|
|
i18n("进度") + ": 1A-Done, 1B-Done",
|
|
|
|
|
{"__type__": "update", "visible": False},
|
|
|
|
|
{"__type__": "update", "visible": True},
|
|
|
|
|
)
|
|
|
|
|
ps1abc = []
|
|
|
|
|
#############################1c
|
|
|
|
|
path_semantic = "%s/6-name2semantic.tsv" % opt_dir
|
|
|
|
|
if os.path.exists(path_semantic) == False or (
|
|
|
|
|
os.path.exists(path_semantic) == True and os.path.getsize(path_semantic) < 31
|
|
|
|
|
):
|
|
|
|
|
config_file = "GPT_SoVITS/configs/s2.json" if version not in {"v2Pro", "v2ProPlus"} else f"GPT_SoVITS/configs/s2{version}.json"
|
|
|
|
|
config = {
|
|
|
|
|
"inp_text": inp_text,
|
|
|
|
|
"exp_name": exp_name,
|
|
|
|
|
"opt_dir": opt_dir,
|
|
|
|
|
"pretrained_s2G": pretrained_s2G_path,
|
|
|
|
|
"s2config_path": "GPT_SoVITS/configs/s2.json",
|
|
|
|
|
"s2config_path": config_file,
|
|
|
|
|
}
|
|
|
|
|
gpu_names = gpu_numbers1c.split("-")
|
|
|
|
|
all_parts = len(gpu_names)
|
|
|
|
@ -1317,17 +1297,17 @@ def switch_version(version_):
|
|
|
|
|
os.environ["version"] = version_
|
|
|
|
|
global version
|
|
|
|
|
version = version_
|
|
|
|
|
if pretrained_sovits_name[int(version[-1]) - 1] != "" and pretrained_gpt_name[int(version[-1]) - 1] != "":
|
|
|
|
|
if pretrained_sovits_name[version] != "" and pretrained_gpt_name[version] != "":
|
|
|
|
|
...
|
|
|
|
|
else:
|
|
|
|
|
gr.Warning(i18n("未下载模型") + ": " + version.upper())
|
|
|
|
|
set_default()
|
|
|
|
|
return (
|
|
|
|
|
{"__type__": "update", "value": pretrained_sovits_name[int(version[-1]) - 1]},
|
|
|
|
|
{"__type__": "update", "value": pretrained_sovits_name[int(version[-1]) - 1].replace("s2G", "s2D")},
|
|
|
|
|
{"__type__": "update", "value": pretrained_gpt_name[int(version[-1]) - 1]},
|
|
|
|
|
{"__type__": "update", "value": pretrained_gpt_name[int(version[-1]) - 1]},
|
|
|
|
|
{"__type__": "update", "value": pretrained_sovits_name[int(version[-1]) - 1]},
|
|
|
|
|
{"__type__": "update", "value": pretrained_sovits_name[version]},
|
|
|
|
|
{"__type__": "update", "value": pretrained_sovits_name[version].replace("s2G", "s2D")},
|
|
|
|
|
{"__type__": "update", "value": pretrained_gpt_name[version]},
|
|
|
|
|
{"__type__": "update", "value": pretrained_gpt_name[version]},
|
|
|
|
|
{"__type__": "update", "value": pretrained_sovits_name[version]},
|
|
|
|
|
{"__type__": "update", "value": default_batch_size, "maximum": default_max_batch_size},
|
|
|
|
|
{"__type__": "update", "value": default_sovits_epoch, "maximum": max_sovits_epoch},
|
|
|
|
|
{"__type__": "update", "value": default_sovits_save_every_epoch, "maximum": max_sovits_save_every_epoch},
|
|
|
|
@ -1357,10 +1337,7 @@ def sync(text):
|
|
|
|
|
with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
|
|
|
|
|
gr.Markdown(
|
|
|
|
|
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.")
|
|
|
|
|
+ "<br>"
|
|
|
|
|
+ i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
|
|
|
|
|
)
|
|
|
|
|
gr.Markdown(value=i18n("中文教程文档") + ": " + "https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e")
|
|
|
|
|
+ i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")+ "<br>"+i18n("中文教程文档") + ": " + "https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e")
|
|
|
|
|
|
|
|
|
|
with gr.Tabs():
|
|
|
|
|
with gr.TabItem("0-" + i18n("前置数据集获取工具")): # 提前随机切片防止uvr5爆内存->uvr5->slicer->asr->打标
|
|
|
|
@ -1419,8 +1396,8 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
|
|
|
|
|
value=process_info(process_name_slice, "close"), variant="primary", visible=False
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
gr.Markdown(value="0bb-" + i18n("语音降噪工具")+i18n("(不稳定,先别用,可能劣化模型效果!)"))
|
|
|
|
|
with gr.Row():
|
|
|
|
|
# gr.Markdown(value="0bb-" + i18n("语音降噪工具")+i18n("(不稳定,先别用,可能劣化模型效果!)"))
|
|
|
|
|
with gr.Row(visible=False):
|
|
|
|
|
with gr.Column(scale=3):
|
|
|
|
|
with gr.Row():
|
|
|
|
|
denoise_input_dir = gr.Textbox(label=i18n("输入文件夹路径"), value="")
|
|
|
|
@ -1512,33 +1489,33 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
|
|
|
|
|
with gr.TabItem(i18n("1-GPT-SoVITS-TTS")):
|
|
|
|
|
with gr.Row():
|
|
|
|
|
with gr.Row():
|
|
|
|
|
exp_name = gr.Textbox(label=i18n("*实验/模型名"), value="xxx", interactive=True)
|
|
|
|
|
gpu_info = gr.Textbox(label=i18n("显卡信息"), value=gpu_info, visible=True, interactive=False)
|
|
|
|
|
version_checkbox = gr.Radio(label=i18n("版本"), value=version, choices=["v1", "v2", "v4"]) # , "v3"
|
|
|
|
|
with gr.Row():
|
|
|
|
|
exp_name = gr.Textbox(label=i18n("*实验/模型名"), value="xxx", interactive=True,scale=3,)
|
|
|
|
|
gpu_info = gr.Textbox(label=i18n("显卡信息"), value=gpu_info, visible=True, interactive=False,scale=5,)
|
|
|
|
|
version_checkbox = gr.Radio(label=i18n("训练模型的版本"), value=version, choices=["v1","v2", "v4", "v2Pro", "v2ProPlus"],scale=5,)
|
|
|
|
|
# version_checkbox = gr.Radio(label=i18n("训练模型的版本"), value=version, choices=["v2", "v4", "v2Pro", "v2ProPlus", "v2ProMax"],scale=5,)
|
|
|
|
|
pretrained_s2G = gr.Textbox(
|
|
|
|
|
label=i18n("预训练SoVITS-G模型路径"),
|
|
|
|
|
value=pretrained_sovits_name[int(version[-1]) - 1],
|
|
|
|
|
value=pretrained_sovits_name[version],
|
|
|
|
|
interactive=True,
|
|
|
|
|
lines=2,
|
|
|
|
|
max_lines=3,
|
|
|
|
|
scale=9,
|
|
|
|
|
scale=5,
|
|
|
|
|
)
|
|
|
|
|
pretrained_s2D = gr.Textbox(
|
|
|
|
|
label=i18n("预训练SoVITS-D模型路径"),
|
|
|
|
|
value=pretrained_sovits_name[int(version[-1]) - 1].replace("s2G", "s2D"),
|
|
|
|
|
value=pretrained_sovits_name[version].replace("s2G", "s2D"),
|
|
|
|
|
interactive=True,
|
|
|
|
|
lines=2,
|
|
|
|
|
max_lines=3,
|
|
|
|
|
scale=9,
|
|
|
|
|
scale=5,
|
|
|
|
|
)
|
|
|
|
|
pretrained_s1 = gr.Textbox(
|
|
|
|
|
label=i18n("预训练GPT模型路径"),
|
|
|
|
|
value=pretrained_gpt_name[int(version[-1]) - 1],
|
|
|
|
|
value=pretrained_gpt_name[version],
|
|
|
|
|
interactive=True,
|
|
|
|
|
lines=2,
|
|
|
|
|
max_lines=3,
|
|
|
|
|
scale=10,
|
|
|
|
|
scale=5,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
with gr.TabItem("1A-" + i18n("训练集格式化工具")):
|
|
|
|
@ -1623,7 +1600,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
|
|
|
|
|
with gr.Row():
|
|
|
|
|
pretrained_s2G_ = gr.Textbox(
|
|
|
|
|
label=i18n("预训练SoVITS-G模型路径"),
|
|
|
|
|
value=pretrained_sovits_name[int(version[-1]) - 1],
|
|
|
|
|
value=pretrained_sovits_name[version],
|
|
|
|
|
interactive=False,
|
|
|
|
|
lines=2,
|
|
|
|
|
)
|
|
|
|
@ -1688,17 +1665,18 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
|
|
|
|
|
button1a_close.click(close1a, [], [info1a, button1a_open, button1a_close])
|
|
|
|
|
button1b_open.click(
|
|
|
|
|
open1b,
|
|
|
|
|
[inp_text, inp_wav_dir, exp_name, gpu_numbers1Ba, cnhubert_base_dir],
|
|
|
|
|
[version_checkbox,inp_text, inp_wav_dir, exp_name, gpu_numbers1Ba, cnhubert_base_dir],
|
|
|
|
|
[info1b, button1b_open, button1b_close],
|
|
|
|
|
)
|
|
|
|
|
button1b_close.click(close1b, [], [info1b, button1b_open, button1b_close])
|
|
|
|
|
button1c_open.click(
|
|
|
|
|
open1c, [inp_text, exp_name, gpu_numbers1c, pretrained_s2G], [info1c, button1c_open, button1c_close]
|
|
|
|
|
open1c, [version_checkbox,inp_text, inp_wav_dir,exp_name, gpu_numbers1c, pretrained_s2G], [info1c, button1c_open, button1c_close]
|
|
|
|
|
)
|
|
|
|
|
button1c_close.click(close1c, [], [info1c, button1c_open, button1c_close])
|
|
|
|
|
button1abc_open.click(
|
|
|
|
|
open1abc,
|
|
|
|
|
[
|
|
|
|
|
version_checkbox,
|
|
|
|
|
inp_text,
|
|
|
|
|
inp_wav_dir,
|
|
|
|
|
exp_name,
|
|
|
|
@ -1862,21 +1840,21 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
|
|
|
|
|
with gr.TabItem("1C-" + i18n("推理")):
|
|
|
|
|
gr.Markdown(
|
|
|
|
|
value=i18n(
|
|
|
|
|
"选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的一个是底模,体验5秒Zero Shot TTS用。"
|
|
|
|
|
"选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的几个是底模,体验5秒Zero Shot TTS不训练推理用。"
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
with gr.Row():
|
|
|
|
|
with gr.Row():
|
|
|
|
|
GPT_dropdown = gr.Dropdown(
|
|
|
|
|
label=i18n("GPT模型列表"),
|
|
|
|
|
choices=sorted(GPT_names, key=custom_sort_key),
|
|
|
|
|
value=pretrained_gpt_name[0],
|
|
|
|
|
choices=GPT_names,
|
|
|
|
|
value=GPT_names[-1],
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
SoVITS_dropdown = gr.Dropdown(
|
|
|
|
|
label=i18n("SoVITS模型列表"),
|
|
|
|
|
choices=sorted(SoVITS_names, key=custom_sort_key),
|
|
|
|
|
value=pretrained_sovits_name[0],
|
|
|
|
|
choices=SoVITS_names,
|
|
|
|
|
value=SoVITS_names[0],
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
with gr.Row():
|
|
|
|
@ -1924,6 +1902,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
|
|
|
|
|
button1Ba_open.click(
|
|
|
|
|
open1Ba,
|
|
|
|
|
[
|
|
|
|
|
version_checkbox,
|
|
|
|
|
batch_size,
|
|
|
|
|
total_epoch,
|
|
|
|
|
exp_name,
|
|
|
|
|