|
|
@ -356,7 +356,7 @@ class Text2SemanticDecoder(nn.Module):
|
|
|
|
x = self.ar_text_embedding(x)
|
|
|
|
x = self.ar_text_embedding(x)
|
|
|
|
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
|
|
|
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
|
|
|
x = self.ar_text_position(x)
|
|
|
|
x = self.ar_text_position(x)
|
|
|
|
x_mask = make_pad_mask(x_lens)
|
|
|
|
x_mask = make_pad_mask_left(x_lens)
|
|
|
|
|
|
|
|
|
|
|
|
y_mask = make_pad_mask(y_lens)
|
|
|
|
y_mask = make_pad_mask(y_lens)
|
|
|
|
y_mask_int = y_mask.type(torch.int64)
|
|
|
|
y_mask_int = y_mask.type(torch.int64)
|
|
|
@ -420,7 +420,7 @@ class Text2SemanticDecoder(nn.Module):
|
|
|
|
mask=xy_attn_mask,
|
|
|
|
mask=xy_attn_mask,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
x_len = x_lens.max()
|
|
|
|
x_len = x_lens.max()
|
|
|
|
logits = self.ar_predict_layer(xy_dec[:, x_len:])
|
|
|
|
logits = self.ar_predict_layer(xy_dec[:, x_len-1:])
|
|
|
|
|
|
|
|
|
|
|
|
###### DPO #############
|
|
|
|
###### DPO #############
|
|
|
|
reject_xy_pos, reject_xy_attn_mask, reject_targets = self.make_input_data(
|
|
|
|
reject_xy_pos, reject_xy_attn_mask, reject_targets = self.make_input_data(
|
|
|
@ -432,7 +432,7 @@ class Text2SemanticDecoder(nn.Module):
|
|
|
|
mask=reject_xy_attn_mask,
|
|
|
|
mask=reject_xy_attn_mask,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
x_len = x_lens.max()
|
|
|
|
x_len = x_lens.max()
|
|
|
|
reject_logits = self.ar_predict_layer(reject_xy_dec[:, x_len:])
|
|
|
|
reject_logits = self.ar_predict_layer(reject_xy_dec[:, x_len-1:])
|
|
|
|
|
|
|
|
|
|
|
|
# loss
|
|
|
|
# loss
|
|
|
|
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
|
|
|
|
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
|
|
|
@ -455,7 +455,7 @@ class Text2SemanticDecoder(nn.Module):
|
|
|
|
x = self.ar_text_embedding(x)
|
|
|
|
x = self.ar_text_embedding(x)
|
|
|
|
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
|
|
|
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
|
|
|
x = self.ar_text_position(x)
|
|
|
|
x = self.ar_text_position(x)
|
|
|
|
x_mask = make_pad_mask(x_lens)
|
|
|
|
x_mask = make_pad_mask_left(x_lens)
|
|
|
|
|
|
|
|
|
|
|
|
y_mask = make_pad_mask(y_lens)
|
|
|
|
y_mask = make_pad_mask(y_lens)
|
|
|
|
y_mask_int = y_mask.type(torch.int64)
|
|
|
|
y_mask_int = y_mask.type(torch.int64)
|
|
|
@ -502,7 +502,7 @@ class Text2SemanticDecoder(nn.Module):
|
|
|
|
(xy_pos, None),
|
|
|
|
(xy_pos, None),
|
|
|
|
mask=xy_attn_mask,
|
|
|
|
mask=xy_attn_mask,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)
|
|
|
|
logits = self.ar_predict_layer(xy_dec[:, x_len-1:]).permute(0, 2, 1)
|
|
|
|
# loss
|
|
|
|
# loss
|
|
|
|
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
|
|
|
|
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
|
|
|
|
loss = F.cross_entropy(logits, targets, reduction="sum")
|
|
|
|
loss = F.cross_entropy(logits, targets, reduction="sum")
|
|
|
@ -578,7 +578,7 @@ class Text2SemanticDecoder(nn.Module):
|
|
|
|
def pad_y_eos(self, y, y_mask_int, eos_id):
|
|
|
|
def pad_y_eos(self, y, y_mask_int, eos_id):
|
|
|
|
targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(y_mask_int, (0, 1), value=1)
|
|
|
|
targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(y_mask_int, (0, 1), value=1)
|
|
|
|
# 错位
|
|
|
|
# 错位
|
|
|
|
return targets[:, :-1], targets[:, 1:]
|
|
|
|
return targets[:, :-1], targets
|
|
|
|
|
|
|
|
|
|
|
|
def infer_panel_batch_infer(
|
|
|
|
def infer_panel_batch_infer(
|
|
|
|
self,
|
|
|
|
self,
|
|
|
|