From b28194ea7612215f4cca8976fe13311edc26d4f6 Mon Sep 17 00:00:00 2001 From: Blaise <133521603+blaise-tk@users.noreply.github.com> Date: Tue, 16 Jan 2024 17:01:03 +0100 Subject: [PATCH] Code refactor --- webui.py | 1319 +++++++++++++++++++++++++++++++++++++++--------------- 1 file changed, 964 insertions(+), 355 deletions(-) diff --git a/webui.py b/webui.py index dbccba7..703c597 100644 --- a/webui.py +++ b/webui.py @@ -1,35 +1,48 @@ -import json,yaml,warnings,torch +import json, yaml, warnings, torch import platform warnings.filterwarnings("ignore") torch.manual_seed(233333) -import os,pdb,sys +import os, sys + now_dir = os.getcwd() tmp = os.path.join(now_dir, "TEMP") os.makedirs(tmp, exist_ok=True) os.environ["TEMP"] = tmp import site -site_packages_root="%s/runtime/Lib/site-packages"%now_dir + +site_packages_root = "%s/runtime/Lib/site-packages" % now_dir for path in site.getsitepackages(): - if("site-packages"in path):site_packages_root=path + if "site-packages" in path: + site_packages_root = path os.environ["OPENBLAS_NUM_THREADS"] = "4" os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1" -with open("%s/users.pth"%(site_packages_root),"w")as f: - f.write("%s\n%s/tools\n%s/tools/damo_asr\n%s/GPT_SoVITS\n%s/tools/uvr5"%(now_dir,now_dir,now_dir,now_dir,now_dir)) +with open("%s/users.pth" % (site_packages_root), "w") as f: + f.write( + "%s\n%s/tools\n%s/tools/damo_asr\n%s/GPT_SoVITS\n%s/tools/uvr5" + % (now_dir, now_dir, now_dir, now_dir, now_dir) + ) import traceback + sys.path.append(now_dir) -import shutil -import pdb import gradio as gr from subprocess import Popen -import signal -from config import python_exec,infer_device,is_half,exp_root,webui_port_main,webui_port_infer_tts,webui_port_uvr5,webui_port_subfix +from config import ( + python_exec, + infer_device, + is_half, + exp_root, + webui_port_main, + webui_port_infer_tts, + webui_port_uvr5, + webui_port_subfix, +) from i18n.i18n import I18nAuto + i18n = I18nAuto() -from scipy.io import wavfile -from tools.my_utils import load_audio from multiprocessing import cpu_count -n_cpu=cpu_count() + +n_cpu = cpu_count() # 判断是否有能用来训练和加速推理的N卡 ngpu = torch.cuda.device_count() @@ -40,11 +53,42 @@ if_gpu_ok = False if torch.cuda.is_available() or ngpu != 0: for i in range(ngpu): gpu_name = torch.cuda.get_device_name(i) - if any(value in gpu_name.upper()for value in ["10","16","20","30","40","A2","A3","A4","P4","A50","500","A60","70","80","90","M4","T4","TITAN","L"]): + if any( + value in gpu_name.upper() + for value in [ + "10", + "16", + "20", + "30", + "40", + "A2", + "A3", + "A4", + "P4", + "A50", + "500", + "A60", + "70", + "80", + "90", + "M4", + "T4", + "TITAN", + "L", + ] + ): # A10#A100#V100#A40#P40#M40#K80#A4500 if_gpu_ok = True # 至少有一张能用的N卡 gpu_infos.append("%s\t%s" % (i, gpu_name)) - mem.append(int(torch.cuda.get_device_properties(i).total_memory/ 1024/ 1024/ 1024+ 0.4)) + mem.append( + int( + torch.cuda.get_device_properties(i).total_memory + / 1024 + / 1024 + / 1024 + + 0.4 + ) + ) if if_gpu_ok and len(gpu_infos) > 0: gpu_info = "\n".join(gpu_infos) default_batch_size = min(mem) // 2 @@ -53,230 +97,395 @@ else: default_batch_size = 1 gpus = "-".join([i[0] for i in gpu_infos]) -pretrained_sovits_name="GPT_SoVITS/pretrained_models/s2G488k.pth" -pretrained_gpt_name="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" +pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth" +pretrained_gpt_name = ( + "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" +) + + def get_weights_names(): SoVITS_names = [pretrained_sovits_name] for name in os.listdir(SoVITS_weight_root): - if name.endswith(".pth"):SoVITS_names.append(name) + if name.endswith(".pth"): + SoVITS_names.append(name) GPT_names = [pretrained_gpt_name] for name in os.listdir(GPT_weight_root): - if name.endswith(".ckpt"): GPT_names.append(name) - return SoVITS_names,GPT_names -SoVITS_weight_root="SoVITS_weights" -GPT_weight_root="GPT_weights" -os.makedirs(SoVITS_weight_root,exist_ok=True) -os.makedirs(GPT_weight_root,exist_ok=True) -SoVITS_names,GPT_names = get_weights_names() + if name.endswith(".ckpt"): + GPT_names.append(name) + return SoVITS_names, GPT_names + + +SoVITS_weight_root = "SoVITS_weights" +GPT_weight_root = "GPT_weights" +os.makedirs(SoVITS_weight_root, exist_ok=True) +os.makedirs(GPT_weight_root, exist_ok=True) +SoVITS_names, GPT_names = get_weights_names() + def change_choices(): SoVITS_names, GPT_names = get_weights_names() - return {"choices": sorted(SoVITS_names), "__type__": "update"}, {"choices": sorted(GPT_names), "__type__": "update"} + return {"choices": sorted(SoVITS_names), "__type__": "update"}, { + "choices": sorted(GPT_names), + "__type__": "update", + } + + +p_label = None +p_uvr5 = None +p_asr = None +p_tts_inference = None + +system = platform.system() -p_label=None -p_uvr5=None -p_asr=None -p_tts_inference=None -system=platform.system() def kill_process(pid): - if(system=="Windows"): + if system == "Windows": cmd = "taskkill /t /f /pid %s" % pid else: - cmd = "kill -9 %s"%pid + cmd = "kill -9 %s" % pid print(cmd) - os.system(cmd)###linux上杀了webui,可能还会没杀干净。。。 + os.system(cmd) ###linux上杀了webui,可能还会没杀干净。。。 # os.kill(p_label.pid,19)#主进程#控制台进程#python子进程###不好使,连主进程的webui一起关了,辣鸡 -def change_label(if_label,path_list): + +def change_label(if_label, path_list): global p_label - if(if_label==True and p_label==None): - cmd = '"%s" tools/subfix_webui.py --load_list "%s" --webui_port %s'%(python_exec,path_list,webui_port_subfix) + if if_label == True and p_label == None: + cmd = '"%s" tools/subfix_webui.py --load_list "%s" --webui_port %s' % ( + python_exec, + path_list, + webui_port_subfix, + ) yield "打标工具WebUI已开启" print(cmd) p_label = Popen(cmd, shell=True) - elif(if_label==False and p_label!=None): + elif if_label == False and p_label != None: kill_process(p_label.pid) - p_label=None + p_label = None yield "打标工具WebUI已关闭" + def change_uvr5(if_uvr5): global p_uvr5 - if(if_uvr5==True and p_uvr5==None): - cmd = '"%s" tools/uvr5/webui.py "%s" %s %s'%(python_exec,infer_device,is_half,webui_port_uvr5) + if if_uvr5 == True and p_uvr5 == None: + cmd = '"%s" tools/uvr5/webui.py "%s" %s %s' % ( + python_exec, + infer_device, + is_half, + webui_port_uvr5, + ) yield "UVR5已开启" print(cmd) p_uvr5 = Popen(cmd, shell=True) - elif(if_uvr5==False and p_uvr5!=None): + elif if_uvr5 == False and p_uvr5 != None: kill_process(p_uvr5.pid) - p_uvr5=None + p_uvr5 = None yield "UVR5已关闭" -def change_tts_inference(if_tts,bert_path,cnhubert_base_path,gpu_number,gpt_path,sovits_path): + +def change_tts_inference( + if_tts, bert_path, cnhubert_base_path, gpu_number, gpt_path, sovits_path +): global p_tts_inference - if(if_tts==True and p_tts_inference==None): - os.environ["gpt_path"]=gpt_path if "/" in gpt_path else "%s/%s"%(GPT_weight_root,gpt_path) - os.environ["sovits_path"]=sovits_path if "/"in sovits_path else "%s/%s"%(SoVITS_weight_root,sovits_path) - os.environ["cnhubert_base_path"]=cnhubert_base_path - os.environ["bert_path"]=bert_path - os.environ["_CUDA_VISIBLE_DEVICES"]=gpu_number - os.environ["is_half"]=str(is_half) - os.environ["infer_ttswebui"]=str(webui_port_infer_tts) - cmd = '"%s" GPT_SoVITS/inference_webui.py'%(python_exec) + if if_tts == True and p_tts_inference == None: + os.environ["gpt_path"] = ( + gpt_path if "/" in gpt_path else "%s/%s" % (GPT_weight_root, gpt_path) + ) + os.environ["sovits_path"] = ( + sovits_path + if "/" in sovits_path + else "%s/%s" % (SoVITS_weight_root, sovits_path) + ) + os.environ["cnhubert_base_path"] = cnhubert_base_path + os.environ["bert_path"] = bert_path + os.environ["_CUDA_VISIBLE_DEVICES"] = gpu_number + os.environ["is_half"] = str(is_half) + os.environ["infer_ttswebui"] = str(webui_port_infer_tts) + cmd = '"%s" GPT_SoVITS/inference_webui.py' % (python_exec) yield "TTS推理进程已开启" print(cmd) p_tts_inference = Popen(cmd, shell=True) - elif(if_tts==False and p_tts_inference!=None): + elif if_tts == False and p_tts_inference != None: kill_process(p_tts_inference.pid) - p_tts_inference=None + p_tts_inference = None yield "TTS推理进程已关闭" def open_asr(asr_inp_dir): global p_asr - if(p_asr==None): - cmd = '"%s" tools/damo_asr/cmd-asr.py "%s"'%(python_exec,asr_inp_dir) - yield "ASR任务开启:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True} + if p_asr == None: + cmd = '"%s" tools/damo_asr/cmd-asr.py "%s"' % (python_exec, asr_inp_dir) + yield "ASR任务开启:%s" % cmd, {"__type__": "update", "visible": False}, { + "__type__": "update", + "visible": True, + } print(cmd) p_asr = Popen(cmd, shell=True) p_asr.wait() - p_asr=None - yield "ASR任务完成",{"__type__":"update","visible":True},{"__type__":"update","visible":False} + p_asr = None + yield "ASR任务完成", {"__type__": "update", "visible": True}, { + "__type__": "update", + "visible": False, + } else: - yield "已有正在进行的ASR任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True} + yield "已有正在进行的ASR任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, { + "__type__": "update", + "visible": True, + } + def close_asr(): global p_asr - if(p_asr!=None): + if p_asr != None: kill_process(p_asr.pid) - p_asr=None - return "已终止ASR进程",{"__type__":"update","visible":True},{"__type__":"update","visible":False} + p_asr = None + return ( + "已终止ASR进程", + {"__type__": "update", "visible": True}, + {"__type__": "update", "visible": False}, + ) -''' + +""" button1Ba_open.click(open1Ba, [batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D], [info1Bb,button1Ba_open,button1Ba_close]) button1Ba_close.click(close1Ba, [], [info1Bb,button1Ba_open,button1Ba_close]) -''' -p_train_SoVITS=None -def open1Ba(batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D): +""" +p_train_SoVITS = None + + +def open1Ba( + batch_size, + total_epoch, + exp_name, + text_low_lr_rate, + if_save_latest, + if_save_every_weights, + save_every_epoch, + gpu_numbers1Ba, + pretrained_s2G, + pretrained_s2D, +): global p_train_SoVITS - if(p_train_SoVITS==None): - with open("GPT_SoVITS/configs/s2.json")as f: - data=f.read() - data=json.loads(data) - s2_dir="%s/%s"%(exp_root,exp_name) - os.makedirs("%s/logs_s2"%(s2_dir),exist_ok=True) - data["train"]["batch_size"]=batch_size - data["train"]["epochs"]=total_epoch - data["train"]["text_low_lr_rate"]=text_low_lr_rate - data["train"]["pretrained_s2G"]=pretrained_s2G - data["train"]["pretrained_s2D"]=pretrained_s2D - data["train"]["if_save_latest"]=if_save_latest - data["train"]["if_save_every_weights"]=if_save_every_weights - data["train"]["save_every_epoch"]=save_every_epoch - data["train"]["gpu_numbers"]=gpu_numbers1Ba - data["data"]["exp_dir"]=data["s2_ckpt_dir"]=s2_dir - data["save_weight_dir"]=SoVITS_weight_root - data["name"]=exp_name - tmp_config_path="TEMP/tmp_s2.json" - with open(tmp_config_path,"w")as f:f.write(json.dumps(data)) - - cmd = '"%s" GPT_SoVITS/s2_train.py --config "%s"'%(python_exec,tmp_config_path) - yield "SoVITS训练开始:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True} + if p_train_SoVITS == None: + with open("GPT_SoVITS/configs/s2.json") as f: + data = f.read() + data = json.loads(data) + s2_dir = "%s/%s" % (exp_root, exp_name) + os.makedirs("%s/logs_s2" % (s2_dir), exist_ok=True) + data["train"]["batch_size"] = batch_size + data["train"]["epochs"] = total_epoch + data["train"]["text_low_lr_rate"] = text_low_lr_rate + data["train"]["pretrained_s2G"] = pretrained_s2G + data["train"]["pretrained_s2D"] = pretrained_s2D + data["train"]["if_save_latest"] = if_save_latest + data["train"]["if_save_every_weights"] = if_save_every_weights + data["train"]["save_every_epoch"] = save_every_epoch + data["train"]["gpu_numbers"] = gpu_numbers1Ba + data["data"]["exp_dir"] = data["s2_ckpt_dir"] = s2_dir + data["save_weight_dir"] = SoVITS_weight_root + data["name"] = exp_name + tmp_config_path = "TEMP/tmp_s2.json" + with open(tmp_config_path, "w") as f: + f.write(json.dumps(data)) + + cmd = '"%s" GPT_SoVITS/s2_train.py --config "%s"' % ( + python_exec, + tmp_config_path, + ) + yield "SoVITS训练开始:%s" % cmd, {"__type__": "update", "visible": False}, { + "__type__": "update", + "visible": True, + } print(cmd) p_train_SoVITS = Popen(cmd, shell=True) p_train_SoVITS.wait() - p_train_SoVITS=None - yield "SoVITS训练完成",{"__type__":"update","visible":True},{"__type__":"update","visible":False} + p_train_SoVITS = None + yield "SoVITS训练完成", {"__type__": "update", "visible": True}, { + "__type__": "update", + "visible": False, + } else: - yield "已有正在进行的SoVITS训练任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True} + yield "已有正在进行的SoVITS训练任务,需先终止才能开启下一次任务", { + "__type__": "update", + "visible": False, + }, {"__type__": "update", "visible": True} + def close1Ba(): global p_train_SoVITS - if(p_train_SoVITS!=None): + if p_train_SoVITS != None: kill_process(p_train_SoVITS.pid) - p_train_SoVITS=None - return "已终止SoVITS训练",{"__type__":"update","visible":True},{"__type__":"update","visible":False} + p_train_SoVITS = None + return ( + "已终止SoVITS训练", + {"__type__": "update", "visible": True}, + {"__type__": "update", "visible": False}, + ) -p_train_GPT=None -def open1Bb(batch_size,total_epoch,exp_name,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers,pretrained_s1): + +p_train_GPT = None + + +def open1Bb( + batch_size, + total_epoch, + exp_name, + if_save_latest, + if_save_every_weights, + save_every_epoch, + gpu_numbers, + pretrained_s1, +): global p_train_GPT - if(p_train_GPT==None): - with open("GPT_SoVITS/configs/s1longer.yaml")as f: - data=f.read() - data=yaml.load(data, Loader=yaml.FullLoader) - s1_dir="%s/%s"%(exp_root,exp_name) - os.makedirs("%s/logs_s1"%(s1_dir),exist_ok=True) - data["train"]["batch_size"]=batch_size - data["train"]["epochs"]=total_epoch - data["pretrained_s1"]=pretrained_s1 - data["train"]["save_every_n_epoch"]=save_every_epoch - data["train"]["if_save_every_weights"]=if_save_every_weights - data["train"]["if_save_latest"]=if_save_latest - data["train"]["half_weights_save_dir"]=GPT_weight_root - data["train"]["exp_name"]=exp_name - data["train_semantic_path"]="%s/6-name2semantic.tsv"%s1_dir - data["train_phoneme_path"]="%s/2-name2text.txt"%s1_dir - data["output_dir"]="%s/logs_s1"%s1_dir - - os.environ["_CUDA_VISIBLE_DEVICES"]=gpu_numbers.replace("-",",") - os.environ["hz"]="25hz" - tmp_config_path="TEMP/tmp_s1.yaml" - with open(tmp_config_path, "w") as f:f.write(yaml.dump(data, default_flow_style=False)) + if p_train_GPT == None: + with open("GPT_SoVITS/configs/s1longer.yaml") as f: + data = f.read() + data = yaml.load(data, Loader=yaml.FullLoader) + s1_dir = "%s/%s" % (exp_root, exp_name) + os.makedirs("%s/logs_s1" % (s1_dir), exist_ok=True) + data["train"]["batch_size"] = batch_size + data["train"]["epochs"] = total_epoch + data["pretrained_s1"] = pretrained_s1 + data["train"]["save_every_n_epoch"] = save_every_epoch + data["train"]["if_save_every_weights"] = if_save_every_weights + data["train"]["if_save_latest"] = if_save_latest + data["train"]["half_weights_save_dir"] = GPT_weight_root + data["train"]["exp_name"] = exp_name + data["train_semantic_path"] = "%s/6-name2semantic.tsv" % s1_dir + data["train_phoneme_path"] = "%s/2-name2text.txt" % s1_dir + data["output_dir"] = "%s/logs_s1" % s1_dir + + os.environ["_CUDA_VISIBLE_DEVICES"] = gpu_numbers.replace("-", ",") + os.environ["hz"] = "25hz" + tmp_config_path = "TEMP/tmp_s1.yaml" + with open(tmp_config_path, "w") as f: + f.write(yaml.dump(data, default_flow_style=False)) # cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" --train_semantic_path "%s/6-name2semantic.tsv" --train_phoneme_path "%s/2-name2text.txt" --output_dir "%s/logs_s1"'%(python_exec,tmp_config_path,s1_dir,s1_dir,s1_dir) - cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" '%(python_exec,tmp_config_path) - yield "GPT训练开始:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True} + cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" ' % ( + python_exec, + tmp_config_path, + ) + yield "GPT训练开始:%s" % cmd, {"__type__": "update", "visible": False}, { + "__type__": "update", + "visible": True, + } print(cmd) p_train_GPT = Popen(cmd, shell=True) p_train_GPT.wait() - p_train_GPT=None - yield "GPT训练完成",{"__type__":"update","visible":True},{"__type__":"update","visible":False} + p_train_GPT = None + yield "GPT训练完成", {"__type__": "update", "visible": True}, { + "__type__": "update", + "visible": False, + } else: - yield "已有正在进行的GPT训练任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True} + yield "已有正在进行的GPT训练任务,需先终止才能开启下一次任务", { + "__type__": "update", + "visible": False, + }, {"__type__": "update", "visible": True} + def close1Bb(): global p_train_GPT - if(p_train_GPT!=None): + if p_train_GPT != None: kill_process(p_train_GPT.pid) - p_train_GPT=None - return "已终止GPT训练",{"__type__":"update","visible":True},{"__type__":"update","visible":False} + p_train_GPT = None + return ( + "已终止GPT训练", + {"__type__": "update", "visible": True}, + {"__type__": "update", "visible": False}, + ) + + +ps_slice = [] -ps_slice=[] -def open_slice(inp,opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_parts): + +def open_slice( + inp, + opt_root, + threshold, + min_length, + min_interval, + hop_size, + max_sil_kept, + _max, + alpha, + n_parts, +): global ps_slice - if(os.path.exists(inp)==False): - yield "输入路径不存在",{"__type__":"update","visible":True},{"__type__":"update","visible":False} + if os.path.exists(inp) == False: + yield "输入路径不存在", {"__type__": "update", "visible": True}, { + "__type__": "update", + "visible": False, + } return - if os.path.isfile(inp):n_parts=1 - elif os.path.isdir(inp):pass + if os.path.isfile(inp): + n_parts = 1 + elif os.path.isdir(inp): + pass else: - yield "输入路径存在但既不是文件也不是文件夹",{"__type__":"update","visible":True},{"__type__":"update","visible":False} + yield "输入路径存在但既不是文件也不是文件夹", {"__type__": "update", "visible": True}, { + "__type__": "update", + "visible": False, + } return - if (ps_slice == []): + if ps_slice == []: for i_part in range(n_parts): - cmd = '"%s" tools/slice_audio.py "%s" "%s" %s %s %s %s %s %s %s %s %s''' % (python_exec,inp, opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, i_part, n_parts) + cmd = ( + '"%s" tools/slice_audio.py "%s" "%s" %s %s %s %s %s %s %s %s %s' + "" + % ( + python_exec, + inp, + opt_root, + threshold, + min_length, + min_interval, + hop_size, + max_sil_kept, + _max, + alpha, + i_part, + n_parts, + ) + ) print(cmd) p = Popen(cmd, shell=True) ps_slice.append(p) - yield "切割执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + yield "切割执行中", {"__type__": "update", "visible": False}, { + "__type__": "update", + "visible": True, + } for p in ps_slice: p.wait() - ps_slice=[] - yield "切割结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False} + ps_slice = [] + yield "切割结束", {"__type__": "update", "visible": True}, { + "__type__": "update", + "visible": False, + } else: - yield "已有正在进行的切割任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + yield "已有正在进行的切割任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, { + "__type__": "update", + "visible": True, + } + def close_slice(): global ps_slice - if (ps_slice != []): + if ps_slice != []: for p_slice in ps_slice: try: kill_process(p_slice.pid) except: traceback.print_exc() - ps_slice=[] - return "已终止所有切割进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} + ps_slice = [] + return ( + "已终止所有切割进程", + {"__type__": "update", "visible": True}, + {"__type__": "update", "visible": False}, + ) + -''' +""" inp_text= os.environ.get("inp_text") inp_wav_dir= os.environ.get("inp_wav_dir") exp_name= os.environ.get("exp_name") @@ -285,53 +494,71 @@ all_parts= os.environ.get("all_parts") os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES") opt_dir= os.environ.get("opt_dir")#"/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name bert_pretrained_dir= os.environ.get("bert_pretrained_dir")#"/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large" -''' -ps1a=[] -def open1a(inp_text,inp_wav_dir,exp_name,gpu_numbers,bert_pretrained_dir): +""" +ps1a = [] + + +def open1a(inp_text, inp_wav_dir, exp_name, gpu_numbers, bert_pretrained_dir): global ps1a - if (ps1a == []): - config={ - "inp_text":inp_text, - "inp_wav_dir":inp_wav_dir, - "exp_name":exp_name, - "opt_dir":"%s/%s"%(exp_root,exp_name), - "bert_pretrained_dir":bert_pretrained_dir, + if ps1a == []: + config = { + "inp_text": inp_text, + "inp_wav_dir": inp_wav_dir, + "exp_name": exp_name, + "opt_dir": "%s/%s" % (exp_root, exp_name), + "bert_pretrained_dir": bert_pretrained_dir, } - gpu_names=gpu_numbers.split("-") - all_parts=len(gpu_names) + gpu_names = gpu_numbers.split("-") + all_parts = len(gpu_names) for i_part in range(all_parts): config.update( { "i_part": str(i_part), "all_parts": str(all_parts), "_CUDA_VISIBLE_DEVICES": gpu_names[i_part], - "is_half": str(is_half) + "is_half": str(is_half), } ) os.environ.update(config) - cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec + cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py' % python_exec print(cmd) p = Popen(cmd, shell=True) ps1a.append(p) - yield "文本进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + yield "文本进程执行中", {"__type__": "update", "visible": False}, { + "__type__": "update", + "visible": True, + } for p in ps1a: p.wait() - ps1a=[] - yield "文本进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False} + ps1a = [] + yield "文本进程结束", {"__type__": "update", "visible": True}, { + "__type__": "update", + "visible": False, + } else: - yield "已有正在进行的文本任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + yield "已有正在进行的文本任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, { + "__type__": "update", + "visible": True, + } + def close1a(): global ps1a - if (ps1a != []): + if ps1a != []: for p1a in ps1a: try: kill_process(p1a.pid) except: traceback.print_exc() - ps1a=[] - return "已终止所有1a进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} -''' + ps1a = [] + return ( + "已终止所有1a进程", + {"__type__": "update", "visible": True}, + {"__type__": "update", "visible": False}, + ) + + +""" inp_text= os.environ.get("inp_text") inp_wav_dir= os.environ.get("inp_wav_dir") exp_name= os.environ.get("exp_name") @@ -340,21 +567,23 @@ all_parts= os.environ.get("all_parts") os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES") opt_dir= os.environ.get("opt_dir") cnhubert.cnhubert_base_path= os.environ.get("cnhubert_base_dir") -''' -ps1b=[] -def open1b(inp_text,inp_wav_dir,exp_name,gpu_numbers,ssl_pretrained_dir): +""" +ps1b = [] + + +def open1b(inp_text, inp_wav_dir, exp_name, gpu_numbers, ssl_pretrained_dir): global ps1b - if (ps1b == []): - config={ - "inp_text":inp_text, - "inp_wav_dir":inp_wav_dir, - "exp_name":exp_name, - "opt_dir":"%s/%s"%(exp_root,exp_name), - "cnhubert_base_dir":ssl_pretrained_dir, - "is_half": str(is_half) + if ps1b == []: + config = { + "inp_text": inp_text, + "inp_wav_dir": inp_wav_dir, + "exp_name": exp_name, + "opt_dir": "%s/%s" % (exp_root, exp_name), + "cnhubert_base_dir": ssl_pretrained_dir, + "is_half": str(is_half), } - gpu_names=gpu_numbers.split("-") - all_parts=len(gpu_names) + gpu_names = gpu_numbers.split("-") + all_parts = len(gpu_names) for i_part in range(all_parts): config.update( { @@ -364,29 +593,47 @@ def open1b(inp_text,inp_wav_dir,exp_name,gpu_numbers,ssl_pretrained_dir): } ) os.environ.update(config) - cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec + cmd = ( + '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py' % python_exec + ) print(cmd) p = Popen(cmd, shell=True) ps1b.append(p) - yield "SSL提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + yield "SSL提取进程执行中", {"__type__": "update", "visible": False}, { + "__type__": "update", + "visible": True, + } for p in ps1b: p.wait() - ps1b=[] - yield "SSL提取进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False} + ps1b = [] + yield "SSL提取进程结束", {"__type__": "update", "visible": True}, { + "__type__": "update", + "visible": False, + } else: - yield "已有正在进行的SSL提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + yield "已有正在进行的SSL提取任务,需先终止才能开启下一次任务", { + "__type__": "update", + "visible": False, + }, {"__type__": "update", "visible": True} + def close1b(): global ps1b - if (ps1b != []): + if ps1b != []: for p1b in ps1b: try: kill_process(p1b.pid) except: traceback.print_exc() - ps1b=[] - return "已终止所有1b进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} -''' + ps1b = [] + return ( + "已终止所有1b进程", + {"__type__": "update", "visible": True}, + {"__type__": "update", "visible": False}, + ) + + +""" inp_text= os.environ.get("inp_text") exp_name= os.environ.get("exp_name") i_part= os.environ.get("i_part") @@ -394,21 +641,23 @@ all_parts= os.environ.get("all_parts") os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES") opt_dir= os.environ.get("opt_dir") pretrained_s2G= os.environ.get("pretrained_s2G") -''' -ps1c=[] -def open1c(inp_text,exp_name,gpu_numbers,pretrained_s2G_path): +""" +ps1c = [] + + +def open1c(inp_text, exp_name, gpu_numbers, pretrained_s2G_path): global ps1c - if (ps1c == []): - config={ - "inp_text":inp_text, - "exp_name":exp_name, - "opt_dir":"%s/%s"%(exp_root,exp_name), - "pretrained_s2G":pretrained_s2G_path, - "s2config_path":"GPT_SoVITS/configs/s2.json", - "is_half": str(is_half) + if ps1c == []: + config = { + "inp_text": inp_text, + "exp_name": exp_name, + "opt_dir": "%s/%s" % (exp_root, exp_name), + "pretrained_s2G": pretrained_s2G_path, + "s2config_path": "GPT_SoVITS/configs/s2.json", + "is_half": str(is_half), } - gpu_names=gpu_numbers.split("-") - all_parts=len(gpu_names) + gpu_names = gpu_numbers.split("-") + all_parts = len(gpu_names) for i_part in range(all_parts): config.update( { @@ -418,48 +667,76 @@ def open1c(inp_text,exp_name,gpu_numbers,pretrained_s2G_path): } ) os.environ.update(config) - cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec + cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py' % python_exec print(cmd) p = Popen(cmd, shell=True) ps1c.append(p) - yield "语义token提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + yield "语义token提取进程执行中", {"__type__": "update", "visible": False}, { + "__type__": "update", + "visible": True, + } for p in ps1c: p.wait() - ps1c=[] - yield "语义token提取进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False} + ps1c = [] + yield "语义token提取进程结束", {"__type__": "update", "visible": True}, { + "__type__": "update", + "visible": False, + } else: - yield "已有正在进行的语义token提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + yield "已有正在进行的语义token提取任务,需先终止才能开启下一次任务", { + "__type__": "update", + "visible": False, + }, {"__type__": "update", "visible": True} + def close1c(): global ps1c - if (ps1c != []): + if ps1c != []: for p1c in ps1c: try: kill_process(p1c.pid) except: traceback.print_exc() - ps1c=[] - return "已终止所有语义token进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} + ps1c = [] + return ( + "已终止所有语义token进程", + {"__type__": "update", "visible": True}, + {"__type__": "update", "visible": False}, + ) + + #####inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G -ps1abc=[] -def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,ssl_pretrained_dir,pretrained_s2G_path): +ps1abc = [] + + +def open1abc( + inp_text, + inp_wav_dir, + exp_name, + gpu_numbers1a, + gpu_numbers1Ba, + gpu_numbers1c, + bert_pretrained_dir, + ssl_pretrained_dir, + pretrained_s2G_path, +): global ps1abc - if (ps1abc == []): - opt_dir="%s/%s"%(exp_root,exp_name) + if ps1abc == []: + opt_dir = "%s/%s" % (exp_root, exp_name) try: #############################1a - path_text="%s/2-name2text.txt" % opt_dir - if(os.path.exists(path_text)==False): - config={ - "inp_text":inp_text, - "inp_wav_dir":inp_wav_dir, - "exp_name":exp_name, - "opt_dir":opt_dir, - "bert_pretrained_dir":bert_pretrained_dir, - "is_half": str(is_half) + path_text = "%s/2-name2text.txt" % opt_dir + if os.path.exists(path_text) == False: + config = { + "inp_text": inp_text, + "inp_wav_dir": inp_wav_dir, + "exp_name": exp_name, + "opt_dir": opt_dir, + "bert_pretrained_dir": bert_pretrained_dir, + "is_half": str(is_half), } - gpu_names=gpu_numbers1a.split("-") - all_parts=len(gpu_names) + gpu_names = gpu_numbers1a.split("-") + all_parts = len(gpu_names) for i_part in range(all_parts): config.update( { @@ -469,34 +746,43 @@ def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numb } ) os.environ.update(config) - cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec + cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py' % python_exec print(cmd) p = Popen(cmd, shell=True) ps1abc.append(p) - yield "进度:1a-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} - for p in ps1abc:p.wait() + yield "进度:1a-ing", {"__type__": "update", "visible": False}, { + "__type__": "update", + "visible": True, + } + for p in ps1abc: + p.wait() opt = [] - for i_part in range(all_parts):#txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part) + for i_part in range( + all_parts + ): # txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part) txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part) - with open(txt_path, "r",encoding="utf8") as f: + with open(txt_path, "r", encoding="utf8") as f: opt += f.read().strip("\n").split("\n") os.remove(txt_path) - with open(path_text, "w",encoding="utf8") as f: + with open(path_text, "w", encoding="utf8") as f: f.write("\n".join(opt) + "\n") - yield "进度:1a-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} - ps1abc=[] + yield "进度:1a-done", {"__type__": "update", "visible": False}, { + "__type__": "update", + "visible": True, + } + ps1abc = [] #############################1b - config={ - "inp_text":inp_text, - "inp_wav_dir":inp_wav_dir, - "exp_name":exp_name, - "opt_dir":opt_dir, - "cnhubert_base_dir":ssl_pretrained_dir, + config = { + "inp_text": inp_text, + "inp_wav_dir": inp_wav_dir, + "exp_name": exp_name, + "opt_dir": opt_dir, + "cnhubert_base_dir": ssl_pretrained_dir, } - gpu_names=gpu_numbers1Ba.split("-") - all_parts=len(gpu_names) + gpu_names = gpu_numbers1Ba.split("-") + all_parts = len(gpu_names) for i_part in range(all_parts): config.update( { @@ -506,26 +792,36 @@ def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numb } ) os.environ.update(config) - cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec + cmd = ( + '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py' + % python_exec + ) print(cmd) p = Popen(cmd, shell=True) ps1abc.append(p) - yield "进度:1a-done, 1b-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} - for p in ps1abc:p.wait() - yield "进度:1a1b-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} - ps1abc=[] + yield "进度:1a-done, 1b-ing", {"__type__": "update", "visible": False}, { + "__type__": "update", + "visible": True, + } + for p in ps1abc: + p.wait() + yield "进度:1a1b-done", {"__type__": "update", "visible": False}, { + "__type__": "update", + "visible": True, + } + ps1abc = [] #############################1c path_semantic = "%s/6-name2semantic.tsv" % opt_dir - if(os.path.exists(path_semantic)==False): - config={ - "inp_text":inp_text, - "exp_name":exp_name, - "opt_dir":opt_dir, - "pretrained_s2G":pretrained_s2G_path, - "s2config_path":"GPT_SoVITS/configs/s2.json", + if os.path.exists(path_semantic) == False: + config = { + "inp_text": inp_text, + "exp_name": exp_name, + "opt_dir": opt_dir, + "pretrained_s2G": pretrained_s2G_path, + "s2config_path": "GPT_SoVITS/configs/s2.json", } - gpu_names=gpu_numbers1c.split("-") - all_parts=len(gpu_names) + gpu_names = gpu_numbers1c.split("-") + all_parts = len(gpu_names) for i_part in range(all_parts): config.update( { @@ -535,74 +831,137 @@ def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numb } ) os.environ.update(config) - cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec + cmd = ( + '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py' + % python_exec + ) print(cmd) p = Popen(cmd, shell=True) ps1abc.append(p) - yield "进度:1a1b-done, 1cing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} - for p in ps1abc:p.wait() + yield "进度:1a1b-done, 1cing", {"__type__": "update", "visible": False}, { + "__type__": "update", + "visible": True, + } + for p in ps1abc: + p.wait() opt = ["item_name semantic_audio"] for i_part in range(all_parts): semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part) - with open(semantic_path, "r",encoding="utf8") as f: + with open(semantic_path, "r", encoding="utf8") as f: opt += f.read().strip("\n").split("\n") os.remove(semantic_path) - with open(path_semantic, "w",encoding="utf8") as f: + with open(path_semantic, "w", encoding="utf8") as f: f.write("\n".join(opt) + "\n") - yield "进度:all-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + yield "进度:all-done", {"__type__": "update", "visible": False}, { + "__type__": "update", + "visible": True, + } ps1abc = [] - yield "一键三连进程结束", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} + yield "一键三连进程结束", {"__type__": "update", "visible": True}, { + "__type__": "update", + "visible": False, + } except: traceback.print_exc() close1abc() - yield "一键三连中途报错", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} + yield "一键三连中途报错", {"__type__": "update", "visible": True}, { + "__type__": "update", + "visible": False, + } else: - yield "已有正在进行的一键三连任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + yield "已有正在进行的一键三连任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, { + "__type__": "update", + "visible": True, + } + def close1abc(): global ps1abc - if (ps1abc != []): + if ps1abc != []: for p1abc in ps1abc: try: kill_process(p1abc.pid) except: traceback.print_exc() - ps1abc=[] - return "已终止所有一键三连进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} + ps1abc = [] + return ( + "已终止所有一键三连进程", + {"__type__": "update", "visible": True}, + {"__type__": "update", "visible": False}, + ) + with gr.Blocks(title="GPT-SoVITS WebUI") as app: gr.Markdown( - value= - "本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE." + value="本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE." ) with gr.Tabs(): - with gr.TabItem("0-前置数据集获取工具"):#提前随机切片防止uvr5爆内存->uvr5->slicer->asr->打标 + with gr.TabItem("0-前置数据集获取工具"): # 提前随机切片防止uvr5爆内存->uvr5->slicer->asr->打标 gr.Markdown(value="0a-UVR5人声伴奏分离&去混响去延迟工具") with gr.Row(): - if_uvr5 = gr.Checkbox(label="是否开启UVR5-WebUI",show_label=True) + if_uvr5 = gr.Checkbox(label="是否开启UVR5-WebUI", show_label=True) uvr5_info = gr.Textbox(label="UVR5进程输出信息") gr.Markdown(value="0b-语音切分工具") with gr.Row(): with gr.Row(): - slice_inp_path=gr.Textbox(label="音频自动切分输入路径,可文件可文件夹",value="") - slice_opt_root=gr.Textbox(label="切分后的子音频的输出根目录",value="output/slicer_opt") - threshold=gr.Textbox(label="threshold:音量小于这个值视作静音的备选切割点",value="-34") - min_length=gr.Textbox(label="min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值",value="4000") - min_interval=gr.Textbox(label="min_interval:最短切割间隔",value="300") - hop_size=gr.Textbox(label="hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)",value="10") - max_sil_kept=gr.Textbox(label="max_sil_kept:切完后静音最多留多长",value="500") + slice_inp_path = gr.Textbox(label="音频自动切分输入路径,可文件可文件夹", value="") + slice_opt_root = gr.Textbox( + label="切分后的子音频的输出根目录", value="output/slicer_opt" + ) + threshold = gr.Textbox( + label="threshold:音量小于这个值视作静音的备选切割点", value="-34" + ) + min_length = gr.Textbox( + label="min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值", value="4000" + ) + min_interval = gr.Textbox(label="min_interval:最短切割间隔", value="300") + hop_size = gr.Textbox( + label="hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)", value="10" + ) + max_sil_kept = gr.Textbox( + label="max_sil_kept:切完后静音最多留多长", value="500" + ) with gr.Row(): - open_slicer_button=gr.Button("开启语音切割", variant="primary",visible=True) - close_slicer_button=gr.Button("终止语音切割", variant="primary",visible=False) - _max=gr.Slider(minimum=0,maximum=1,step=0.05,label="max:归一化后最大值多少",value=0.9,interactive=True) - alpha=gr.Slider(minimum=0,maximum=1,step=0.05,label="alpha_mix:混多少比例归一化后音频进来",value=0.25,interactive=True) - n_process=gr.Slider(minimum=1,maximum=n_cpu,step=1,label="切割使用的进程数",value=4,interactive=True) + open_slicer_button = gr.Button( + "开启语音切割", variant="primary", visible=True + ) + close_slicer_button = gr.Button( + "终止语音切割", variant="primary", visible=False + ) + _max = gr.Slider( + minimum=0, + maximum=1, + step=0.05, + label="max:归一化后最大值多少", + value=0.9, + interactive=True, + ) + alpha = gr.Slider( + minimum=0, + maximum=1, + step=0.05, + label="alpha_mix:混多少比例归一化后音频进来", + value=0.25, + interactive=True, + ) + n_process = gr.Slider( + minimum=1, + maximum=n_cpu, + step=1, + label="切割使用的进程数", + value=4, + interactive=True, + ) slicer_info = gr.Textbox(label="语音切割进程输出信息") gr.Markdown(value="0c-中文批量离线ASR工具") with gr.Row(): - open_asr_button = gr.Button("开启离线批量ASR", variant="primary",visible=True) - close_asr_button = gr.Button("终止ASR进程", variant="primary",visible=False) + open_asr_button = gr.Button( + "开启离线批量ASR", variant="primary", visible=True + ) + close_asr_button = gr.Button( + "终止ASR进程", variant="primary", visible=False + ) asr_inp_dir = gr.Textbox( label="批量ASR(中文only)输入文件夹路径", value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx", @@ -611,115 +970,365 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app: asr_info = gr.Textbox(label="ASR进程输出信息") gr.Markdown(value="0d-语音文本校对标注工具") with gr.Row(): - if_label = gr.Checkbox(label="是否开启打标WebUI",show_label=True) + if_label = gr.Checkbox(label="是否开启打标WebUI", show_label=True) path_list = gr.Textbox( label="打标数据标注文件路径", value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx.list", interactive=True, ) label_info = gr.Textbox(label="打标工具进程输出信息") - if_label.change(change_label, [if_label,path_list], [label_info]) + if_label.change(change_label, [if_label, path_list], [label_info]) if_uvr5.change(change_uvr5, [if_uvr5], [uvr5_info]) - open_asr_button.click(open_asr, [asr_inp_dir], [asr_info,open_asr_button,close_asr_button]) - close_asr_button.click(close_asr, [], [asr_info,open_asr_button,close_asr_button]) - open_slicer_button.click(open_slice, [slice_inp_path,slice_opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_process], [slicer_info,open_slicer_button,close_slicer_button]) - close_slicer_button.click(close_slice, [], [slicer_info,open_slicer_button,close_slicer_button]) + open_asr_button.click( + open_asr, [asr_inp_dir], [asr_info, open_asr_button, close_asr_button] + ) + close_asr_button.click( + close_asr, [], [asr_info, open_asr_button, close_asr_button] + ) + open_slicer_button.click( + open_slice, + [ + slice_inp_path, + slice_opt_root, + threshold, + min_length, + min_interval, + hop_size, + max_sil_kept, + _max, + alpha, + n_process, + ], + [slicer_info, open_slicer_button, close_slicer_button], + ) + close_slicer_button.click( + close_slice, [], [slicer_info, open_slicer_button, close_slicer_button] + ) with gr.TabItem("1-GPT-SoVITS-TTS"): with gr.Row(): exp_name = gr.Textbox(label="*实验/模型名", value="xxx", interactive=True) - gpu_info = gr.Textbox(label="显卡信息", value=gpu_info, visible=True, interactive=False) - pretrained_s2G = gr.Textbox(label="预训练的SoVITS-G模型路径", value="GPT_SoVITS/pretrained_models/s2G488k.pth", interactive=True) - pretrained_s2D = gr.Textbox(label="预训练的SoVITS-D模型路径", value="GPT_SoVITS/pretrained_models/s2D488k.pth", interactive=True) - pretrained_s1 = gr.Textbox(label="预训练的GPT模型路径", value="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", interactive=True) + gpu_info = gr.Textbox( + label="显卡信息", value=gpu_info, visible=True, interactive=False + ) + pretrained_s2G = gr.Textbox( + label="预训练的SoVITS-G模型路径", + value="GPT_SoVITS/pretrained_models/s2G488k.pth", + interactive=True, + ) + pretrained_s2D = gr.Textbox( + label="预训练的SoVITS-D模型路径", + value="GPT_SoVITS/pretrained_models/s2D488k.pth", + interactive=True, + ) + pretrained_s1 = gr.Textbox( + label="预训练的GPT模型路径", + value="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", + interactive=True, + ) with gr.TabItem("1A-训练集格式化工具"): gr.Markdown(value="输出logs/实验名目录下应有23456开头的文件和文件夹") with gr.Row(): - inp_text = gr.Textbox(label="*文本标注文件",value=r"D:\RVC1006\GPT-SoVITS\raw\xxx.list",interactive=True) - inp_wav_dir = gr.Textbox(label="*训练集音频文件目录",value=r"D:\RVC1006\GPT-SoVITS\raw\xxx",interactive=True) + inp_text = gr.Textbox( + label="*文本标注文件", + value=r"D:\RVC1006\GPT-SoVITS\raw\xxx.list", + interactive=True, + ) + inp_wav_dir = gr.Textbox( + label="*训练集音频文件目录", + value=r"D:\RVC1006\GPT-SoVITS\raw\xxx", + interactive=True, + ) gr.Markdown(value="1Aa-文本内容") with gr.Row(): - gpu_numbers1a = gr.Textbox(label="GPU卡号以-分割,每个卡号一个进程",value="%s-%s"%(gpus,gpus),interactive=True) - bert_pretrained_dir = gr.Textbox(label="预训练的中文BERT模型路径",value="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",interactive=False) - button1a_open = gr.Button("开启文本获取", variant="primary",visible=True) - button1a_close = gr.Button("终止文本获取进程", variant="primary",visible=False) - info1a=gr.Textbox(label="文本进程输出信息") + gpu_numbers1a = gr.Textbox( + label="GPU卡号以-分割,每个卡号一个进程", + value="%s-%s" % (gpus, gpus), + interactive=True, + ) + bert_pretrained_dir = gr.Textbox( + label="预训练的中文BERT模型路径", + value="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", + interactive=False, + ) + button1a_open = gr.Button("开启文本获取", variant="primary", visible=True) + button1a_close = gr.Button( + "终止文本获取进程", variant="primary", visible=False + ) + info1a = gr.Textbox(label="文本进程输出信息") gr.Markdown(value="1Ab-SSL自监督特征提取") with gr.Row(): - gpu_numbers1Ba = gr.Textbox(label="GPU卡号以-分割,每个卡号一个进程",value="%s-%s"%(gpus,gpus),interactive=True) - cnhubert_base_dir = gr.Textbox(label="预训练的SSL模型路径",value="GPT_SoVITS/pretrained_models/chinese-hubert-base",interactive=False) - button1b_open = gr.Button("开启SSL提取", variant="primary",visible=True) - button1b_close = gr.Button("终止SSL提取进程", variant="primary",visible=False) - info1b=gr.Textbox(label="SSL进程输出信息") + gpu_numbers1Ba = gr.Textbox( + label="GPU卡号以-分割,每个卡号一个进程", + value="%s-%s" % (gpus, gpus), + interactive=True, + ) + cnhubert_base_dir = gr.Textbox( + label="预训练的SSL模型路径", + value="GPT_SoVITS/pretrained_models/chinese-hubert-base", + interactive=False, + ) + button1b_open = gr.Button( + "开启SSL提取", variant="primary", visible=True + ) + button1b_close = gr.Button( + "终止SSL提取进程", variant="primary", visible=False + ) + info1b = gr.Textbox(label="SSL进程输出信息") gr.Markdown(value="1Ac-语义token提取") with gr.Row(): - gpu_numbers1c = gr.Textbox(label="GPU卡号以-分割,每个卡号一个进程",value="%s-%s"%(gpus,gpus),interactive=True) - button1c_open = gr.Button("开启语义token提取", variant="primary",visible=True) - button1c_close = gr.Button("终止语义token提取进程", variant="primary",visible=False) - info1c=gr.Textbox(label="语义token提取进程输出信息") + gpu_numbers1c = gr.Textbox( + label="GPU卡号以-分割,每个卡号一个进程", + value="%s-%s" % (gpus, gpus), + interactive=True, + ) + button1c_open = gr.Button( + "开启语义token提取", variant="primary", visible=True + ) + button1c_close = gr.Button( + "终止语义token提取进程", variant="primary", visible=False + ) + info1c = gr.Textbox(label="语义token提取进程输出信息") gr.Markdown(value="1Aabc-训练集格式化一键三连") with gr.Row(): - button1abc_open = gr.Button("开启一键三连", variant="primary",visible=True) - button1abc_close = gr.Button("终止一键三连", variant="primary",visible=False) - info1abc=gr.Textbox(label="一键三连进程输出信息") - button1a_open.click(open1a, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,bert_pretrained_dir], [info1a,button1a_open,button1a_close]) - button1a_close.click(close1a, [], [info1a,button1a_open,button1a_close]) - button1b_open.click(open1b, [inp_text,inp_wav_dir,exp_name,gpu_numbers1Ba,cnhubert_base_dir], [info1b,button1b_open,button1b_close]) - button1b_close.click(close1b, [], [info1b,button1b_open,button1b_close]) - button1c_open.click(open1c, [inp_text,exp_name,gpu_numbers1c,pretrained_s2G], [info1c,button1c_open,button1c_close]) - button1c_close.click(close1c, [], [info1c,button1c_open,button1c_close]) - button1abc_open.click(open1abc, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G], [info1abc,button1abc_open,button1abc_close]) - button1abc_close.click(close1abc, [], [info1abc,button1abc_open,button1abc_close]) + button1abc_open = gr.Button( + "开启一键三连", variant="primary", visible=True + ) + button1abc_close = gr.Button( + "终止一键三连", variant="primary", visible=False + ) + info1abc = gr.Textbox(label="一键三连进程输出信息") + button1a_open.click( + open1a, + [inp_text, inp_wav_dir, exp_name, gpu_numbers1a, bert_pretrained_dir], + [info1a, button1a_open, button1a_close], + ) + button1a_close.click(close1a, [], [info1a, button1a_open, button1a_close]) + button1b_open.click( + open1b, + [inp_text, inp_wav_dir, exp_name, gpu_numbers1Ba, cnhubert_base_dir], + [info1b, button1b_open, button1b_close], + ) + button1b_close.click(close1b, [], [info1b, button1b_open, button1b_close]) + button1c_open.click( + open1c, + [inp_text, exp_name, gpu_numbers1c, pretrained_s2G], + [info1c, button1c_open, button1c_close], + ) + button1c_close.click(close1c, [], [info1c, button1c_open, button1c_close]) + button1abc_open.click( + open1abc, + [ + inp_text, + inp_wav_dir, + exp_name, + gpu_numbers1a, + gpu_numbers1Ba, + gpu_numbers1c, + bert_pretrained_dir, + cnhubert_base_dir, + pretrained_s2G, + ], + [info1abc, button1abc_open, button1abc_close], + ) + button1abc_close.click( + close1abc, [], [info1abc, button1abc_open, button1abc_close] + ) with gr.TabItem("1B-微调训练"): gr.Markdown(value="1Ba-SoVITS训练。用于分享的模型文件输出在SoVITS_weights下。") with gr.Row(): - batch_size = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True) - total_epoch = gr.Slider(minimum=1,maximum=20,step=1,label=i18n("总训练轮数total_epoch,不建议太高"),value=8,interactive=True) - text_low_lr_rate = gr.Slider(minimum=0.2,maximum=0.6,step=0.05,label="文本模块学习率权重",value=0.4,interactive=True) - save_every_epoch = gr.Slider(minimum=1,maximum=50,step=1,label=i18n("保存频率save_every_epoch"),value=4,interactive=True) - if_save_latest = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True) - if_save_every_weights = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True) - gpu_numbers1Ba = gr.Textbox(label="GPU卡号以-分割,每个卡号一个进程", value="%s" % (gpus), interactive=True) + batch_size = gr.Slider( + minimum=1, + maximum=40, + step=1, + label=i18n("每张显卡的batch_size"), + value=default_batch_size, + interactive=True, + ) + total_epoch = gr.Slider( + minimum=1, + maximum=20, + step=1, + label=i18n("总训练轮数total_epoch,不建议太高"), + value=8, + interactive=True, + ) + text_low_lr_rate = gr.Slider( + minimum=0.2, + maximum=0.6, + step=0.05, + label="文本模块学习率权重", + value=0.4, + interactive=True, + ) + save_every_epoch = gr.Slider( + minimum=1, + maximum=50, + step=1, + label=i18n("保存频率save_every_epoch"), + value=4, + interactive=True, + ) + if_save_latest = gr.Checkbox( + label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), + value=True, + interactive=True, + show_label=True, + ) + if_save_every_weights = gr.Checkbox( + label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), + value=True, + interactive=True, + show_label=True, + ) + gpu_numbers1Ba = gr.Textbox( + label="GPU卡号以-分割,每个卡号一个进程", + value="%s" % (gpus), + interactive=True, + ) with gr.Row(): - button1Ba_open = gr.Button("开启SoVITS训练", variant="primary",visible=True) - button1Ba_close = gr.Button("终止SoVITS训练", variant="primary",visible=False) - info1Ba=gr.Textbox(label="SoVITS训练进程输出信息") + button1Ba_open = gr.Button( + "开启SoVITS训练", variant="primary", visible=True + ) + button1Ba_close = gr.Button( + "终止SoVITS训练", variant="primary", visible=False + ) + info1Ba = gr.Textbox(label="SoVITS训练进程输出信息") gr.Markdown(value="1Bb-GPT训练。用于分享的模型文件输出在GPT_weights下。") with gr.Row(): - batch_size1Bb = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True) - total_epoch1Bb = gr.Slider(minimum=2,maximum=100,step=1,label=i18n("总训练轮数total_epoch"),value=15,interactive=True) - if_save_latest1Bb = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True) - if_save_every_weights1Bb = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True) - save_every_epoch1Bb = gr.Slider(minimum=1,maximum=50,step=1,label=i18n("保存频率save_every_epoch"),value=5,interactive=True) - gpu_numbers1Bb = gr.Textbox(label="GPU卡号以-分割,每个卡号一个进程", value="%s" % (gpus), interactive=True) + batch_size1Bb = gr.Slider( + minimum=1, + maximum=40, + step=1, + label=i18n("每张显卡的batch_size"), + value=default_batch_size, + interactive=True, + ) + total_epoch1Bb = gr.Slider( + minimum=2, + maximum=100, + step=1, + label=i18n("总训练轮数total_epoch"), + value=15, + interactive=True, + ) + if_save_latest1Bb = gr.Checkbox( + label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), + value=True, + interactive=True, + show_label=True, + ) + if_save_every_weights1Bb = gr.Checkbox( + label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), + value=True, + interactive=True, + show_label=True, + ) + save_every_epoch1Bb = gr.Slider( + minimum=1, + maximum=50, + step=1, + label=i18n("保存频率save_every_epoch"), + value=5, + interactive=True, + ) + gpu_numbers1Bb = gr.Textbox( + label="GPU卡号以-分割,每个卡号一个进程", + value="%s" % (gpus), + interactive=True, + ) with gr.Row(): - button1Bb_open = gr.Button("开启GPT训练", variant="primary",visible=True) - button1Bb_close = gr.Button("终止GPT训练", variant="primary",visible=False) - info1Bb=gr.Textbox(label="GPT训练进程输出信息") - button1Ba_open.click(open1Ba, [batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D], [info1Ba,button1Ba_open,button1Ba_close]) - button1Ba_close.click(close1Ba, [], [info1Ba,button1Ba_open,button1Ba_close]) - button1Bb_open.click(open1Bb, [batch_size1Bb,total_epoch1Bb,exp_name,if_save_latest1Bb,if_save_every_weights1Bb,save_every_epoch1Bb,gpu_numbers1Bb,pretrained_s1], [info1Bb,button1Bb_open,button1Bb_close]) - button1Bb_close.click(close1Bb, [], [info1Bb,button1Bb_open,button1Bb_close]) + button1Bb_open = gr.Button( + "开启GPT训练", variant="primary", visible=True + ) + button1Bb_close = gr.Button( + "终止GPT训练", variant="primary", visible=False + ) + info1Bb = gr.Textbox(label="GPT训练进程输出信息") + button1Ba_open.click( + open1Ba, + [ + batch_size, + total_epoch, + exp_name, + text_low_lr_rate, + if_save_latest, + if_save_every_weights, + save_every_epoch, + gpu_numbers1Ba, + pretrained_s2G, + pretrained_s2D, + ], + [info1Ba, button1Ba_open, button1Ba_close], + ) + button1Ba_close.click( + close1Ba, [], [info1Ba, button1Ba_open, button1Ba_close] + ) + button1Bb_open.click( + open1Bb, + [ + batch_size1Bb, + total_epoch1Bb, + exp_name, + if_save_latest1Bb, + if_save_every_weights1Bb, + save_every_epoch1Bb, + gpu_numbers1Bb, + pretrained_s1, + ], + [info1Bb, button1Bb_open, button1Bb_close], + ) + button1Bb_close.click( + close1Bb, [], [info1Bb, button1Bb_open, button1Bb_close] + ) with gr.TabItem("1C-推理"): - gr.Markdown(value="选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的一个是底模,体验5秒Zero Shot TTS用。") + gr.Markdown( + value="选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的一个是底模,体验5秒Zero Shot TTS用。" + ) with gr.Row(): - GPT_dropdown = gr.Dropdown(label="*GPT模型列表", choices=sorted(GPT_names),value=pretrained_gpt_name) - SoVITS_dropdown = gr.Dropdown(label="*SoVITS模型列表", choices=sorted(SoVITS_names),value=pretrained_sovits_name) - gpu_number_1C=gr.Textbox(label="GPU卡号,只能填1个整数", value=gpus, interactive=True) + GPT_dropdown = gr.Dropdown( + label="*GPT模型列表", + choices=sorted(GPT_names), + value=pretrained_gpt_name, + ) + SoVITS_dropdown = gr.Dropdown( + label="*SoVITS模型列表", + choices=sorted(SoVITS_names), + value=pretrained_sovits_name, + ) + gpu_number_1C = gr.Textbox( + label="GPU卡号,只能填1个整数", value=gpus, interactive=True + ) refresh_button = gr.Button("刷新模型路径", variant="primary") - refresh_button.click(fn=change_choices,inputs=[],outputs=[SoVITS_dropdown,GPT_dropdown]) + refresh_button.click( + fn=change_choices, + inputs=[], + outputs=[SoVITS_dropdown, GPT_dropdown], + ) with gr.Row(): if_tts = gr.Checkbox(label="是否开启TTS推理WebUI", show_label=True) tts_info = gr.Textbox(label="TTS推理WebUI进程输出信息") - if_tts.change(change_tts_inference, [if_tts,bert_pretrained_dir,cnhubert_base_dir,gpu_number_1C,GPT_dropdown,SoVITS_dropdown], [tts_info]) - with gr.TabItem("2-GPT-SoVITS-变声"):gr.Markdown(value="施工中,请静候佳音") + if_tts.change( + change_tts_inference, + [ + if_tts, + bert_pretrained_dir, + cnhubert_base_dir, + gpu_number_1C, + GPT_dropdown, + SoVITS_dropdown, + ], + [tts_info], + ) + with gr.TabItem("2-GPT-SoVITS-变声"): + gr.Markdown(value="施工中,请静候佳音") - ''' + """ os.environ["gpt_path"]=gpt_path os.environ["sovits_path"]=sovits_path#bert_pretrained_dir os.environ["cnhubert_base_path"]=cnhubert_base_path#cnhubert_base_dir os.environ["bert_path"]=bert_path os.environ["_CUDA_VISIBLE_DEVICES"]=gpu_number - ''' + """ app.queue(concurrency_count=511, max_size=1022).launch( server_name="0.0.0.0",