|
|
@ -82,7 +82,7 @@ def name2go(wav_name,wav_path):
|
|
|
|
tensor_wav16 = tensor_wav16.to(device)
|
|
|
|
tensor_wav16 = tensor_wav16.to(device)
|
|
|
|
ssl=model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1,2).cpu()#torch.Size([1, 768, 215])
|
|
|
|
ssl=model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1,2).cpu()#torch.Size([1, 768, 215])
|
|
|
|
if np.isnan(ssl.detach().numpy()).sum()!= 0:
|
|
|
|
if np.isnan(ssl.detach().numpy()).sum()!= 0:
|
|
|
|
nan_fails.append(wav_name)
|
|
|
|
nan_fails.append((wav_name,wav_path))
|
|
|
|
print("nan filtered:%s"%wav_name)
|
|
|
|
print("nan filtered:%s"%wav_name)
|
|
|
|
return
|
|
|
|
return
|
|
|
|
wavfile.write(
|
|
|
|
wavfile.write(
|
|
|
@ -90,7 +90,7 @@ def name2go(wav_name,wav_path):
|
|
|
|
32000,
|
|
|
|
32000,
|
|
|
|
tmp_audio32.astype("int16"),
|
|
|
|
tmp_audio32.astype("int16"),
|
|
|
|
)
|
|
|
|
)
|
|
|
|
my_save(ssl,hubert_path )
|
|
|
|
my_save(ssl,hubert_path)
|
|
|
|
|
|
|
|
|
|
|
|
with open(inp_text,"r",encoding="utf8")as f:
|
|
|
|
with open(inp_text,"r",encoding="utf8")as f:
|
|
|
|
lines=f.read().strip("\n").split("\n")
|
|
|
|
lines=f.read().strip("\n").split("\n")
|
|
|
@ -113,8 +113,8 @@ for line in lines[int(i_part)::int(all_parts)]:
|
|
|
|
if(len(nan_fails)>0 and is_half==True):
|
|
|
|
if(len(nan_fails)>0 and is_half==True):
|
|
|
|
is_half=False
|
|
|
|
is_half=False
|
|
|
|
model=model.float()
|
|
|
|
model=model.float()
|
|
|
|
for wav_name in nan_fails:
|
|
|
|
for wav in nan_fails:
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
name2go(wav_name)
|
|
|
|
name2go(wav[0],wav[1])
|
|
|
|
except:
|
|
|
|
except:
|
|
|
|
print(wav_name,traceback.format_exc())
|
|
|
|
print(wav_name,traceback.format_exc())
|
|
|
|