|
|
@ -64,6 +64,23 @@ elif torch.backends.mps.is_available():
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
device = "cpu"
|
|
|
|
device = "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 操作记忆功能
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
file_path = './audio_log.txt'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
upload_audio_path = None
|
|
|
|
|
|
|
|
upload_audio_text = ""
|
|
|
|
|
|
|
|
upload_audio_lanuage = "中文"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if os.path.exists(file_path):
|
|
|
|
|
|
|
|
with open(file_path, 'r',encoding="utf-8") as file:
|
|
|
|
|
|
|
|
text_data = file.read()
|
|
|
|
|
|
|
|
text_data = text_data.split("|")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
upload_audio_path = text_data[0]
|
|
|
|
|
|
|
|
upload_audio_text = text_data[1]
|
|
|
|
|
|
|
|
upload_audio_lanuage = text_data[2]
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
|
|
|
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
|
|
|
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
|
|
|
if is_half == True:
|
|
|
|
if is_half == True:
|
|
|
@ -183,6 +200,7 @@ dict_language={
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language):
|
|
|
|
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language):
|
|
|
|
|
|
|
|
with open("./audio_log.txt","w",encoding="utf-8")as f:f.write(f"{wav_path_log}|{prompt_text}|{prompt_language}")
|
|
|
|
t0 = ttime()
|
|
|
|
t0 = ttime()
|
|
|
|
prompt_text = prompt_text.strip("\n")
|
|
|
|
prompt_text = prompt_text.strip("\n")
|
|
|
|
prompt_language, text = prompt_language, text.strip("\n")
|
|
|
|
prompt_language, text = prompt_language, text.strip("\n")
|
|
|
|