From 65b463a787f31637b4768cc9a47cab59541d3927 Mon Sep 17 00:00:00 2001 From: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com> Date: Tue, 6 Feb 2024 00:20:24 +0800 Subject: [PATCH] Add files via upload --- GPT_SoVITS/inference_webui.py | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/GPT_SoVITS/inference_webui.py b/GPT_SoVITS/inference_webui.py index 1868a12..ad74246 100644 --- a/GPT_SoVITS/inference_webui.py +++ b/GPT_SoVITS/inference_webui.py @@ -324,20 +324,20 @@ def get_first(text): return text -def get_cleaned_text_fianl(text,language): +def get_cleaned_text_final(text,language): if language in {"en","all_zh","all_ja"}: phones, word2ph, norm_text = clean_text_inf(text, language) elif language in {"zh", "ja","auto"}: phones, word2ph, norm_text = nonen_clean_text_inf(text, language) return phones, word2ph, norm_text -def get_bert_final(phones, word2ph, norm_text,language,device): +def get_bert_final(phones, word2ph, text,language,device): if text_language == "en": - bert = get_bert_inf(phones, word2ph, norm_text, text_language) + bert = get_bert_inf(phones, word2ph, text, language) elif text_language in {"zh", "ja","auto"}: - bert = nonen_get_bert_inf(text, text_language) + bert = nonen_get_bert_inf(text, language) elif text_language == "all_zh": - bert = get_bert_feature(norm_text, word2ph).to(device) + bert = get_bert_feature(text, word2ph).to(device) else: bert = torch.zeros((1024, len(phones))).to(device) return bert @@ -378,7 +378,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, prompt_language = dict_language[prompt_language] text_language = dict_language[text_language] - phones1, word2ph1, norm_text1=get_cleaned_text_fianl(prompt_text, prompt_language) + phones1, word2ph1, norm_text1=get_cleaned_text_final(prompt_text, prompt_language) if (how_to_cut == i18n("凑四句一切")): text = cut1(text) @@ -402,7 +402,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, continue if (text[-1] not in splits): text += "。" if text_language != "en" else "." print(i18n("实际输入的目标文本(每句):"), text) - phones2, word2ph2, norm_text2 = get_cleaned_text_fianl(text, text_language) + phones2, word2ph2, norm_text2 = get_cleaned_text_final(text, text_language) bert2 = get_bert_final(phones2, word2ph2, norm_text2, text_language, device).to(dtype) bert = torch.cat([bert1, bert2], 1)