Make Pre-Commit-Hook Exit 0 While Using Ruff Check (#2427)

Modified gradio Layout
Refactor WebUI half-precision and GPU detection logic
main
XXXXRT666 2 months ago committed by GitHub
parent 2ff2cf5ba1
commit 05d44215f1
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -8,7 +8,7 @@ repos:
# Run the linter.
- id: ruff
types_or: [ python, pyi ]
args: [ --fix ]
args: [ --fix , "--exit-zero" ]
# Run the formatter.
- id: ruff-format
types_or: [ python, pyi ]

@ -1,30 +1,32 @@
import sys
import os
import re
import sys
import torch,re
import torch
from tools.i18n.i18n import I18nAuto
from tools.i18n.i18n import I18nAuto, scan_language_list
i18n = I18nAuto(language=os.environ.get("language", "Auto"))
pretrained_sovits_name = {
"v1":"GPT_SoVITS/pretrained_models/s2G488k.pth",
"v2":"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
"v3":"GPT_SoVITS/pretrained_models/s2Gv3.pth",###v3v4还要检查vocoder算了。。。
"v4":"GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
"v2Pro":"GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth",
"v2ProPlus":"GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth",
"v1": "GPT_SoVITS/pretrained_models/s2G488k.pth",
"v2": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
"v3": "GPT_SoVITS/pretrained_models/s2Gv3.pth", ###v3v4还要检查vocoder算了。。。
"v4": "GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
"v2Pro": "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth",
"v2ProPlus": "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth",
}
pretrained_gpt_name = {
"v1":"GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
"v2":"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
"v3":"GPT_SoVITS/pretrained_models/s1v3.ckpt",
"v4":"GPT_SoVITS/pretrained_models/s1v3.ckpt",
"v2Pro":"GPT_SoVITS/pretrained_models/s1v3.ckpt",
"v2ProPlus":"GPT_SoVITS/pretrained_models/s1v3.ckpt",
"v1": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
"v2": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
"v3": "GPT_SoVITS/pretrained_models/s1v3.ckpt",
"v4": "GPT_SoVITS/pretrained_models/s1v3.ckpt",
"v2Pro": "GPT_SoVITS/pretrained_models/s1v3.ckpt",
"v2ProPlus": "GPT_SoVITS/pretrained_models/s1v3.ckpt",
}
name2sovits_path={
name2sovits_path = {
# i18n("不训练直接推v1底模"): "GPT_SoVITS/pretrained_models/s2G488k.pth",
i18n("不训练直接推v2底模"): "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
# i18n("不训练直接推v3底模"): "GPT_SoVITS/pretrained_models/s2Gv3.pth",
@ -32,29 +34,47 @@ name2sovits_path={
i18n("不训练直接推v2Pro底模"): "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth",
i18n("不训练直接推v2ProPlus底模"): "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth",
}
name2gpt_path={
name2gpt_path = {
# i18n("不训练直接推v1底模"):"GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
i18n("不训练直接推v2底模"):"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
i18n("不训练直接推v3底模"):"GPT_SoVITS/pretrained_models/s1v3.ckpt",
i18n(
"不训练直接推v2底模"
): "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
i18n("不训练直接推v3底模"): "GPT_SoVITS/pretrained_models/s1v3.ckpt",
}
SoVITS_weight_root = ["SoVITS_weights", "SoVITS_weights_v2", "SoVITS_weights_v3", "SoVITS_weights_v4", "SoVITS_weights_v2Pro", "SoVITS_weights_v2ProPlus"]
GPT_weight_root = ["GPT_weights", "GPT_weights_v2", "GPT_weights_v3", "GPT_weights_v4", "GPT_weights_v2Pro", "GPT_weights_v2ProPlus"]
SoVITS_weight_version2root={
"v1":"SoVITS_weights",
"v2":"SoVITS_weights_v2",
"v3":"SoVITS_weights_v3",
"v4":"SoVITS_weights_v4",
"v2Pro":"SoVITS_weights_v2Pro",
"v2ProPlus":"SoVITS_weights_v2ProPlus",
SoVITS_weight_root = [
"SoVITS_weights",
"SoVITS_weights_v2",
"SoVITS_weights_v3",
"SoVITS_weights_v4",
"SoVITS_weights_v2Pro",
"SoVITS_weights_v2ProPlus",
]
GPT_weight_root = [
"GPT_weights",
"GPT_weights_v2",
"GPT_weights_v3",
"GPT_weights_v4",
"GPT_weights_v2Pro",
"GPT_weights_v2ProPlus",
]
SoVITS_weight_version2root = {
"v1": "SoVITS_weights",
"v2": "SoVITS_weights_v2",
"v3": "SoVITS_weights_v3",
"v4": "SoVITS_weights_v4",
"v2Pro": "SoVITS_weights_v2Pro",
"v2ProPlus": "SoVITS_weights_v2ProPlus",
}
GPT_weight_version2root={
"v1":"GPT_weights",
"v2":"GPT_weights_v2",
"v3":"GPT_weights_v3",
"v4":"GPT_weights_v4",
"v2Pro":"GPT_weights_v2Pro",
"v2ProPlus":"GPT_weights_v2ProPlus",
GPT_weight_version2root = {
"v1": "GPT_weights",
"v2": "GPT_weights_v2",
"v3": "GPT_weights_v3",
"v4": "GPT_weights_v4",
"v2Pro": "GPT_weights_v2Pro",
"v2ProPlus": "GPT_weights_v2ProPlus",
}
def custom_sort_key(s):
# 使用正则表达式提取字符串中的数字部分和非数字部分
parts = re.split("(\d+)", s)
@ -62,27 +82,37 @@ def custom_sort_key(s):
parts = [int(part) if part.isdigit() else part for part in parts]
return parts
def get_weights_names():
SoVITS_names = []
for key in name2sovits_path:
if os.path.exists(name2sovits_path[key]):SoVITS_names.append(key)
if os.path.exists(name2sovits_path[key]):
SoVITS_names.append(key)
for path in SoVITS_weight_root:
if not os.path.exists(path):continue
if not os.path.exists(path):
continue
for name in os.listdir(path):
if name.endswith(".pth"):
SoVITS_names.append("%s/%s" % (path, name))
if not SoVITS_names:
SoVITS_names = [""]
GPT_names = []
for key in name2gpt_path:
if os.path.exists(name2gpt_path[key]):GPT_names.append(key)
if os.path.exists(name2gpt_path[key]):
GPT_names.append(key)
for path in GPT_weight_root:
if not os.path.exists(path):continue
if not os.path.exists(path):
continue
for name in os.listdir(path):
if name.endswith(".ckpt"):
GPT_names.append("%s/%s" % (path, name))
SoVITS_names=sorted(SoVITS_names, key=custom_sort_key)
GPT_names=sorted(GPT_names, key=custom_sort_key)
SoVITS_names = sorted(SoVITS_names, key=custom_sort_key)
GPT_names = sorted(GPT_names, key=custom_sort_key)
if not GPT_names:
GPT_names = [""]
return SoVITS_names, GPT_names
def change_choices():
SoVITS_names, GPT_names = get_weights_names()
return {"choices": SoVITS_names, "__type__": "update"}, {
@ -106,10 +136,6 @@ pretrained_gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=
exp_root = "logs"
python_exec = sys.executable or "python"
if torch.cuda.is_available():
infer_device = "cuda"
else:
infer_device = "cpu"
webui_port_main = 9874
webui_port_uvr5 = 9873
@ -118,20 +144,55 @@ webui_port_subfix = 9871
api_port = 9880
if infer_device == "cuda":
gpu_name = torch.cuda.get_device_name(0)
if (
("16" in gpu_name and "V100" not in gpu_name.upper())
or "P40" in gpu_name.upper()
or "P10" in gpu_name.upper()
or "1060" in gpu_name
or "1070" in gpu_name
or "1080" in gpu_name
):
is_half = False
if infer_device == "cpu":
is_half = False
def get_device_dtype_sm(idx: int) -> tuple[torch.device, torch.dtype, float, float]:
cpu = torch.device("cpu")
cuda = torch.device(f"cuda:{idx}")
if not torch.cuda.is_available():
return cpu, torch.float32, 0.0, 0.0
device_idx = idx
capability = torch.cuda.get_device_capability(device_idx)
name = torch.cuda.get_device_name(device_idx)
mem_bytes = torch.cuda.get_device_properties(device_idx).total_memory
mem_gb = mem_bytes / (1024**3) + 0.4
major, minor = capability
sm_version = major + minor / 10.0
is_16_series = bool(re.search(r"16\d{2}", name))
if mem_gb < 4:
return cpu, torch.float32, 0.0, 0.0
if (sm_version >= 7.0 and sm_version != 7.5) or (5.3 <= sm_version <= 6.0):
if is_16_series and sm_version == 7.5:
return cuda, torch.float32, sm_version, mem_gb # 16系卡除外
else:
return cuda, torch.float16, sm_version, mem_gb
return cpu, torch.float32, 0.0, 0.0
IS_GPU = True
GPU_INFOS: list[str] = []
GPU_INDEX: set[int] = set()
GPU_COUNT = torch.cuda.device_count()
CPU_INFO: str = "0\tCPU " + i18n("CPU训练,较慢")
tmp: list[tuple[torch.device, torch.dtype, float, float]] = []
memset: set[float] = set()
for i in range(max(GPU_COUNT, 1)):
tmp.append(get_device_dtype_sm(i))
for j in tmp:
device = j[0]
memset.add(j[3])
if device.type != "cpu":
GPU_INFOS.append(f"{device.index}\t{torch.cuda.get_device_name(device.index)}")
GPU_INDEX.add(device.index)
if not GPU_INFOS:
IS_GPU = False
GPU_INFOS.append(CPU_INFO)
GPU_INDEX.add(0)
infer_device = max(tmp, key=lambda x: (x[2], x[3]))[0]
is_half = any(dtype == torch.float16 for _, dtype, _, _ in tmp)
class Config:

File diff suppressed because it is too large Load Diff
Loading…
Cancel
Save