You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

120 lines
3.6 KiB
Python

# qa_operations.py
import json
from sentence_transformers import CrossEncoder
from faiss_kb_service import FaissKBService
from langchain.docstore.document import Document
from base_kb import KnowledgeFile
from pydantic import BaseModel
import yaml
# Read the configuration file
with open('config/config.yaml', 'r') as config_file:
config = yaml.safe_load(config_file)
# Access the 'bge-large-zh-v1.5' configuration
bge_large_zh_v1_5_config = config.get('bge_large_zh_v1_5', {})
embed_model_path = bge_large_zh_v1_5_config.get('embed_model_path', 'default_path_if_not_provided')
class QAService():
def __init__(self, kb_name, device=None) -> None:
self.kb_name = kb_name
self.device = device
self.fkbs = FaissKBService(kb_name, embed_model_path=embed_model_path, device=device)
self.fkbs.do_create_kb()
def update_qa_doc(self, qa_file_id, doc_list, id_list):
self.delete_qa_file(qa_file_id)
doc_infos = self.fkbs.do_add_doc(doc_list, ids=id_list)
self.fkbs.save_vector_store()
def delete_qa_file(self, qa_file_id):
kb_file = KnowledgeFile(qa_file_id, self.kb_name)
self.fkbs.do_delete_doc(kb_file, not_refresh_vs_cache=True)
def search(self, query, top_k=3, score_threshold=0.1, reranked=False):
docs = self.fkbs.do_search(query, top_k, score_threshold)
return docs
def create_question_id(question_code, j, test_question):
return f"{question_code}@{j}@{test_question}"
def load_testing_data(file_path):
question_list = []
id_list = []
with open(file_path, encoding='utf-8') as f:
data = json.load(f)
for item in data:
question_code = item['questionId']
question_list.extend(item['questionList'])
id_list.extend([create_question_id(question_code, j, q) for j, q in enumerate(item['questionList'])])
return question_list, id_list
def convert_to_doc_list(question_list, id_list, qa_file_id):
doc_list = []
for question, id in zip(question_list, id_list):
metadata = {'source': qa_file_id, 'id': id}
doc = Document(page_content=question, metadata=metadata)
doc_list.append(doc)
return doc_list
def store_data(qa_service, path):
question_list, id_list = load_testing_data(path)
print('Loaded data!')
qa_file_id = 'QA_TEST_1' # the source of the qa, using for data cleaning, make sure to be unique
doc_list = convert_to_doc_list(question_list, id_list, qa_file_id)
qa_service.update_qa_doc(qa_file_id, doc_list, id_list)
print("Data stored in the knowledge base successfully!")
class MatchInfo(BaseModel):
matchQuestionCode: str
matchQuestion: str
matchScore: str
def match_query(qa_service, query, top_k=3, score_threshold=0.1):
docs = qa_service.search(query, top_k, 1 - score_threshold)
response = []
if docs:
for doc, similarity_score in docs:
doc_id = doc.metadata['id']
question_code = doc_id.split('@')[0]
match_info = MatchInfo(
matchQuestionCode=question_code,
matchQuestion=doc.page_content,
matchScore=f"{1 - similarity_score:.3f}" # 返回字段
)
response.append(match_info)
return response
if __name__ == "__main__":
kb_name = 'my_kb_test'
path = "test.json"
device = None
qa_service = QAService(kb_name, device)
store_data(qa_service, path)
kb_name = 'my_kb_test_2'
qa_service = QAService(kb_name, device)
top_k = 3
score_threshold = 0.1
match_query(qa_service, "你好吗?", top_k, score_threshold)