package com.supervision.demo; import cn.hutool.core.collection.CollUtil; import cn.hutool.core.util.StrUtil; import cn.hutool.json.JSONUtil; import com.supervision.common.domain.R; import com.supervision.neo4j.controller.Neo4jController; import com.supervision.neo4j.domain.CaseNode; import com.supervision.demo.controller.ExampleChatController; import com.supervision.police.domain.ModelRecordType; import com.supervision.police.domain.NoteRecordSplit; import com.supervision.police.dto.RetrieveReqDTO; import com.supervision.police.dto.RetrieveResDTO; import com.supervision.police.service.ModelRecordTypeService; import com.supervision.police.service.NoteRecordSplitService; import com.supervision.police.service.OCRService; import com.supervision.police.service.RecordSplitClassifyService; import com.supervision.thread.RecordSplitClassifyTask; import lombok.extern.slf4j.Slf4j; import org.junit.jupiter.api.Test; import org.springframework.ai.chat.ChatResponse; import org.springframework.ai.chat.messages.UserMessage; import org.springframework.ai.chat.prompt.Prompt; import org.springframework.ai.ollama.OllamaChatClient; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.test.context.SpringBootTest; import org.springframework.util.StopWatch; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.stream.Collectors; @Slf4j @SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT) public class FuHsiApplicationTests { @Autowired private OllamaChatClient ollamaChatClient; @Autowired private ExampleChatController exampleChatController; @Autowired private Neo4jController neo4jController; @Test public void contextLoads() { } @Test public void test() { // exampleChatController.test("1803663875373694977", "你现在是一个笔录分析人员,请用四个字描述一下下述内容属于哪种类型的对话?"); } @Test public void savePersion() { CaseNode caseNode = new CaseNode(); caseNode.setName("自然人"); R save = neo4jController.save(caseNode); System.out.printf(save.toString()); } private final OllamaChatClient chatClient; @Autowired public FuHsiApplicationTests(OllamaChatClient chatClient) { this.chatClient = chatClient; } @Autowired private NoteRecordSplitService noteRecordSplitService; @Autowired private ModelRecordTypeService modelRecordTypeService; @Test public void classificationTest() { String recordId = "1824329325387304962"; final String NEW_TEMPLATE = """ 分类任务: 将对话笔录文本进行分类。 目标: 将给定的对话分配到预定义的类别中 预定义类别为:{typeContext}。 说明: 提供一段对话笔记录文本,分类器应该识别出对话的主题,并将其归类到上述类别中的一个或多个。 --- 示例输入: 办案警官问:你和上述的这些受害人签订协议之后是否实际履行合同? 行为人XXX回答:我和他们签订合同就是为了骗他们相信我,我就是伪造的一些假合同,等我把他们的钱骗到手之后我就不会履行合同。 预期输出: {"result":[{"type":"合同和协议","explain":"行为人XXX提到签订合同"},{"type":"虚假信息和伪造","explain":"行为人XXX提到合同是假合同"}]} --- 任务要求: 1. 分类器应当准确地识别对话的主题,分类来自于预定义的类别。 2. 分类器应该实事求是按照对话进行分类,不要有过多的推测。 2. 如果一段对话笔记录包含多个主题,请选择最相关的类别,最多可选择三个分类。 3. 如果不涉及任何分类则回复{"result":[]} --- 以下为问答对内容: {question} {answer} --- 返回格式为json,字段名要严格一致:{"result":[{"type":"分类1","explain":"分类原因"},{"type":"分类2","explain":"分类原因"}]} """; final String TYPE_CONTEXT_TEMPLATE = "{分类type:{type},区别点(分类释义):{typeExt}}"; List allTypeList = modelRecordTypeService.lambdaQuery().list(); String type = ""; // 根据recordId查询所有的分割后的笔录 List noteRecordSplitList = noteRecordSplitService.lambdaQuery().eq(NoteRecordSplit::getNoteRecordId, recordId).list(); for (NoteRecordSplit noteRecordSplit : noteRecordSplitList) { try { StopWatch stopWatch = new StopWatch(); // 首先拼接分类模板 List typeContextList = new ArrayList<>(); for (ModelRecordType modelRecordType : allTypeList) { String format = StrUtil.format(TYPE_CONTEXT_TEMPLATE, Map.of("type", modelRecordType.getRecordType(), "typeExt", modelRecordType.getRecordTypeExt())); typeContextList.add(format); } // 开始对笔录进行分类 Map paramMap = new HashMap<>(); paramMap.put("typeContext", CollUtil.join(typeContextList, ";")); paramMap.put("question", noteRecordSplit.getQuestion()); paramMap.put("answer", noteRecordSplit.getAnswer()); Prompt prompt = new Prompt(new UserMessage(StrUtil.format(NEW_TEMPLATE, paramMap))); stopWatch.start(); log.info("开始分析:"); ChatResponse call = chatClient.call(prompt); stopWatch.stop(); log.info("耗时:{}", stopWatch.getTotalTimeSeconds()); String content = call.getResult().getOutput().getContent(); log.info("问:{}, 答:{}", noteRecordSplit.getQuestion(), noteRecordSplit.getAnswer()); log.info("分析的结果是:{}", content); RecordSplitClassifyTask.TypeResultDTO result = JSONUtil.toBean(content, RecordSplitClassifyTask.TypeResultDTO.class); List typeList = result.getResult(); if (CollUtil.isNotEmpty(typeList)) { // 将type进行拼接,并以分号进行分割 type = CollUtil.join(typeList.stream().map(RecordSplitClassifyTask.TypeNodeDTO::getType).collect(Collectors.toSet()), ";"); } else { // 如果没有提取到,就是无 type = "无"; } } catch (Exception e) { log.error("分类任务执行失败:{}", e.getMessage(), e); type = "无"; } log.info("最后结果 question:{},answer:{},分析的结果是:{}", noteRecordSplit.getQuestion(),noteRecordSplit.getAnswer(),type); } } @Autowired private RecordSplitClassifyService recordSplitClassifyService; @Test public void classificationTest2() { List typeList = modelRecordTypeService.lambdaQuery().list(); List noteRecordSplits = noteRecordSplitService.lambdaQuery().eq(NoteRecordSplit::getId, "1824729361214418946").list(); recordSplitClassifyService.classify(typeList,noteRecordSplits); log.info("分类结果:{}",noteRecordSplits); } @Autowired private OCRService ocrService; @Test public void test1() { String question = "银川市公安局金凤区分局\\r\\n拘留通知书\\r\\n(副本)\\r\\n银金公(经侦)拘通字[2024]10017号\\r\\n梁玉峰家属\\r\\n根据《中华人民共和国刑事诉讼法》第八十二条第(一)项之规定\\r\\n罪\\r\\n将涉嫌合同诈骗\\r\\n我局已于2024年01月16日10时\\r\\n银川市看守所\\r\\n的\\r\\n梁玉峰\\r\\n刑事拘留,现羁押在\\r\\n市\\r\\n二0二\\r\\n年名\\r\\n本通知书已收到。\\r\\n年月\\r\\n日时\\r\\n被拘留人家属:\\r\\n如未在拘留后24小时内通知被拘留人家属,注明原因:办集民警\\r\\n当天拔打梁天峰亲属果无辉毛话,对方电生无法接通\\r\\n办案人:\\r\\n2024年1月16日1时\\r\\n此联附卷"; RetrieveResDTO retrieve = ocrService.retrieve(new RetrieveReqDTO(question)); System.out.println(retrieve); } }