|
|
import cv2
|
|
|
import time
|
|
|
from tqdm import tqdm
|
|
|
from ultralytics import YOLO
|
|
|
from ultralytics.yolo.utils.plotting import Annotator
|
|
|
from d_face import face_detection
|
|
|
|
|
|
def analysis_video(source_path,output_path,people_modle_path,face_modle_path,action_modle_path):
|
|
|
model_coco = YOLO(people_modle_path)
|
|
|
action_model = YOLO(action_modle_path)
|
|
|
cap = cv2.VideoCapture(source_path)
|
|
|
|
|
|
# 直接从视频的第 frameToStart 帧开始
|
|
|
frameToStart = 0
|
|
|
cap.set(cv2.CAP_PROP_POS_FRAMES, frameToStart)
|
|
|
|
|
|
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
|
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
|
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
|
|
output_movie = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
|
|
|
|
|
if frameToStart != 0:
|
|
|
count = frameToStart
|
|
|
else:
|
|
|
count = 0
|
|
|
# 标记有没有出现过拉门的动作
|
|
|
action_flag = {
|
|
|
"action":0,
|
|
|
"action_frame":[]
|
|
|
}
|
|
|
# 标记有没有出现过人脸
|
|
|
face_flag = {
|
|
|
"face":0,
|
|
|
"frame":[]
|
|
|
}
|
|
|
# 定义帧数字典
|
|
|
XJ_dict = {
|
|
|
"head":0,
|
|
|
"tail":0
|
|
|
}
|
|
|
while cap.isOpened():
|
|
|
# Read a frame from the video
|
|
|
success, frame = cap.read()
|
|
|
|
|
|
count += 1
|
|
|
if success:
|
|
|
# 第一步:用COCO数据集推理
|
|
|
results_coco = model_coco(frame)
|
|
|
action_result = action_model(frame)
|
|
|
|
|
|
for r in results_coco:
|
|
|
annotator = Annotator(frame, line_width=1)
|
|
|
boxes = r.boxes
|
|
|
for box in boxes:
|
|
|
b = box.xyxy[0] # get box coordinates in (x1,y1,x2,y2) format #tensor([ 677.5757, 147.2737, 1182.3381, 707.2565])
|
|
|
b_i = b.int() + 1
|
|
|
c = box.cls # tensor([0.])
|
|
|
confidence = float(box.conf)
|
|
|
confidence = round(confidence, 2)
|
|
|
# 过滤置信度0.5以下目标
|
|
|
if confidence < 0.5:
|
|
|
continue
|
|
|
# 当类别为巡检
|
|
|
if c.int() == 1:
|
|
|
if XJ_dict['head'] == 0 :
|
|
|
XJ_dict['head'] = count
|
|
|
else:
|
|
|
XJ_dict['tail'] = count
|
|
|
crop_img = frame[b_i[1]:b_i[3],b_i[0]:b_i[2]]
|
|
|
# 人脸检测
|
|
|
frame = face_detection(face_modle_path,frame,crop_img,b_i[0],b_i[1],b_i[2],b_i[3],face_flag,count)
|
|
|
annotator.box_label(b, model_coco.names[int(c)]+str(confidence),(0,0,255))
|
|
|
|
|
|
for r_a in action_result:
|
|
|
annotator_a = Annotator(frame, line_width=1)
|
|
|
boxes_a = r_a.boxes
|
|
|
for box_a in boxes_a:
|
|
|
b_a = box_a.xyxy[0] # get box coordinates in (x1,y1,x2,y2) format #tensor([ 677.5757, 147.2737, 1182.3381, 707.2565])
|
|
|
c_a = box_a.cls # tensor([0.])
|
|
|
confidence_a = float(box_a.conf)
|
|
|
confidence_a = round(confidence_a, 2)
|
|
|
# 过滤置信度0.5以下目标
|
|
|
if confidence_a < 0.5:
|
|
|
continue
|
|
|
# 当类别为check
|
|
|
if c_a.int() == 1:
|
|
|
action_flag["action"] += 1
|
|
|
action_flag["action_frame"].append(count)
|
|
|
annotator_a.box_label(b_a, action_model.names[int(c_a)]+str(confidence_a),(255,0,0))
|
|
|
|
|
|
annotated_a_frame_coco = annotator_a.result()
|
|
|
output_movie.write(annotated_a_frame_coco)
|
|
|
else:
|
|
|
# Break the loop if the end of the video is reached
|
|
|
break
|
|
|
|
|
|
cap.release()
|
|
|
output_movie.release()
|
|
|
# 计算巡检时长
|
|
|
diff = round((XJ_dict["tail"]-XJ_dict["head"])/fps,2)
|
|
|
fina_frame = [round(_ /fps,2) for _ in face_flag["frame"]]
|
|
|
s = ', '.join(map(str, fina_frame))
|
|
|
# 拉门时间
|
|
|
action_frame = [round(_ /fps,2) for _ in action_flag["action_frame"]]
|
|
|
s_action = ', '.join(map(str, action_frame))
|
|
|
|
|
|
return diff,face_flag,s,action_flag,s_action |