You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

182 lines
6.0 KiB
Python

import cv2
import os
import mediapipe as mp
from ultralytics import YOLO
from personDet import analysis_yolov8
import tools_function
from holisticDet import MediapipeProcess
from add_xml import add_xml
from create_xml import create_xml
import queue
class DetProcess():
def __init__(self,person_det_model,hand_det_model):
self.person_det_model = person_det_model
self.hand_det_model = hand_det_model
def get_person_cut(self,frame,det_dict,imgsize):
# person_det_dict = [perdict for perdict in det_dict if list(perdict.keys())[0] == 'person']
# print('person_det_dict:',det_dict)
person_list = tools_function.get_dict_values(det_dict)
# 坐标参数修正
person_bbox_list = tools_function.para_list_correction(images_size=imgsize,bbox_list=person_list,dertpara=5)
frame_list = []
for per_bbox in person_bbox_list:
# 裁剪后人的图片
person_cut_frame = tools_function.img_cut(frame=frame,bbox=per_bbox)
frame_cut_dict = {tuple(per_bbox):person_cut_frame}
frame_list.append(frame_cut_dict)
return frame_list
def hand_det(self,person_cut_frame,per_bbox):
# print('11111')
hands_result = MediapipeProcess.mediapipe_det(image=person_cut_frame,holistic=self.hand_det_model)
hands_result_dict = MediapipeProcess.get_analysis_result(image=person_cut_frame,results=hands_result)
hands_list = tools_function.select_list(hands_result_dict['hand_bbox'])
# print('hands_list:',hands_list)
imgsize2 = person_cut_frame.shape
# 手部坐标修正
hands_bbox_list = tools_function.para_list_correction(images_size=imgsize2,bbox_list=hands_list,dertpara=5)
# print('hands_bbox_list:',hands_bbox_list)
hand_bbox_list = []
for hand in hands_bbox_list:
hands_result_list = tools_function.change_bbox(bbox_person=[per_bbox[0],per_bbox[1]],bbox_hand=hand)
# print('hands_result_list:',hands_result_list)
re_dict = {'hands':hands_result_list}
hand_bbox_list.append(re_dict)
# hands_result_original_dict = {'results':hand_bbox_list}
# print(hands_result_original_dict)
return hand_bbox_list
def save_annotations_xml(self,xml_save_file,save_infors,images):
# images = save_infors['images']
results = save_infors
img = os.path.basename(images)
img_frame = cv2.imread(images)
xml_save_path = os.path.join(xml_save_file,img.split('.')[0] + '.xml')
w,h,d = img_frame.shape
img_shape = (w,h,d,img)
if os.path.isfile(xml_save_path):
add_labels = add_xml(inforsDict=results,xmlFilePath=xml_save_path)
else:
create_new = create_xml(boxs=results,img_shape=img_shape,xml_path=xml_save_path)
def person_cut_process(self,images,img_save_files):
frame = cv2.imread(images)
imgsize = frame.shape
labels_name_list = ['person']
per_det_dict = analysis_yolov8(frame=frame,
model_coco=self.person_det_model,
labels_names=labels_name_list,
confidence_set=0.2)
per_frame_cut = self.get_person_cut(frame=frame,det_dict=per_det_dict,imgsize=imgsize)
per_frame_list = [value for dictionary in per_frame_cut for value in dictionary.values()]
# print('per_frame_list:',per_frame_list)
for id_num,cut_frame in enumerate(per_frame_list):
cut_frame_save = tools_function.img_write(frame=cut_frame,img_file=images,id_num=id_num,save_file=img_save_files)
def hands_det_process(self,images,xml_save_file):
frame = cv2.imread(images)
imgsize = frame.shape
labels_name_list = ['person']
per_det_dict = analysis_yolov8(frame=frame,
model_coco=self.person_det_model,
labels_names=labels_name_list,
confidence_set=0.2)
per_frame_cut = self.get_person_cut(frame=frame,det_dict=per_det_dict,imgsize=imgsize)
for frame_dict in per_frame_cut:
per_bbox = list(frame_dict.keys())[0]
person_cut_frame = list(frame_dict.values())[0]
hands_dict = self.hand_det(person_cut_frame=person_cut_frame,per_bbox=per_bbox)
self.save_annotations_xml(xml_save_file=xml_save_file,save_infors=hands_dict,images=images)
# person_det = self.detect_yolo(images_path=images,labels_name_list=labels_name_list)
def det_process(self,images,xml_save_file):
frame = cv2.imread(images)
imgsize = frame.shape
labels_name_list = ['cell phone','mouse','keyboard']
per_det_dict = analysis_yolov8(frame=frame,
model_coco=self.person_det_model,
labels_names=labels_name_list,
confidence_set=0.2)
self.save_annotations_xml(xml_save_file=xml_save_file,save_infors=per_det_dict,images=images)
if __name__ == '__main__':
images_files = 'images'
images_list = tools_function.get_path_list(images_files)
img_save_files = 'images_cut'
xml_save_file = 'annotations'
# 初始化目标检测
person_model = YOLO("model_files/yolov8x.pt")
# 初始化mediapipe
mp_holistic = mp.solutions.holistic
holistic = mp_holistic.Holistic(min_detection_confidence=0.1,min_tracking_confidence=0.1)
Det = DetProcess(person_det_model=person_model,hand_det_model=holistic)
for images in images_list:
# Det.person_cut_process(images=images,img_save_files=img_save_files)
Det.hands_det_process(images=images,xml_save_file=xml_save_file)
Det.det_process(images=images,xml_save_file=xml_save_file)