You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
445 lines
13 KiB
Python
445 lines
13 KiB
Python
from analysis_result.get_model_result import det_img
|
|
from analysis_result.same_model_img import same_model_img_analysis_labels, model_labels_selet
|
|
from model_load.model_load import Load_model
|
|
from drawing_img.drawing_img import drawing_frame
|
|
from analysis_data.data_rtsp import rtsp_para
|
|
from analysis_data.data_dir_file import get_dir_file, get_imgframe
|
|
from analysis_data.config_load import get_configs
|
|
from add_xml import add_xml
|
|
from create_xml import create_xml
|
|
|
|
import yaml
|
|
import cv2
|
|
import os
|
|
from pathlib import Path
|
|
import time
|
|
from datetime import datetime
|
|
import glob
|
|
import json
|
|
|
|
|
|
def data_load(args):
|
|
|
|
# print('正在运行的进程',msg)
|
|
# print(args)
|
|
source = args[0]
|
|
model_ymal = args[1]
|
|
|
|
# 数据加载
|
|
rtsp_source = rtsp_para(source)
|
|
dir_source = os.path.isdir(source)
|
|
file_source = os.path.isfile(source)
|
|
|
|
# # 模型加载
|
|
model_data = get_configs(model_ymal)
|
|
model_inference = Load_model(model_file=model_data["model"],
|
|
device=model_data["model_parameter"]['device'],
|
|
cache_file=model_data["model_cache"])
|
|
|
|
if rtsp_source:
|
|
|
|
cap = cv2.VideoCapture(source)
|
|
|
|
# 视频流信息
|
|
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
|
fps_num = fps*model_data['detect_time']
|
|
fps_num_small = fps*model_data['detect_time_small']
|
|
size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
|
|
int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
|
|
try:
|
|
i = 0
|
|
j = 0
|
|
|
|
det_t_num = 0
|
|
nodet_t_num = 0
|
|
|
|
det_img = []
|
|
|
|
video_name_time = 0
|
|
det_fps_time = []
|
|
|
|
while True:
|
|
ret, frame = cap.read()
|
|
|
|
if not ret:
|
|
continue # 如果未成功读取到视频帧,则继续读取下一帧
|
|
|
|
i = i + 1
|
|
j = j + 1
|
|
|
|
# 读取到当前视频帧时间
|
|
data_now = datetime.now()
|
|
get_time = str(data_now.strftime("%H")) + \
|
|
str(data_now.strftime("%M")) + str(data_now.strftime("%S")) + \
|
|
str(data_now.strftime("%f"))
|
|
|
|
# 视频保存
|
|
if video_name_time == 0:
|
|
|
|
video_name_time = get_time
|
|
savePath = os.path.join(model_data['save_videos'], (str(data_now.strftime(
|
|
"%Y")) + str(data_now.strftime("%m")) + str(data_now.strftime("%d"))))
|
|
|
|
if not os.path.exists(savePath):
|
|
os.makedirs(savePath)
|
|
|
|
video_path = os.path.join(
|
|
savePath, video_name_time + '.avi')
|
|
print('video_path:', video_path)
|
|
|
|
out_video = cv2.VideoWriter(
|
|
video_path, cv2.VideoWriter_fourcc(*'DIVX'), fps, size)
|
|
|
|
print(source, data_now, i,j)
|
|
t1 = time.time()
|
|
|
|
imgframe_dict = {"path": source,
|
|
'frame': frame,
|
|
'get_fps': j}
|
|
|
|
images_det_result = img_process(imgframe_dict,
|
|
model_inference,
|
|
model_data)
|
|
|
|
images_update = save_process(imgframe_dict,
|
|
images_det_result,
|
|
model_data)
|
|
|
|
print('images_det_result:',len(images_det_result))
|
|
|
|
if images_det_result:
|
|
|
|
det_t_num = det_t_num + 1
|
|
|
|
# print(len(det_img))
|
|
if len(det_img) == 0:
|
|
img_dict = images_update.copy()
|
|
del img_dict['frame']
|
|
det_img.append(img_dict)
|
|
|
|
if not images_det_result and len(det_img) > 0:
|
|
|
|
nodet_t_num = nodet_t_num + 1
|
|
|
|
if (det_t_num + nodet_t_num) >= fps_num_small:
|
|
|
|
para = determine_time(det_num=det_t_num,
|
|
nodet_num=nodet_t_num,
|
|
ratio_set=model_data['detect_ratio'])
|
|
|
|
if para:
|
|
|
|
first_fps_time = det_img[0]
|
|
print({"dert_fps": (j-int(first_fps_time['get_fps'])+1)})
|
|
first_fps_time.update({"dert_fps": (j-int(first_fps_time['get_fps'])+1)})
|
|
det_fps_time.append(first_fps_time)
|
|
|
|
det_img.clear()
|
|
det_t_num = 0
|
|
nodet_t_num = 0
|
|
|
|
# print('det_img:', len(det_img), det_t_num, nodet_t_num)
|
|
|
|
out_video.write(images_update['frame'])
|
|
|
|
if j >= fps_num:
|
|
|
|
out_video.release()
|
|
|
|
if det_img:
|
|
|
|
first_fps_time = det_img[0]
|
|
print({"dert_fps": (j-int(first_fps_time['get_fps'])+1)})
|
|
first_fps_time.update({"dert_fps": (j-int(first_fps_time['get_fps'])+1)})
|
|
det_fps_time.append(first_fps_time)
|
|
|
|
print('det_fps_time:',det_fps_time)
|
|
|
|
if det_fps_time:
|
|
re_list = json_get(time_list=det_fps_time,video_path=video_path)
|
|
json_save(re_list)
|
|
|
|
else:
|
|
print(video_path)
|
|
os.remove(video_path)
|
|
print('clear videos')
|
|
|
|
|
|
det_fps_time.clear()
|
|
video_name_time = 0
|
|
j = 0
|
|
|
|
print('det_fps_time:', len(det_fps_time), i, j)
|
|
|
|
# break
|
|
t2 = time.time()
|
|
tx = t2 - t1
|
|
print('检测一张图片的时间为:', tx)
|
|
|
|
except Exception as e:
|
|
# 处理异常或错误
|
|
print(str(e))
|
|
|
|
cap.release()
|
|
|
|
if dir_source:
|
|
|
|
img_ext = [".jpg", ".JPG", ".bmp"]
|
|
video_ext = [".mp4", ".avi", ".MP4"]
|
|
|
|
img_list = get_dir_file(source, img_ext)
|
|
video_list = get_dir_file(source, video_ext)
|
|
|
|
if img_list:
|
|
|
|
for img in img_list:
|
|
|
|
t1 = time.time()
|
|
images = cv2.imread(img)
|
|
|
|
imgframe_dict = {"path": img, 'frame': images}
|
|
|
|
images_update = img_process(
|
|
imgframe_dict, model_inference, model_data)
|
|
|
|
t2 = time.time()
|
|
tx = t2 - t1
|
|
print('检测一张图片的时间为:', tx)
|
|
|
|
if video_list:
|
|
|
|
pass
|
|
|
|
if file_source:
|
|
|
|
img_para = True
|
|
|
|
if img_para:
|
|
images = cv2.imread(source)
|
|
imgframe_dict = {"path": source, 'frame': images}
|
|
|
|
images_update = img_process(
|
|
imgframe_dict, model_inference, model_data)
|
|
|
|
|
|
def img_process(images, model_inference, model_data):
|
|
|
|
# t1 = time.time()
|
|
# 检测每帧图片,返回推理结果
|
|
results = det_img(model_inference=model_inference,
|
|
images_frame=images['frame'],
|
|
confidence=model_data["model_parameter"]['confidence'],
|
|
label_name_list=model_data["model_parameter"]['label_names'])
|
|
|
|
# print(images['path'])
|
|
|
|
# 根据需要挑选标注框信息
|
|
select_labels_list = model_labels_selet(example_list=model_data["model_parameter"]['compara_label_names'],
|
|
result_dict_list=results)
|
|
|
|
if model_data["model_parameter"]['compara_relevancy']:
|
|
|
|
# 需要根据的逻辑判断标注框信息
|
|
determine_bbox = same_model_img_analysis_labels(example_list=model_data["model_parameter"]['compara_label_names'],
|
|
result_dicts_list=select_labels_list,
|
|
relevancy=model_data["model_parameter"]['compara_relevancy'],
|
|
relevancy_para=model_data["model_parameter"]['relevancy_para'])
|
|
else:
|
|
|
|
determine_bbox = select_labels_list
|
|
|
|
|
|
print(determine_bbox)
|
|
|
|
if model_data['model_parameter']['object_num_min'] :
|
|
if len(determine_bbox) <= model_data["model_parameter"]['object_num_min']:
|
|
|
|
print(len(determine_bbox))
|
|
determine_bbox.clear()
|
|
|
|
|
|
# 返回检测后结果
|
|
return determine_bbox
|
|
|
|
|
|
def save_process(images, determine_bbox, model_data):
|
|
|
|
if determine_bbox:
|
|
|
|
images.update({"results": determine_bbox})
|
|
|
|
img_save = drawing_frame(
|
|
images_frame=images['frame'], result_list=determine_bbox)
|
|
|
|
images.update({"frame": img_save})
|
|
|
|
if model_data["save_path"]:
|
|
|
|
imgname = images_save(
|
|
images=images, save_path=model_data["save_path"])
|
|
|
|
if model_data['save_path_original']:
|
|
imgname_original = images_save(images=images,
|
|
save_path=model_data["save_path_original"])
|
|
|
|
if model_data["save_annotations"]:
|
|
|
|
if not os.path.exists(model_data["save_annotations"]):
|
|
|
|
os.makedirs(model_data["save_annotations"])
|
|
save_annotations_xml(
|
|
xml_save_file=model_data["save_annotations"], save_infors=determine_bbox, images=images['path'])
|
|
|
|
else:
|
|
pass
|
|
|
|
else:
|
|
# 没检测出来的图片是否保存
|
|
if model_data["test_path"]:
|
|
imgname = images_save(
|
|
images=images, save_path=model_data["test_path"])
|
|
# print('no:',images['path'],imgname)
|
|
|
|
# 展示显示
|
|
# if images['path'] == 'rtsp://admin:@192.168.10.11':
|
|
# cv2.namedWindow('11', cv2.WINDOW_NORMAL)
|
|
# cv2.imshow('11',images['frame'])
|
|
# cv2.waitKey(1)
|
|
# cv2.destroyAllWindows()
|
|
|
|
# t2 = time.time()
|
|
|
|
return images
|
|
|
|
|
|
def images_save(images, save_path):
|
|
|
|
# 保存时候时间为图片名
|
|
# data_now = datetime.now()
|
|
# images_name = str(data_now.strftime("%Y")) + str(data_now.strftime("%m")) + str(data_now.strftime("%d")) + str(data_now.strftime("%H")) + \
|
|
# str(data_now.strftime("%M")) + str(data_now.strftime("%S")) + \
|
|
# str(data_now.strftime("%f")) + '.jpg'
|
|
# img_save_path = save_path + '/' + str(
|
|
# data_now.year) + '/' + str(data_now.month) + '_' + str(data_now.day) + '/'
|
|
img_save_path = os.path.join(save_path, str(images['path'].split('.')[-1]))
|
|
images_name = images['get_time'] + '.jpg'
|
|
# img_save_path = save_path + '/' + str(images['path'].split('.')[-1]) + '/'
|
|
|
|
# print(img_save_path)
|
|
|
|
if not os.path.exists(img_save_path):
|
|
os.makedirs(img_save_path)
|
|
|
|
full_name = os.path.join(img_save_path, images_name)
|
|
|
|
cv2.imwrite(full_name, images['frame'])
|
|
|
|
return full_name
|
|
|
|
|
|
def save_annotations_xml(xml_save_file, save_infors, images):
|
|
|
|
results = save_infors
|
|
img = os.path.basename(images)
|
|
img_frame = cv2.imread(images)
|
|
xml_save_path = os.path.join(xml_save_file, img.split('.')[0] + '.xml')
|
|
w, h, d = img_frame.shape
|
|
img_shape = (w, h, d, img)
|
|
|
|
if os.path.isfile(xml_save_path):
|
|
|
|
add_xml(inforsDict=results,
|
|
xmlFilePath=xml_save_path)
|
|
else:
|
|
create_xml(boxs=results,
|
|
img_shape=img_shape,
|
|
xml_path=xml_save_path)
|
|
|
|
|
|
def determine_time(det_num, nodet_num, ratio_set):
|
|
|
|
ratio = det_num / (det_num + nodet_num)
|
|
|
|
print(det_num, nodet_num, ratio)
|
|
|
|
if ratio >= ratio_set:
|
|
|
|
return True
|
|
|
|
else:
|
|
|
|
return False
|
|
|
|
|
|
def video_synthesis(imglist, savePath, size, fps, videoname):
|
|
|
|
if not os.path.exists(savePath):
|
|
os.makedirs(savePath)
|
|
|
|
print(videoname)
|
|
video_path = os.path.join(savePath, videoname + '.avi')
|
|
out = cv2.VideoWriter(
|
|
video_path, cv2.VideoWriter_fourcc(*'DIVX'), fps, size)
|
|
|
|
sorted_list = sorted(imglist, key=lambda x: x['get_time'])
|
|
|
|
for filename in sorted_list:
|
|
out.write(filename['frame'])
|
|
out.release()
|
|
|
|
|
|
def json_get(time_list,video_path):
|
|
|
|
result_dict = {'video_path':video_path}
|
|
for i,det_dict in enumerate(time_list):
|
|
|
|
list_hands = ["Keypad","hands","keyboard", "mouse","phone"]
|
|
list_sleep = ["person","sleep"]
|
|
|
|
if list(det_dict['results'][0].keys())[0] in list_hands:
|
|
|
|
result_lables = 'playing_phone'
|
|
|
|
if list(det_dict['results'][0].keys())[0] in list_sleep:
|
|
|
|
result_lables = "sleep"
|
|
|
|
fps_dict = {'time': det_dict['get_fps'],'duration':det_dict['dert_fps'],'result':result_lables}
|
|
result_dict.update({('id_'+ str(i)):fps_dict})
|
|
|
|
return result_dict
|
|
|
|
# def json_analysis(re_list):
|
|
|
|
# update_list = []
|
|
# copy_list = [x for x in re_list not in update_list]
|
|
|
|
# for i in range(len(copy_list)-1):
|
|
|
|
# j = i + 1
|
|
|
|
# re_i = int(re_list[i]['fps'])
|
|
# re_i_add = int(re_list[i]['dert_fps'])
|
|
# re_j = int(re_list[j]['fps'])
|
|
|
|
# if re_i + re_i_add == re_j:
|
|
|
|
# update_list.append(re_i,re_j)
|
|
# print()
|
|
|
|
def json_save(result_dict):
|
|
|
|
json_path = result_dict['video_path'].split('.')[0] + '.json'
|
|
del result_dict['video_path']
|
|
result = json.dumps(result_dict)
|
|
|
|
f = open(json_path,'w')
|
|
f.write(result + '\n')
|
|
f.close
|
|
|
|
|
|
# if __name__ == '__main__':
|
|
|
|
# data_load(['rtsp://admin:@192.168.10.203',
|
|
# 'E:/Bank_files/Bank_03/xbank_poc_test_use/config_phone.yaml'])
|