You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

336 lines
12 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import os.path as osp
import paddle
import paddle.distributed as dist
from ..loader.builder import build_dataloader, build_dataset
from ..modeling.builder import build_model
from ..solver import build_lr, build_optimizer
from ..utils import do_preciseBN
from paddlevideo.utils import get_logger, coloring
from paddlevideo.utils import (AverageMeter, build_record, log_batch, log_epoch,
save, load, mkdir)
from paddlevideo.utils.multigrid import MultigridSchedule, aggregate_sub_bn_stats, subn_load, subn_save, is_eval_epoch
def construct_loader(cfg, places, validate, precise_bn, num_iters_precise_bn,
world_size):
batch_size = cfg.DATASET.get('batch_size', 2)
train_dataset = build_dataset((cfg.DATASET.train, cfg.PIPELINE.train))
precise_bn_dataloader_setting = dict(
batch_size=batch_size,
num_workers=cfg.DATASET.get('num_workers', 0),
places=places,
)
if precise_bn:
cfg.DATASET.train.num_samples_precise_bn = num_iters_precise_bn * batch_size * world_size
precise_bn_dataset = build_dataset((cfg.DATASET.train,
cfg.PIPELINE.train))
precise_bn_loader = build_dataloader(precise_bn_dataset,
**precise_bn_dataloader_setting)
cfg.DATASET.train.num_samples_precise_bn = None
else:
precise_bn_loader = None
if cfg.MULTIGRID.SHORT_CYCLE:
# get batch size list in short cycle schedule
bs_factor = [
int(
round((float(cfg.PIPELINE.train.transform[1]['MultiCrop'][
'target_size']) / (s * cfg.MULTIGRID.default_crop_size))
**2)) for s in cfg.MULTIGRID.short_cycle_factors
]
batch_sizes = [
batch_size * bs_factor[0],
batch_size * bs_factor[1],
batch_size,
]
train_dataloader_setting = dict(
batch_size=batch_sizes,
multigrid=True,
num_workers=cfg.DATASET.get('num_workers', 0),
places=places,
)
else:
train_dataloader_setting = precise_bn_dataloader_setting
train_loader = build_dataloader(train_dataset, **train_dataloader_setting)
if validate:
valid_dataset = build_dataset((cfg.DATASET.valid, cfg.PIPELINE.valid))
validate_dataloader_setting = dict(
batch_size=batch_size,
num_workers=cfg.DATASET.get('num_workers', 0),
places=places,
drop_last=False,
shuffle=False)
valid_loader = build_dataloader(valid_dataset,
**validate_dataloader_setting)
else:
valid_loader = None
return train_loader, valid_loader, precise_bn_loader
def build_trainer(cfg, places, parallel, validate, precise_bn,
num_iters_precise_bn, world_size):
"""
Build training model and its associated tools, including optimizer,
dataloaders and meters.
Args:
cfg (CfgNode): configs.
Returns:
model: training model.
optimizer: optimizer.
train_loader: training data loader.
val_loader: validatoin data loader.
precise_bn_loader: training data loader for computing
precise BN.
"""
model = build_model(cfg.MODEL)
if parallel:
model = paddle.DataParallel(model)
train_loader, valid_loader, precise_bn_loader = \
construct_loader(cfg,
places,
validate,
precise_bn,
num_iters_precise_bn,
world_size,
)
lr = build_lr(cfg.OPTIMIZER.learning_rate, len(train_loader))
optimizer = build_optimizer(cfg.OPTIMIZER, lr, model=model)
return (
model,
lr,
optimizer,
train_loader,
valid_loader,
precise_bn_loader,
)
def train_model_multigrid(cfg, world_size=1, validate=True):
"""Train model entry
Args:
cfg (dict): configuration.
parallel (bool): Whether multi-card training. Default: True
validate (bool): Whether to do evaluation. Default: False.
"""
# Init multigrid.
multigrid = None
if cfg.MULTIGRID.LONG_CYCLE or cfg.MULTIGRID.SHORT_CYCLE:
multigrid = MultigridSchedule()
cfg = multigrid.init_multigrid(cfg)
if cfg.MULTIGRID.LONG_CYCLE:
cfg, _ = multigrid.update_long_cycle(cfg, cur_epoch=0)
multi_save_epoch = [i[-1] - 1 for i in multigrid.schedule]
parallel = world_size != 1
logger = get_logger("paddlevideo")
batch_size = cfg.DATASET.get('batch_size', 2)
if cfg.get('use_npu', False):
places = paddle.set_device('npu')
elif cfg.get('use_xpu', False):
places = paddle.set_device('xpu')
else:
places = paddle.set_device('gpu')
model_name = cfg.model_name
output_dir = cfg.get("output_dir", f"./output/{model_name}")
mkdir(output_dir)
local_rank = dist.ParallelEnv().local_rank
precise_bn = cfg.get("PRECISEBN")
num_iters_precise_bn = cfg.PRECISEBN.num_iters_preciseBN
# 1. Construct model
model = build_model(cfg.MODEL)
if parallel:
model = paddle.DataParallel(model)
# 2. Construct dataloader
train_loader, valid_loader, precise_bn_loader = \
construct_loader(cfg,
places,
validate,
precise_bn,
num_iters_precise_bn,
world_size,
)
# 3. Construct optimizer
lr = build_lr(cfg.OPTIMIZER.learning_rate, len(train_loader))
optimizer = build_optimizer(
cfg.OPTIMIZER, lr, parameter_list=model.parameters())
# Resume
resume_epoch = cfg.get("resume_epoch", 0)
if resume_epoch:
filename = osp.join(
output_dir,
model_name + str(local_rank) + '_' + f"{resume_epoch:05d}")
subn_load(model, filename, optimizer)
# 4. Train Model
best = 0.
total_epochs = int(cfg.epochs * cfg.MULTIGRID.epoch_factor)
for epoch in range(total_epochs):
if epoch < resume_epoch:
logger.info(
f"| epoch: [{epoch+1}] <= resume_epoch: [{ resume_epoch}], continue... "
)
continue
if cfg.MULTIGRID.LONG_CYCLE:
cfg, changed = multigrid.update_long_cycle(cfg, epoch)
if changed:
logger.info("====== Rebuild model/optimizer/loader =====")
(
model,
lr,
optimizer,
train_loader,
valid_loader,
precise_bn_loader,
) = build_trainer(cfg, places, parallel, validate, precise_bn,
num_iters_precise_bn, world_size)
#load checkpoint after re-build model
if epoch != 0:
#epoch no need to -1, haved add 1 when save
filename = osp.join(
output_dir,
model_name + str(local_rank) + '_' + f"{(epoch):05d}")
subn_load(model, filename, optimizer)
#update lr last epoch, not to use saved params
lr.last_epoch = epoch
lr.step(rebuild=True)
model.train()
record_list = build_record(cfg.MODEL)
tic = time.time()
for i, data in enumerate(train_loader):
record_list['reader_time'].update(time.time() - tic)
# 4.1 forward
outputs = model(data, mode='train')
# 4.2 backward
avg_loss = outputs['loss']
avg_loss.backward()
# 4.3 minimize
optimizer.step()
optimizer.clear_grad()
# log record
record_list['lr'].update(
float(optimizer._global_learning_rate()), batch_size)
for name, value in outputs.items():
record_list[name].update(float(value), batch_size)
record_list['batch_time'].update(time.time() - tic)
tic = time.time()
if i % cfg.get("log_interval", 10) == 0:
ips = "ips: {:.5f} instance/sec.".format(
batch_size / record_list["batch_time"].val)
log_batch(record_list, i, epoch + 1, total_epochs, "train", ips)
# learning rate iter step
if cfg.OPTIMIZER.learning_rate.get("iter_step"):
lr.step()
# learning rate epoch step
if not cfg.OPTIMIZER.learning_rate.get("iter_step"):
lr.step()
ips = "ips: {:.5f} instance/sec.".format(
batch_size * record_list["batch_time"].count /
record_list["batch_time"].sum)
log_epoch(record_list, epoch + 1, "train", ips)
def evaluate(best):
model.eval()
record_list = build_record(cfg.MODEL)
record_list.pop('lr')
tic = time.time()
for i, data in enumerate(valid_loader):
outputs = model(data, mode='valid')
# log_record
for name, value in outputs.items():
record_list[name].update(float(value), batch_size)
record_list['batch_time'].update(time.time() - tic)
tic = time.time()
if i % cfg.get("log_interval", 10) == 0:
ips = "ips: {:.5f} instance/sec.".format(
batch_size / record_list["batch_time"].val)
log_batch(record_list, i, epoch + 1, total_epochs, "val",
ips)
ips = "ips: {:.5f} instance/sec.".format(
batch_size * record_list["batch_time"].count /
record_list["batch_time"].sum)
log_epoch(record_list, epoch + 1, "val", ips)
best_flag = False
if record_list.get('top1') and record_list['top1'].avg > best:
best = record_list['top1'].avg
best_flag = True
return best, best_flag
# use precise bn to improve acc
if is_eval_epoch(cfg, epoch, total_epochs, multigrid.schedule):
logger.info(f"do precise BN in {epoch+1} ...")
do_preciseBN(model, precise_bn_loader, parallel,
min(num_iters_precise_bn, len(precise_bn_loader)))
# aggregate sub_BN stats
logger.info("Aggregate sub_BatchNorm stats...")
aggregate_sub_bn_stats(model)
# 5. Validation
if is_eval_epoch(cfg, epoch, total_epochs, multigrid.schedule):
logger.info(f"eval in {epoch+1} ...")
with paddle.no_grad():
best, save_best_flag = evaluate(best)
# save best
if save_best_flag:
save(optimizer.state_dict(),
osp.join(output_dir, model_name + "_best.pdopt"))
save(model.state_dict(),
osp.join(output_dir, model_name + "_best.pdparams"))
logger.info(
f"Already save the best model (top1 acc){int(best * 10000) / 10000}"
)
# 6. Save model and optimizer
if is_eval_epoch(
cfg, epoch,
total_epochs, multigrid.schedule) or epoch % cfg.get(
"save_interval", 10) == 0 or epoch in multi_save_epoch:
logger.info("[Save parameters] ======")
subn_save(output_dir, model_name + str(local_rank) + '_', epoch + 1,
model, optimizer)
logger.info(f'training {model_name} finished')