You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

91 lines
3.1 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddlevideo.utils import get_logger, load
from ..loader.builder import build_dataloader, build_dataset
from ..metrics import build_metric
from ..modeling.builder import build_model
logger = get_logger("paddlevideo")
@paddle.no_grad()
def test_model(cfg, weights, parallel=True):
"""Test model entry
Args:
cfg (dict): configuration.
weights (str): weights path to load.
parallel (bool): Whether to do multi-cards testing. Default: True.
"""
if cfg.get('use_npu', False):
places = paddle.set_device('npu')
elif cfg.get('use_xpu', False):
places = paddle.set_device('xpu')
else:
places = paddle.set_device('gpu')
# 1. Construct model.
if cfg.MODEL.get('backbone') and cfg.MODEL.backbone.get('pretrained'):
cfg.MODEL.backbone.pretrained = '' # disable pretrain model init
model = build_model(cfg.MODEL)
if parallel:
model = paddle.DataParallel(model)
# 2. Construct dataset and dataloader.
cfg.DATASET.test.test_mode = True
dataset = build_dataset((cfg.DATASET.test, cfg.PIPELINE.test))
batch_size = cfg.DATASET.get("test_batch_size", 8)
# default num worker: 0, which means no subprocess will be created
num_workers = cfg.DATASET.get('num_workers', 0)
num_workers = cfg.DATASET.get('test_num_workers', num_workers)
dataloader_setting = dict(batch_size=batch_size,
num_workers=num_workers,
places=places,
drop_last=False,
shuffle=False)
data_loader = build_dataloader(
dataset, **dataloader_setting) if cfg.model_name not in ['CFBI'
] else dataset
model.eval()
state_dicts = load(weights)
model.set_state_dict(state_dicts)
# add params to metrics
cfg.METRIC.data_size = len(dataset)
cfg.METRIC.batch_size = batch_size
Metric = build_metric(cfg.METRIC)
if cfg.MODEL.framework == "FastRCNN":
Metric.set_dataset_info(dataset.info, len(dataset))
for batch_id, data in enumerate(data_loader):
if cfg.model_name in [
'CFBI'
]: # for VOS task, dataset for video and dataloader for frames in each video
Metric.update(batch_id, data, model)
else:
outputs = model(data, mode='test')
Metric.update(batch_id, data, outputs)
Metric.accumulate()