You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

83 lines
3.1 KiB
Python

# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path as osp
import os
from paddlevideo.utils import get_logger
from .registry import METRIC
from .base import BaseMetric
from .ucf24_utils import get_mAP
logger = get_logger("paddlevideo")
@METRIC.register
class YOWOMetric(BaseMetric):
"""
Metrics for YOWO. Two Stages in this metric:
(1) Get test results using trained model, results will be saved in YOWOMetric.result_path;
(2) Calculate metrics using results file from stage (1).
"""
def __init__(self,
data_size,
batch_size,
gt_folder,
result_path,
threshold=0.5,
save_path=None,
log_interval=1):
"""
Init for BMN metrics.
Params:
gtfolder:groundtruth folder path for ucf24
"""
super().__init__(data_size, batch_size, log_interval)
self.result_path = result_path
self.gt_folder = gt_folder
self.threshold = threshold
self.save_path = save_path
if not osp.isdir(self.result_path):
os.makedirs(self.result_path)
def update(self, batch_id, data, outputs):
frame_idx = outputs['frame_idx']
boxes = outputs["boxes"]
for j in range(len(frame_idx)):
detection_path = osp.join(self.result_path, frame_idx[j])
with open(detection_path, 'w+') as f_detect:
for box in boxes[j]:
x1 = round(float(box[0] - box[2] / 2.0) * 320.0)
y1 = round(float(box[1] - box[3] / 2.0) * 240.0)
x2 = round(float(box[0] + box[2] / 2.0) * 320.0)
y2 = round(float(box[1] + box[3] / 2.0) * 240.0)
det_conf = float(box[4])
for j in range((len(box) - 5) // 2):
cls_conf = float(box[5 + 2 * j].item())
prob = det_conf * cls_conf
f_detect.write(
str(int(box[6]) + 1) + ' ' + str(prob) + ' ' + str(x1) + ' ' + str(y1) + ' ' + str(
x2) + ' ' + str(y2) + '\n')
if batch_id % self.log_interval == 0:
logger.info("[TEST] Processing batch {}/{} ...".format(
batch_id,
self.data_size // (self.batch_size * self.world_size)))
def accumulate(self):
metric_list = get_mAP(self.gt_folder, self.result_path, self.threshold, self.save_path)
for info in metric_list:
logger.info(info)