You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

78 lines
3.1 KiB
Python

import numpy as np
import paddle
from paddlevideo.utils import get_logger
from .base import BaseMetric
from .registry import METRIC
logger = get_logger("paddlevideo")
@METRIC.register
class DepthMetric(BaseMetric):
def __init__(self, data_size, batch_size, log_interval=1):
"""prepare for metrics
"""
super().__init__(data_size, batch_size, log_interval)
self.abs_rel = []
self.sq_rel = []
self.rmse = []
self.rmse_log = []
self.a1 = []
self.a2 = []
self.a3 = []
def update(self, batch_id, data, outputs):
"""update metrics during each iter
"""
abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3 = outputs['abs_rel'], outputs['sq_rel'], outputs['rmse'], \
outputs['rmse_log'], outputs['a1'], outputs['a2'],outputs['a3']
# preds ensemble
if self.world_size > 1:
abs_rel = paddle.distributed.all_reduce(
outputs['abs_rel'],
op=paddle.distributed.ReduceOp.SUM) / self.world_size
sq_rel = paddle.distributed.all_reduce(
outputs['sq_rel'],
op=paddle.distributed.ReduceOp.SUM) / self.world_size
rmse = paddle.distributed.all_reduce(
outputs['rmse'],
op=paddle.distributed.ReduceOp.SUM) / self.world_size
rmse_log = paddle.distributed.all_reduce(
outputs['rmse_log'],
op=paddle.distributed.ReduceOp.SUM) / self.world_size
a1 = paddle.distributed.all_reduce(
outputs['a1'],
op=paddle.distributed.ReduceOp.SUM) / self.world_size
a2 = paddle.distributed.all_reduce(
outputs['a2'],
op=paddle.distributed.ReduceOp.SUM) / self.world_size
a3 = paddle.distributed.all_reduce(
outputs['a3'],
op=paddle.distributed.ReduceOp.SUM) / self.world_size
self.abs_rel.append(abs_rel)
self.sq_rel.append(sq_rel)
self.rmse.append(rmse)
self.rmse_log.append(rmse_log)
self.a1.append(a1)
self.a2.append(a2)
self.a3.append(a3)
if batch_id % self.log_interval == 0:
logger.info("[TEST] Processing batch {}/{} ...".format(
batch_id,
self.data_size // (self.batch_size * self.world_size)))
def accumulate(self):
"""accumulate metrics when finished all iters.
"""
logger.info(
'[TEST] finished, abs_rel= {}, sq_rel= {} , rmse= {}, rmse_log= {},'
'a1= {}, a2= {}, a3= {}'.format(np.mean(np.array(self.abs_rel)),
np.mean(np.array(self.sq_rel)),
np.mean(np.array(self.rmse)),
np.mean(np.array(self.rmse_log)),
np.mean(np.array(self.a1)),
np.mean(np.array(self.a2)),
np.mean(np.array(self.a3))))