You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

207 lines
8.2 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import math
import paddle
from paddle.distributed import ParallelEnv
import paddle.distributed as dist
from paddlevideo.utils import get_logger
logger = get_logger("paddlevideo")
try:
from nvidia.dali.pipeline import Pipeline
import nvidia.dali.ops as ops
import nvidia.dali.types as types
import tempfile
from nvidia.dali.plugin.paddle import DALIGenericIterator
except:
Pipeline = object
def get_input_data(data):
return paddle.to_tensor(data[0]['image']), paddle.to_tensor(
data[0]['label'])
class TSN_Dali_loader(object):
def __init__(self, cfg):
self.batch_size = cfg.batch_size
self.file_path = cfg.file_path
self.num_seg = cfg.num_seg
self.seglen = cfg.seglen
self.short_size = cfg.short_size
self.target_size = cfg.target_size
# set num_shards and shard_id when distributed training is implemented
self.num_shards = dist.get_world_size()
self.shard_id = ParallelEnv().local_rank
self.dali_mean = cfg.mean * (self.num_seg * self.seglen)
self.dali_std = cfg.std * (self.num_seg * self.seglen)
def build_dali_reader(self):
"""
build dali training reader
"""
def reader_():
with open(self.file_path) as flist:
full_lines = [line for line in flist]
if (not hasattr(reader_, 'seed')):
reader_.seed = 0
random.Random(reader_.seed).shuffle(full_lines)
logger.info(f"reader shuffle seed: {reader_.seed}.")
if reader_.seed is not None:
reader_.seed += 1
per_node_lines = int(
math.ceil(len(full_lines) * 1.0 / self.num_shards))
total_lines = per_node_lines * self.num_shards
# aligned full_lines so that it can evenly divisible
full_lines += full_lines[:(total_lines - len(full_lines))]
assert len(full_lines) == total_lines
# trainer get own sample
lines = full_lines[self.shard_id:total_lines:self.num_shards]
assert len(lines) == per_node_lines
logger.info(
f"shard_id: {self.shard_id}, trainer_count: {self.num_shards}"
)
logger.info(
f"read videos from {self.shard_id * per_node_lines}, "
f"length: {per_node_lines}, "
f"lines length: {len(lines)}, "
f"total: {len(full_lines)}")
video_files = ''.join([item for item in lines])
tf = tempfile.NamedTemporaryFile()
tf.write(str.encode(video_files))
tf.flush()
video_files = tf.name
device_id = ParallelEnv().local_rank
logger.info(f'---------- device_id: {device_id} -----------')
pipe = VideoPipe(batch_size=self.batch_size,
num_threads=1,
device_id=device_id,
file_list=video_files,
sequence_length=self.num_seg * self.seglen,
num_seg=self.num_seg,
seg_length=self.seglen,
resize_shorter_scale=self.short_size,
crop_target_size=self.target_size,
is_training=True,
num_shards=self.num_shards,
shard_id=self.shard_id,
dali_mean=self.dali_mean,
dali_std=self.dali_std)
logger.info(
'initializing dataset, it will take several minutes if it is too large .... '
)
video_loader = DALIGenericIterator([pipe], ['image', 'label'],
len(lines),
dynamic_shape=True,
auto_reset=True)
return video_loader
dali_reader = reader_()
return dali_reader
class VideoPipe(Pipeline):
def __init__(self,
batch_size,
num_threads,
device_id,
file_list,
sequence_length,
num_seg,
seg_length,
resize_shorter_scale,
crop_target_size,
is_training=False,
initial_prefetch_size=20,
num_shards=1,
shard_id=0,
dali_mean=0.,
dali_std=1.0):
super(VideoPipe, self).__init__(batch_size, num_threads, device_id)
self.input = ops.VideoReader(device="gpu",
file_list=file_list,
sequence_length=sequence_length,
num_seg=num_seg,
seg_length=seg_length,
is_training=is_training,
num_shards=num_shards,
shard_id=shard_id,
random_shuffle=is_training,
initial_fill=initial_prefetch_size)
# the sequece data read by ops.VideoReader is of shape [F, H, W, C]
# Because the ops.Resize does not support sequence data,
# it will be transposed into [H, W, F, C],
# then reshaped to [H, W, FC], and then resized like a 2-D image.
self.transpose = ops.Transpose(device="gpu", perm=[1, 2, 0, 3])
self.reshape = ops.Reshape(device="gpu",
rel_shape=[1.0, 1.0, -1],
layout='HWC')
self.resize = ops.Resize(device="gpu",
resize_shorter=resize_shorter_scale)
# crops and mirror are applied by ops.CropMirrorNormalize.
# Normalization will be implemented in paddle due to the difficulty of dimension broadcast,
# It is not sure whether dimension broadcast can be implemented correctly by dali, just take the Paddle Op instead.
self.pos_rng_x = ops.Uniform(range=(0.0, 1.0))
self.pos_rng_y = ops.Uniform(range=(0.0, 1.0))
self.mirror_generator = ops.Uniform(range=(0.0, 1.0))
self.cast_mirror = ops.Cast(dtype=types.DALIDataType.INT32)
self.crop_mirror_norm = ops.CropMirrorNormalize(
device="gpu",
crop=[crop_target_size, crop_target_size],
mean=dali_mean,
std=dali_std)
self.reshape_back = ops.Reshape(
device="gpu",
shape=[num_seg, seg_length * 3, crop_target_size, crop_target_size],
layout='FCHW')
self.cast_label = ops.Cast(device="gpu", dtype=types.DALIDataType.INT64)
def define_graph(self):
output, label = self.input(name="Reader")
output = self.transpose(output)
output = self.reshape(output)
output = self.resize(output)
output = output / 255.
pos_x = self.pos_rng_x()
pos_y = self.pos_rng_y()
mirror_flag = self.mirror_generator()
mirror_flag = (mirror_flag > 0.5)
mirror_flag = self.cast_mirror(mirror_flag)
output = self.crop_mirror_norm(output,
crop_pos_x=pos_x,
crop_pos_y=pos_y,
mirror=mirror_flag)
output = self.reshape_back(output)
label = self.cast_label(label)
return output, label
def __len__(self):
return self.epoch_size()