You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

83 lines
2.4 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import sys
import os.path as osp
import paddle
import paddle.nn.functional as F
from paddle.jit import to_static
import paddleslim
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../')))
from paddlevideo.modeling.builder import build_model
from paddlevideo.utils import get_config
def parse_args():
parser = argparse.ArgumentParser("PaddleVideo Summary")
parser.add_argument('-c',
'--config',
type=str,
default='configs/example.yaml',
help='config file path')
parser.add_argument("--img_size", type=int, default=224)
parser.add_argument("--num_seg", type=int, default=8)
parser.add_argument("--FLOPs",
action="store_true",
help="whether to print FLOPs")
return parser.parse_args()
def _trim(cfg, args):
"""
Reuse the trainging config will bring useless attribute, such as: backbone.pretrained model. Trim it here.
"""
model_name = cfg.model_name
cfg = cfg.MODEL
cfg.backbone.pretrained = ""
if 'num_seg' in cfg.backbone:
cfg.backbone.num_seg = args.num_seg
return cfg, model_name
def main():
args = parse_args()
cfg, model_name = _trim(get_config(args.config, show=False), args)
print(f"Building model({model_name})...")
model = build_model(cfg)
img_size = args.img_size
num_seg = args.num_seg
#NOTE: only support tsm now, will refine soon
params_info = paddle.summary(model, (1, 1, num_seg, 3, img_size, img_size))
print(params_info)
if args.FLOPs:
flops_info = paddleslim.analysis.flops(
model, [1, 1, num_seg, 3, img_size, img_size])
print(flops_info)
if __name__ == "__main__":
main()