You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

383 lines
14 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import numpy as np
from PIL import Image
try:
import SimpleITK as sitk
except ImportError as e:
print(
f"Warning! {e}, [SimpleITK] package and it's dependencies is required for PP-Care."
)
import cv2
from ..registry import PIPELINES
try:
import cPickle as pickle
from cStringIO import StringIO
except ImportError:
import pickle
from io import BytesIO
@PIPELINES.register()
class Sampler(object):
"""
Sample frames id.
NOTE: Use PIL to read image here, has diff with CV2
Args:
num_seg(int): number of segments.
seg_len(int): number of sampled frames in each segment.
valid_mode(bool): True or False.
select_left: Whether to select the frame to the left in the middle when the sampling interval is even in the test mode.
Returns:
frames_idx: the index of sampled #frames.
"""
def __init__(self,
num_seg,
seg_len,
frame_interval=None,
valid_mode=False,
select_left=False,
dense_sample=False,
linspace_sample=False,
use_pil=True):
self.num_seg = num_seg
self.seg_len = seg_len
self.frame_interval = frame_interval
self.valid_mode = valid_mode
self.select_left = select_left
self.dense_sample = dense_sample
self.linspace_sample = linspace_sample
self.use_pil = use_pil
def _get(self, frames_idx, results):
data_format = results['format']
if data_format == "frame":
frame_dir = results['frame_dir']
imgs = []
for idx in frames_idx:
img = Image.open(
os.path.join(frame_dir,
results['suffix'].format(idx))).convert('RGB')
imgs.append(img)
elif data_format == "MRI":
frame_dir = results['frame_dir']
imgs = []
MRI = sitk.GetArrayFromImage(sitk.ReadImage(frame_dir))
for idx in frames_idx:
item = MRI[idx]
item = cv2.resize(item, (224, 224))
imgs.append(item)
elif data_format == "video":
if results['backend'] == 'cv2':
frames = np.array(results['frames'])
imgs = []
for idx in frames_idx:
imgbuf = frames[idx]
img = Image.fromarray(imgbuf, mode='RGB')
imgs.append(img)
elif results['backend'] == 'decord':
container = results['frames']
if self.use_pil:
frames_select = container.get_batch(frames_idx)
# dearray_to_img
np_frames = frames_select.asnumpy()
imgs = []
for i in range(np_frames.shape[0]):
imgbuf = np_frames[i]
imgs.append(Image.fromarray(imgbuf, mode='RGB'))
else:
if frames_idx.ndim != 1:
frames_idx = np.squeeze(frames_idx)
frame_dict = {
idx: container[idx].asnumpy()
for idx in np.unique(frames_idx)
}
imgs = [frame_dict[idx] for idx in frames_idx]
elif results['backend'] == 'pyav':
imgs = []
frames = np.array(results['frames'])
for idx in frames_idx:
if self.dense_sample:
idx = idx - 1
imgbuf = frames[idx]
imgs.append(imgbuf)
imgs = np.stack(imgs) # thwc
else:
raise NotImplementedError
else:
raise NotImplementedError
results['imgs'] = imgs
return results
def _get_train_clips(self, num_frames):
ori_seg_len = self.seg_len * self.frame_interval
avg_interval = (num_frames - ori_seg_len + 1) // self.num_seg
if avg_interval > 0:
base_offsets = np.arange(self.num_seg) * avg_interval
clip_offsets = base_offsets + np.random.randint(avg_interval,
size=self.num_seg)
elif num_frames > max(self.num_seg, ori_seg_len):
clip_offsets = np.sort(
np.random.randint(num_frames - ori_seg_len + 1,
size=self.num_seg))
elif avg_interval == 0:
ratio = (num_frames - ori_seg_len + 1.0) / self.num_seg
clip_offsets = np.around(np.arange(self.num_seg) * ratio)
else:
clip_offsets = np.zeros((self.num_seg, ), dtype=np.int)
return clip_offsets
def _get_test_clips(self, num_frames):
ori_seg_len = self.seg_len * self.frame_interval
avg_interval = (num_frames - ori_seg_len + 1) / float(self.num_seg)
if num_frames > ori_seg_len - 1:
base_offsets = np.arange(self.num_seg) * avg_interval
clip_offsets = (base_offsets + avg_interval / 2.0).astype(np.int)
else:
clip_offsets = np.zeros((self.num_seg, ), dtype=np.int)
return clip_offsets
def __call__(self, results):
"""
Args:
frames_len: length of frames.
return:
sampling id.
"""
frames_len = int(results['frames_len'])
frames_idx = []
if self.frame_interval is not None:
assert isinstance(self.frame_interval, int)
if not self.valid_mode:
offsets = self._get_train_clips(frames_len)
else:
offsets = self._get_test_clips(frames_len)
offsets = offsets[:, None] + np.arange(
self.seg_len)[None, :] * self.frame_interval
offsets = np.concatenate(offsets)
offsets = offsets.reshape((-1, self.seg_len))
offsets = np.mod(offsets, frames_len)
offsets = np.concatenate(offsets)
if results['format'] == 'video':
frames_idx = offsets
elif results['format'] == 'frame':
frames_idx = list(offsets + 1)
else:
raise NotImplementedError
return self._get(frames_idx, results)
if self.linspace_sample:
if 'start_idx' in results and 'end_idx' in results:
offsets = np.linspace(results['start_idx'], results['end_idx'],
self.num_seg)
else:
offsets = np.linspace(0, frames_len - 1, self.num_seg)
offsets = np.clip(offsets, 0, frames_len - 1).astype(np.int64)
if results['format'] == 'video':
frames_idx = list(offsets)
frames_idx = [x % frames_len for x in frames_idx]
elif results['format'] == 'frame':
frames_idx = list(offsets + 1)
elif results['format'] == 'MRI':
frames_idx = list(offsets)
else:
raise NotImplementedError
return self._get(frames_idx, results)
average_dur = int(frames_len / self.num_seg)
if not self.select_left:
if self.dense_sample: # For ppTSM
if not self.valid_mode: # train
sample_pos = max(1, 1 + frames_len - 64)
t_stride = 64 // self.num_seg
start_idx = 0 if sample_pos == 1 else np.random.randint(
0, sample_pos - 1)
offsets = [(idx * t_stride + start_idx) % frames_len + 1
for idx in range(self.num_seg)]
frames_idx = offsets
else:
sample_pos = max(1, 1 + frames_len - 64)
t_stride = 64 // self.num_seg
start_list = np.linspace(0,
sample_pos - 1,
num=10,
dtype=int)
offsets = []
for start_idx in start_list.tolist():
offsets += [
(idx * t_stride + start_idx) % frames_len + 1
for idx in range(self.num_seg)
]
frames_idx = offsets
else:
for i in range(self.num_seg):
idx = 0
if not self.valid_mode:
if average_dur >= self.seg_len:
idx = random.randint(0, average_dur - self.seg_len)
idx += i * average_dur
elif average_dur >= 1:
idx += i * average_dur
else:
idx = i
else:
if average_dur >= self.seg_len:
idx = (average_dur - 1) // 2
idx += i * average_dur
elif average_dur >= 1:
idx += i * average_dur
else:
idx = i
for jj in range(idx, idx + self.seg_len):
if results['format'] == 'video':
frames_idx.append(int(jj % frames_len))
elif results['format'] == 'frame':
frames_idx.append(jj + 1)
elif results['format'] == 'MRI':
frames_idx.append(jj)
else:
raise NotImplementedError
return self._get(frames_idx, results)
else: # for TSM
if not self.valid_mode:
if average_dur > 0:
offsets = np.multiply(list(range(self.num_seg)),
average_dur) + np.random.randint(
average_dur, size=self.num_seg)
elif frames_len > self.num_seg:
offsets = np.sort(
np.random.randint(frames_len, size=self.num_seg))
else:
offsets = np.zeros(shape=(self.num_seg, ))
else:
if frames_len > self.num_seg:
average_dur_float = frames_len / self.num_seg
offsets = np.array([
int(average_dur_float / 2.0 + average_dur_float * x)
for x in range(self.num_seg)
])
else:
offsets = np.zeros(shape=(self.num_seg, ))
if results['format'] == 'video':
frames_idx = list(offsets)
frames_idx = [x % frames_len for x in frames_idx]
elif results['format'] == 'frame':
frames_idx = list(offsets + 1)
elif results['format'] == 'MRI':
frames_idx = list(offsets)
else:
raise NotImplementedError
return self._get(frames_idx, results)
@PIPELINES.register()
class SamplerPkl(object):
"""
Sample frames id.
NOTE: Use PIL to read image here, has diff with CV2
Args:
num_seg(int): number of segments.
seg_len(int): number of sampled frames in each segment.
mode(str): 'train', 'valid'
Returns:
frames_idx: the index of sampled #frames.
"""
def __init__(self, num_seg, seg_len, backend='pillow', valid_mode=False):
self.num_seg = num_seg
self.seg_len = seg_len
self.valid_mode = valid_mode
self.backend = backend
def _get(self, buf):
if isinstance(buf, str):
img = Image.open(StringIO(buf))
else:
img = Image.open(BytesIO(buf))
img = img.convert('RGB')
if self.backend != 'pillow':
img = np.array(img)
return img
def __call__(self, results):
"""
Args:
frames_len: length of frames.
return:
sampling id.
"""
filename = results['frame_dir']
data_loaded = pickle.load(open(filename, 'rb'), encoding='bytes')
video_name, label, frames = data_loaded
if isinstance(label, dict):
label = label['动作类型']
results['labels'] = label
elif len(label) == 1:
results['labels'] = int(label[0])
else:
results['labels'] = int(label[0]) if random.random() < 0.5 else int(
label[1])
results['frames_len'] = len(frames)
frames_len = results['frames_len']
average_dur = int(int(frames_len) / self.num_seg)
imgs = []
for i in range(self.num_seg):
idx = 0
if not self.valid_mode:
if average_dur >= self.seg_len:
idx = random.randint(0, average_dur - self.seg_len)
idx += i * average_dur
elif average_dur >= 1:
idx += i * average_dur
else:
idx = i
else:
if average_dur >= self.seg_len:
idx = (average_dur - 1) // 2
idx += i * average_dur
elif average_dur >= 1:
idx += i * average_dur
else:
idx = i
for jj in range(idx, idx + self.seg_len):
imgbuf = frames[int(jj % results['frames_len'])]
img = self._get(imgbuf)
imgs.append(img)
results['backend'] = self.backend
results['imgs'] = imgs
return results