You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
110 lines
4.1 KiB
Python
110 lines
4.1 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os.path as osp
|
|
import copy
|
|
import random
|
|
import numpy as np
|
|
|
|
from ..registry import DATASETS
|
|
from .base import BaseDataset
|
|
from ...utils import get_logger
|
|
|
|
logger = get_logger("paddlevideo")
|
|
|
|
|
|
@DATASETS.register()
|
|
class MRIDataset(BaseDataset):
|
|
"""Rawframe dataset for action recognition.
|
|
The dataset loads raw frames from frame files, and apply specified transform operatation them.
|
|
The indecx file is a text file with multiple lines, and each line indicates the directory of frames of a video, toatl frames of the video, and its label, which split with a whitespace.
|
|
Example of an index file:
|
|
|
|
.. code-block:: txt
|
|
|
|
file_path-1 150 1
|
|
file_path-2 160 1
|
|
file_path-3 170 2
|
|
file_path-4 180 2
|
|
|
|
Args:
|
|
file_path (str): Path to the index file.
|
|
pipeline(XXX):
|
|
data_prefix (str): directory path of the data. Default: None.
|
|
test_mode (bool): Whether to bulid the test dataset. Default: False.
|
|
suffix (str): suffix of file. Default: 'img_{:05}.jpg'.
|
|
|
|
"""
|
|
def __init__(self,
|
|
file_path,
|
|
pipeline,
|
|
num_retries=5,
|
|
data_prefix=None,
|
|
test_mode=False,
|
|
suffix='img_{:05}.jpg'):
|
|
self.num_retries = num_retries
|
|
self.suffix = suffix
|
|
super().__init__(file_path, pipeline, data_prefix, test_mode)
|
|
|
|
def load_file(self):
|
|
"""Load index file to get video information."""
|
|
info = []
|
|
with open(self.file_path, 'r') as fin:
|
|
for line in fin:
|
|
line_split = line.strip().split()
|
|
frame_dir, frames_len, labels = line_split
|
|
if self.data_prefix is not None:
|
|
frame_dir = osp.join(self.data_prefix, frame_dir)
|
|
info.append(
|
|
dict(
|
|
frame_dir=frame_dir,
|
|
#suffix=self.suffix,
|
|
frames_len=frames_len,
|
|
labels=int(labels)))
|
|
return info
|
|
|
|
def prepare_train(self, idx):
|
|
"""Prepare the frames for training/valid gisven index. """
|
|
#Try to catch Exception caused by reading missing frames files
|
|
for ir in range(self.num_retries):
|
|
try:
|
|
results = copy.deepcopy(self.info[idx])
|
|
results = self.pipeline(results)
|
|
except Exception as e:
|
|
#logger.info(e)
|
|
if ir < self.num_retries - 1:
|
|
logger.info(
|
|
"Error when loading {}, have {} trys, will try again".
|
|
format(results['frame_dir'], ir))
|
|
idx = random.randint(0, len(self.info) - 1)
|
|
continue
|
|
return np.array(results['imgs']), np.array([results['labels']])
|
|
|
|
def prepare_test(self, idx):
|
|
"""Prepare the frames for test given index. """
|
|
#Try to catch Exception caused by reading missing frames files
|
|
for ir in range(self.num_retries):
|
|
try:
|
|
results = copy.deepcopy(self.info[idx])
|
|
results = self.pipeline(results)
|
|
except Exception as e:
|
|
#logger.info(e)
|
|
if ir < self.num_retries - 1:
|
|
logger.info(
|
|
"Error when loading {}, have {} trys, will try again".
|
|
format(results['frame_dir'], ir))
|
|
idx = random.randint(0, len(self.info) - 1)
|
|
continue
|
|
return np.array(results['imgs']), np.array([results['labels']])
|