|
|
import os
|
|
|
import os.path as osp
|
|
|
from paddlevideo.utils.config import get_config
|
|
|
from paddle.inference import Config, create_predictor
|
|
|
from utils import build_inference_helper
|
|
|
|
|
|
class PP_TSMv2_predict(object):
|
|
|
|
|
|
"""PP-TSMv2模型中常用的参数初始化"""
|
|
|
|
|
|
def __init__(self,use_gpu=True,ir_optim=True,
|
|
|
disable_glog=False,save_name=None,enable_mklddn=False,
|
|
|
precision="fp32",gpu_mem=8000,cpu_threads=None):
|
|
|
|
|
|
self.use_gpu = use_gpu #是否使用GPU
|
|
|
self.cpu_threads = cpu_threads #cpu线程数
|
|
|
self.ir_optim = ir_optim #是否开启IR优化
|
|
|
self.disable_glog = disable_glog
|
|
|
self.gpu_mem = gpu_mem #GPU存储大小
|
|
|
self.enable_mkldnn = enable_mklddn #是否开启mkldnn
|
|
|
self.precision = precision #mfldnn精度
|
|
|
self.save_name = save_name #转化推理模型存放名称
|
|
|
|
|
|
|
|
|
|
|
|
def parse_file_paths(self,input_path: str) -> list:
|
|
|
|
|
|
"""
|
|
|
获取模型输入数据
|
|
|
input_path:模型的输入文件
|
|
|
"""
|
|
|
if osp.isfile(input_path):
|
|
|
files = [
|
|
|
input_path,
|
|
|
]
|
|
|
else:
|
|
|
files = os.listdir(input_path)
|
|
|
files = [
|
|
|
file for file in files
|
|
|
if (file.endswith(".avi") or file.endswith(".mp4"))
|
|
|
]
|
|
|
files = [osp.join(input_path, file) for file in files]
|
|
|
return files
|
|
|
|
|
|
|
|
|
def create_paddle_predictor(self,model_f,pretr_p,cfg):
|
|
|
"""
|
|
|
创建推理引擎
|
|
|
model_f:可推理模型存放的路径+配置文件
|
|
|
pretr_p:训练后的参数存放文件
|
|
|
cfg:模型配置文件
|
|
|
|
|
|
"""
|
|
|
config = Config(model_f,pretr_p)
|
|
|
if self.use_gpu:
|
|
|
config.enable_use_gpu(self.gpu_mem,0)
|
|
|
else:
|
|
|
config.disable_gpu()
|
|
|
if self.cpu_threads:
|
|
|
config.set_cpu_math_library_num_threads(self.cpu_threads)
|
|
|
if self.enable_mkldnn:
|
|
|
config.set_mkldnn_cache_capacity(10)
|
|
|
config.enable_mkldnn()
|
|
|
if self.precision == "fp16":
|
|
|
config.enable_mkldnn_bfloat16()
|
|
|
|
|
|
config.switch_ir_optim(self.ir_optim)
|
|
|
|
|
|
config.enable_memory_optim()
|
|
|
config.switch_use_feed_fetch_ops(False)
|
|
|
|
|
|
if self.disable_glog:
|
|
|
config.disable_glog_info()
|
|
|
|
|
|
predictor = create_predictor(config)
|
|
|
|
|
|
return config,predictor
|
|
|
|
|
|
def create_inference_model(self,config,model_f,params_f):
|
|
|
"""
|
|
|
创建推理模型以及引擎
|
|
|
config:模型配置文件
|
|
|
model_f:可推理模型的存放路径
|
|
|
params_f:可推理模型的参数
|
|
|
"""
|
|
|
cfg = get_config(config, overrides=None, show=False)
|
|
|
InferenceHelper = build_inference_helper(cfg.INFERENCE)
|
|
|
_, predictor = self.create_paddle_predictor(model_f, params_f, cfg)
|
|
|
|
|
|
return InferenceHelper,predictor
|
|
|
|
|
|
|
|
|
def predict(self,config,input_f,batch_size,predictor,InferenceHelper):
|
|
|
|
|
|
"""
|
|
|
推理模型,对数据进行推理、预测
|
|
|
config :PP-TSMv2模型的配置文件
|
|
|
input_f:待推理数据集的存放路径
|
|
|
batch_size:模型推理中所取数据的多少,default = 1
|
|
|
predictor:推理引擎
|
|
|
InferenceHelper:推理模型
|
|
|
"""
|
|
|
result = {}
|
|
|
|
|
|
cfg = get_config(config, overrides=None, show=False)
|
|
|
model_name = cfg.model_name
|
|
|
print(f"Inference model({model_name})...")
|
|
|
|
|
|
# get input_tensor and output_tensor
|
|
|
input_names = predictor.get_input_names()
|
|
|
output_names = predictor.get_output_names()
|
|
|
input_tensor_list = []
|
|
|
output_tensor_list = []
|
|
|
for item in input_names:
|
|
|
input_tensor_list.append(predictor.get_input_handle(item))
|
|
|
for item in output_names:
|
|
|
output_tensor_list.append(predictor.get_output_handle(item))
|
|
|
|
|
|
files = self.parse_file_paths(input_f)#input_path=input_f
|
|
|
|
|
|
batch_num = batch_size
|
|
|
for st_idx in range(0, len(files), batch_num):
|
|
|
ed_idx = min(st_idx + batch_num, len(files))
|
|
|
|
|
|
#输出数据预处理
|
|
|
batched_inputs = InferenceHelper.preprocess_batch(files[st_idx:ed_idx])
|
|
|
for i in range(len(input_tensor_list)):
|
|
|
input_tensor_list[i].copy_from_cpu(batched_inputs[i])
|
|
|
|
|
|
#推理引擎开始推理
|
|
|
predictor.run()
|
|
|
|
|
|
batched_outputs = []
|
|
|
for j in range(len(output_tensor_list)):
|
|
|
batched_outputs.append(output_tensor_list[j].copy_to_cpu())
|
|
|
|
|
|
#输出推理结果
|
|
|
res = InferenceHelper.postprocess(batched_outputs,False,True)
|
|
|
result["video_id"] = res[0]["video_id"]
|
|
|
result["topk_class"] = res[0]["topk_class"].tolist()[0]
|
|
|
result["topk_scores"] = res[0]["topk_scores"].tolist()[0]
|
|
|
print(result)
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
config = 'D:/download/PaddleVideo1/output/output/pptsm_lcnet_k400_16frames_uniform.yaml' # 配置文件地址
|
|
|
input_file='C:/Users/Administrator/Pictures/video_seg_re_hand/test01_3.avi' #待推理数据集存放的地址
|
|
|
model_file = 'D:/download/PaddleVideo1/output/output/ppTSMv2.pdmodel' # 推理模型存放地址
|
|
|
params_file = 'D:/download/PaddleVideo1/output/output/ppTSMv2.pdiparams'
|
|
|
batch_size= 1 #输出推理模型
|
|
|
infer,predictor = PP_TSMv2_predict().create_inference_model(config,model_file,params_file)
|
|
|
PP_TSMv2_predict().predict(config,input_file,batch_size,predictor,infer) #推理模型推理、预测
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
main()
|
|
|
|
|
|
|
|
|
|