from export_model import trim_config,get_input_spec from predict import parse_file_paths import os import os.path as osp import paddle from paddlevideo.utils import get_config from paddlevideo.modeling.builder import build_model from paddle.jit import to_static from paddle.inference import Config, create_predictor from utils import build_inference_helper import time import warnings warnings.filterwarnings("ignore") class PP_TSMv2(object): def __init__(self,use_gpu=True,batch_size=1,ir_optim=True,\ disable_glog=False,save_name=None,enable_mklddn=False,\ precision="fp32",gpu_mem=8000,cpu_threads=None,time_test_file=False): self.use_gpu = use_gpu self.cpu_threads = cpu_threads self.batch_size = batch_size self.ir_optim = ir_optim self.disable_glog = disable_glog self.gpu_mem = gpu_mem self.enable_mkldnn = enable_mklddn self.precision = precision self.save_name = save_name self.time_test_file = time_test_file def create_paddle_predictor(self,model_f,pretr_p,cfg): config = Config(model_f,pretr_p) if self.use_gpu: config.enable_use_gpu(self.gpu_mem,0) else: config.disable_gpu() if self.cpu_threads: config.set_cpu_math_library_num_threads(self.cpu_threads) if self.enable_mkldnn: config.set_mkldnn_cache_capacity(10) config.enable_mkldnn() if self.precision == "fp16": config.enable_mkldnn_bfloat16() config.switch_ir_optim(self.ir_optim) config.enable_memory_optim() config.switch_use_feed_fetch_ops(False) if self.disable_glog: config.disable_glog_info() predictor = create_predictor(config) return config,predictor def exportmodel(self,config,pretr_p,output_p): cfg, model_name = trim_config(get_config(config, overrides=None, show=False)) # pretr_p = str(pretr_p) print(f"Building model({model_name})...") model = build_model(cfg.MODEL) assert osp.isfile( pretr_p ), f"pretrained params ({pretr_p} is not a file path.)" if not os.path.isdir(output_p): os.makedirs(output_p) print(f"Loading params from ({pretr_p})...") params = paddle.load(pretr_p) model.set_dict(params) model.eval() for layer in model.sublayers(): if hasattr(layer, "rep") and not getattr(layer, "is_repped"): layer.rep() input_spec = get_input_spec(cfg.INFERENCE, model_name) model = to_static(model, input_spec=input_spec) paddle.jit.save(model,osp.join(output_p, model_name if self.save_name is None else self.save_name)) print(f"model ({model_name}) has been already saved in ({output_p}).") return model def predict(self,config,input_f,batch_size,model_f,params_f): cfg = get_config(config, overrides=None, show=False) model_name = cfg.model_name print(f"Inference model({model_name})...") InferenceHelper = build_inference_helper(cfg.INFERENCE) _ , predictor = self.create_paddle_predictor(model_f,params_f,cfg) # 要改 model_f,pretr_p,cfg # get input_tensor and output_tensor input_names = predictor.get_input_names() output_names = predictor.get_output_names() input_tensor_list = [] output_tensor_list = [] for item in input_names: input_tensor_list.append(predictor.get_input_handle(item)) for item in output_names: output_tensor_list.append(predictor.get_output_handle(item)) files = parse_file_paths(input_f) batch_num = batch_size for st_idx in range(0, len(files), batch_num): ed_idx = min(st_idx + batch_num, len(files)) batched_inputs = InferenceHelper.preprocess_batch(files[st_idx:ed_idx]) for i in range(len(input_tensor_list)): input_tensor_list[i].copy_from_cpu(batched_inputs[i]) predictor.run() batched_outputs = [] for j in range(len(output_tensor_list)): batched_outputs.append(output_tensor_list[j].copy_to_cpu()) InferenceHelper.postprocess(batched_outputs,True) def main(): config='/home/xznsh/data/PaddleVideo/configs/recognition/pptsm/v2/pptsm_lcnet_k400_16frames_uniform.yaml' #配置文件地址 input_file='/home/xznsh/data/PaddleVideo/data/dataset/video_seg_re_hand' #推理数据集存放的地址 pretrain_params='/home/xznsh/data/PaddleVideo/output/ppTSMv2/ppTSMv2_best.pdparams' #训练后模型参数文件存放 output_path='/home/xznsh/data/PaddleVideo/inference/infer1' #推理模型存放地址 model_file='/home/xznsh/data/PaddleVideo/inference/infer1/ppTSMv2.pdmodel' #推理模型存放地址 params_file='/home/xznsh/data/PaddleVideo/inference/infer1/ppTSMv2.pdiparams' #推理模型参数存放地址 batch_size= 1 PP_TSMv2().exportmodel(config,pretrain_params,output_path) #输出推理模型 time.sleep(2) PP_TSMv2().predict(config,input_file,batch_size,model_file,params_file) if __name__ == "__main__": main()