# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddlevideo.utils import get_logger, load from ..loader.builder import build_dataloader, build_dataset from ..metrics import build_metric from ..modeling.builder import build_model logger = get_logger("paddlevideo") @paddle.no_grad() def test_model(cfg, weights, parallel=True): """Test model entry Args: cfg (dict): configuration. weights (str): weights path to load. parallel (bool): Whether to do multi-cards testing. Default: True. """ if cfg.get('use_npu', False): places = paddle.set_device('npu') elif cfg.get('use_xpu', False): places = paddle.set_device('xpu') else: places = paddle.set_device('gpu') # 1. Construct model. if cfg.MODEL.get('backbone') and cfg.MODEL.backbone.get('pretrained'): cfg.MODEL.backbone.pretrained = '' # disable pretrain model init model = build_model(cfg.MODEL) if parallel: model = paddle.DataParallel(model) # 2. Construct dataset and dataloader. cfg.DATASET.test.test_mode = True dataset = build_dataset((cfg.DATASET.test, cfg.PIPELINE.test)) batch_size = cfg.DATASET.get("test_batch_size", 8) # default num worker: 0, which means no subprocess will be created num_workers = cfg.DATASET.get('num_workers', 0) num_workers = cfg.DATASET.get('test_num_workers', num_workers) dataloader_setting = dict(batch_size=batch_size, num_workers=num_workers, places=places, drop_last=False, shuffle=False) data_loader = build_dataloader( dataset, **dataloader_setting) if cfg.model_name not in ['CFBI' ] else dataset model.eval() state_dicts = load(weights) model.set_state_dict(state_dicts) # add params to metrics cfg.METRIC.data_size = len(dataset) cfg.METRIC.batch_size = batch_size Metric = build_metric(cfg.METRIC) if cfg.MODEL.framework == "FastRCNN": Metric.set_dataset_info(dataset.info, len(dataset)) for batch_id, data in enumerate(data_loader): if cfg.model_name in [ 'CFBI' ]: # for VOS task, dataset for video and dataloader for frames in each video Metric.update(batch_id, data, model) else: outputs = model(data, mode='test') Metric.update(batch_id, data, outputs) Metric.accumulate()