# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path as osp import os from paddlevideo.utils import get_logger from .registry import METRIC from .base import BaseMetric from .ucf24_utils import get_mAP logger = get_logger("paddlevideo") @METRIC.register class YOWOMetric(BaseMetric): """ Metrics for YOWO. Two Stages in this metric: (1) Get test results using trained model, results will be saved in YOWOMetric.result_path; (2) Calculate metrics using results file from stage (1). """ def __init__(self, data_size, batch_size, gt_folder, result_path, threshold=0.5, save_path=None, log_interval=1): """ Init for BMN metrics. Params: gtfolder:groundtruth folder path for ucf24 """ super().__init__(data_size, batch_size, log_interval) self.result_path = result_path self.gt_folder = gt_folder self.threshold = threshold self.save_path = save_path if not osp.isdir(self.result_path): os.makedirs(self.result_path) def update(self, batch_id, data, outputs): frame_idx = outputs['frame_idx'] boxes = outputs["boxes"] for j in range(len(frame_idx)): detection_path = osp.join(self.result_path, frame_idx[j]) with open(detection_path, 'w+') as f_detect: for box in boxes[j]: x1 = round(float(box[0] - box[2] / 2.0) * 320.0) y1 = round(float(box[1] - box[3] / 2.0) * 240.0) x2 = round(float(box[0] + box[2] / 2.0) * 320.0) y2 = round(float(box[1] + box[3] / 2.0) * 240.0) det_conf = float(box[4]) for j in range((len(box) - 5) // 2): cls_conf = float(box[5 + 2 * j].item()) prob = det_conf * cls_conf f_detect.write( str(int(box[6]) + 1) + ' ' + str(prob) + ' ' + str(x1) + ' ' + str(y1) + ' ' + str( x2) + ' ' + str(y2) + '\n') if batch_id % self.log_interval == 0: logger.info("[TEST] Processing batch {}/{} ...".format( batch_id, self.data_size // (self.batch_size * self.world_size))) def accumulate(self): metric_list = get_mAP(self.gt_folder, self.result_path, self.threshold, self.save_path) for info in metric_list: logger.info(info)