# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from ..registry import BACKBONES from .deeplab import DeepLab class FPN(nn.Layer): """FPN Layer""" def __init__(self, in_dim_4x, in_dim_8x, in_dim_16x, out_dim): super(FPN, self).__init__() self.toplayer = self._make_layer(in_dim_16x, out_dim) self.latlayer1 = self._make_layer(in_dim_8x, out_dim) self.latlayer2 = self._make_layer(in_dim_4x, out_dim) self.smooth1 = self._make_layer(out_dim, out_dim, kernel_size=3, padding=1) self.smooth2 = self._make_layer(out_dim, out_dim, kernel_size=3, padding=1) def _make_layer(self, in_dim, out_dim, kernel_size=1, padding=0): return nn.Sequential( nn.Conv2D(in_dim, out_dim, kernel_size=kernel_size, stride=1, padding=padding, bias_attr=False), nn.GroupNorm(num_groups=32, num_channels=out_dim)) def forward(self, x_4x, x_8x, x_16x): """ forward function""" x_16x = self.toplayer(x_16x) x_8x = self.latlayer1(x_8x) x_4x = self.latlayer2(x_4x) x_8x = x_8x + F.interpolate( x_16x, size=x_8x.shape[-2:], mode='bilinear', align_corners=True) x_4x = x_4x + F.interpolate( x_8x, size=x_4x.shape[-2:], mode='bilinear', align_corners=True) x_8x = self.smooth1(x_8x) x_4x = self.smooth2(x_4x) return F.relu(x_4x), F.relu(x_8x), F.relu(x_16x) @BACKBONES.register() class CFBI(nn.Layer): """CFBI plus backbone""" def __init__(self, backbone='resnet', freeze_bn=True, model_aspp_outdim=256, in_dim_8x=512, model_semantic_embedding_dim=256): #,epsilon=1e-05): super(CFBI, self).__init__() #self.epsilon = epsilon self.feature_extracter = DeepLab(backbone=backbone, freeze_bn=freeze_bn) self.fpn = FPN(in_dim_4x=model_aspp_outdim, in_dim_8x=in_dim_8x, in_dim_16x=model_aspp_outdim, out_dim=model_semantic_embedding_dim) def forward(self, x): """forward function""" x, aspp_x, low_level, mid_level = self.feature_extracter(x, True) x_4x, x_8x, x_16x = self.fpn(x, mid_level, aspp_x) return x_4x, x_8x, x_16x, low_level