# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # https://github.com/yabufarha/ms-tcn/blob/master/model.py # https://github.com/yiskw713/asrf/libs/models/tcn.py import paddle import paddle.nn as nn import paddle.nn.functional as F import numpy as np import copy import random import math from paddle import ParamAttr from ..registry import BACKBONES from ..weight_init import weight_init_ from .ms_tcn import DilatedResidualLayer from ..framework.segmenters.utils import init_bias, KaimingUniform_like_torch @BACKBONES.register() class ASRF(nn.Layer): def __init__(self, in_channel, num_features, num_classes, num_stages, num_layers): super().__init__() self.in_channel = in_channel self.num_features = num_features self.num_classes = num_classes self.num_stages = num_stages self.num_layers = num_layers # define layers self.conv_in = nn.Conv1D(self.in_channel, self.num_features, 1) shared_layers = [ DilatedResidualLayer(2**i, self.num_features, self.num_features) for i in range(self.num_layers) ] self.shared_layers = nn.LayerList(shared_layers) self.init_weights() def init_weights(self): """ initialize model layers' weight """ # init weight for layer in self.sublayers(): if isinstance(layer, nn.Conv1D): layer.weight.set_value( KaimingUniform_like_torch(layer.weight).astype('float32')) if layer.bias is not None: layer.bias.set_value( init_bias(layer.weight, layer.bias).astype('float32')) def forward(self, x): """ ASRF forward """ out = self.conv_in(x) for layer in self.shared_layers: out = layer(out) return out