import time import torch from ultralytics import YOLO import numpy as np import cv2 import os from lxml.etree import Element, SubElement, tostring def create_xml(boxs,img_shape,xml_path): """ 创建xml文件,依次写入xml文件必备关键字 :param boxs: txt文件中的box :param img_shape: 图片信息,xml中需要写入WHC :return: """ node_root = Element('annotation') node_folder = SubElement(node_root, 'folder') node_folder.text = 'Images' node_filename = SubElement(node_root, 'filename') node_filename.text = str(img_shape[3]) node_size = SubElement(node_root, 'size') node_width = SubElement(node_size, 'width') node_width.text = str(img_shape[1]) node_height = SubElement(node_size, 'height') node_height.text = str(img_shape[0]) node_depth = SubElement(node_size, 'depth') node_depth.text = str(img_shape[2]) if len(boxs)>=1: # 循环写入box for box in boxs: node_object = SubElement(node_root, 'object') node_name = SubElement(node_object, 'name') # if str(list_[4]) == "person": # 根据条件筛选需要标注的标签,例如这里只标记person这类,不符合则直接跳过 # node_name.text = str(list_[4]) # else: # continue node_name.text = str(box[4]) node_difficult = SubElement(node_object, 'difficult') node_difficult.text = '0' node_bndbox = SubElement(node_object, 'bndbox') node_xmin = SubElement(node_bndbox, 'xmin') node_xmin.text = str(box[0]) node_ymin = SubElement(node_bndbox, 'ymin') node_ymin.text = str(box[1]) node_xmax = SubElement(node_bndbox, 'xmax') node_xmax.text = str(box[2]) node_ymax = SubElement(node_bndbox, 'ymax') node_ymax.text = str(box[3]) xml = tostring(node_root, pretty_print=True) # 格式化显示,该换行的换行 file_name = img_shape[3].split(".")[0] filename = xml_path+"/{}.xml".format(file_name) f = open(filename, "wb") f.write(xml) f.close() def draw_bounding_box(img, class_name, confidence, x, y, x_plus_w, y_plus_h,color): label = f'{class_name} ({confidence:.2f})' cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2) cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) def main(weights_path,img_path,xml_path,outputs_path): model = YOLO(weights_path) arr = torch.ones(1,3,224,224) result_init = model(arr)[0] colors = np.random.uniform(0, 255, size=(len(result_init.names), 3)) # 初始化画图颜色 for name in os.listdir(img_path): t0 = time.time() original_image = cv2.imread(os.path.join(img_path,name)) img_shape = (original_image.shape[0], original_image.shape[1], original_image.shape[2], name) # Use the model results = model(original_image)[0] # predict on an image boxes = results.boxes.cpu().numpy() CLASSES = results.names xyxy_cls = [] for i in range(len(boxes.xyxy)): xyxy_cls.append([int(boxes.xyxy[i][0]),int(boxes.xyxy[i][1]),int(boxes.xyxy[i][2]),int(boxes.xyxy[i][3]),CLASSES[boxes.cls[i]]]) draw_bounding_box(original_image,CLASSES[boxes.cls[i]],boxes.conf[i],int(boxes.xyxy[i][0]),int(boxes.xyxy[i][1]),int(boxes.xyxy[i][2]),int(boxes.xyxy[i][3]),colors[int(boxes.cls[i])]) if len(xyxy_cls) >0: create_xml(xyxy_cls,img_shape,xml_path) # 创建xmls t1 = time.time() print("img name: {} infer:{:4f} ms".format(name,(t1-t0)*1000)) cv2.imwrite(os.path.join(outputs_path, name), original_image) # 保留输出结果图 # cv2.imshow('image', original_image) # cv2.waitKey(0) # cv2.destroyAllWindows() if __name__ =="__main__": # weights_path =r"C:\Users\Administrator\Desktop\train24\weights\best.pt" weights_path =r"C:\Users\Administrator\Desktop\ultralytics-main\yolov8s.pt" #权重地址 imgs_path = r"C:\Users\Administrator\Desktop\yolov5-label-xml-main\inference\images" #图片地址 xmls_path = r"C:\Users\Administrator\Desktop\yolov5-label-xml-main\inference\xmlss" #输出xml文件地址 outputs_path = "./" main(weights_path,imgs_path,xmls_path,outputs_path)